2,512 research outputs found

    Fundamental performance similarities between individual pitch control strategies for wind turbines.

    Get PDF
    The use of blade individual pitch control (IPC) offers a means of reducing the harmful turbine structural loads that arise from the uneven and unsteady forcing from the oncoming wind. In recent years two different and competing IPC techniques have emerged that are characterised by the specific loads that they are primarily designed to attenuate. In the first instance, methodologies such as single-blade control and Clarke Transform-based control have been developed to reduce the unsteady loads on the rotating blades, whilst tilt-yaw control and its many variants instead target load reductions in the non rotating turbine structures, such as the tower and main bearing. Given the seeming disparities between these controllers, the aim of this paper is to show the fundamental performance similarities that exist between them and hence unify research in this area. Specifically, we show that single-blade controllers are equivalent to a particular class of tilt-yaw controller, which itself is equivalent to Clarke~Transform-based control. This means that three architecturally dissimilar IPC controllers exist that yield exactly the same performance in terms of load reductions on fixed and rotating turbine structures. We further demonstrate this outcome by presenting results obtained from high-fidelity closed-loop turbine simulations

    Wind turbine asymmetrical load reduction with pitch sensor fault compensation

    Get PDF
    Offshore wind turbines suffer from asymmetrical loading (blades, tower, etc), leading to enhanced structural fatigue. As well as asymmetrical loading different faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance. Individual pitch control (IPC) can achieve rotor asymmetric loads mitigation, but this is accompanied by an enhancement of pitch movements leading to the increased possibility of pitch system faults, which exerts negative effects on the IPC performance. The combined effects of asymmetrical blade and tower bending together with pitch sensor faults are considered as a “co‐design” problem to minimize performance deterioration and enhance wind turbine sustainability. The essential concept is to attempt to account for all the “fault effects” in the rotor and tower systems, which can weaken the load reduction performance through IPC. Pitch sensor faults are compensated by the proposed fault‐tolerant control (FTC) strategy to attenuate the fault effects acting in the control system. The work thus constitutes a combination of IPC‐based load mitigation and FTC acting at the pitch system level. A linear quadratic regulator (LQR)‐based IPC strategy for simultaneous blade and tower loading mitigation is proposed in which the robust fault estimation is achieved using an unknown input observer (UIO), considering four different pitch sensor faults. The analysis of the combined UIO‐based FTC scheme with the LQR‐based IPC is shown to verify the robustness and effectiveness of these two systems acting together and separately

    Fault-tolerant load reduction control for large offshore wind turbines

    Get PDF
    Offshore wind turbines suffer from asymmetrical loading (blades, tower etc.), leading to enhanced structural fatigue. As well as asymmetrical loading different types of faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance and enhanced fatigue. Individual pitch control (IPC) provides an important method to achieve mitigation of rotor asymmetric loads, but this may be accompanied by a resulting enhancement of pitch movement leading to increased possibility of pitch system faults, which negative effects on IPC performance.This thesis focuses on combining the fault tolerant control (FTC) techniques with load reduction strategies by a more intelligent pitch control system (i.e. collective pitch control and IPC) for offshore wind turbines in a system level to reduce the operation & maintenance costs and improve the system reliability. The scenario of load mitigation is analogous to the FTC problem because the action of rotor/tower bending can be considered as a fault effect. The essential concept is to attempt to account for all the "fault effects" in the rotor and tower systems which can weaken the effect of bending moment reduction through the use of IPC.Motivated by the above, this thesis focuses on four aspects to fill the gap of the combination between FTC and IPC schemes. Firstly, a preview control system using model predictive control with future wind speed is proposed, which could be a possible alternative to using LiDAR technology when using preview control for load reduction. Secondly, a multivariable IPC controller for both blade and tower load mitigation considering the inherent couplings is investigated. Thirdly, appropriate control-based fault monitoring strategies including fault detection and fault estimation FE-based FTC scheme are proposed for several different pitch actuator/sensor faults. Furthermore, the combined analysis of an FE-based FTC strategy with the IPC system at a system level is provided and the robustness of the proposed strategy is verified

    Predictive control design on an embedded robust output-feedback compensator for wind turbine blade-pitch preview control

    Get PDF
    The use of upstream wind measurements has motivated the development of blade-pitch preview controllers to improve rotor speed tracking and structural load reduction beyond that achievable via conventional feedback design. Such preview controllers, typically based upon model predictive control (MPC) for its constraint handling properties, alter the closed-loop dynamics of the existing blade-pitch feedback control system. This can result in the robustness properties of the original closed-loop system being no longer preserved. As a consequence, the aim of this work is to formulate an MPC layer on top of a given output-feedback controller, with a view to retaining the closed-loop robustness and frequency- domain performance of the latter. The separate nature of the proposed controller structure enables clear and transparent qualifications of the benefits gained by using preview and predictive control. This is illustrated by results obtained from closed-loop simulations upon a high-fidelity turbine, showing the performance comparison between a nominal feedback compensator and the proposed MPC-based preview controller

    Resilience in Floating Offshore Wind Turbines: A Scoping Review

    Get PDF
    Background With climate change a looming global threat, offshore wind energy is a vital resource, and floating offshore wind turbines (FOWT) are essential to capture its full potential. Unfortunately, high operations and maintenance expenses pose an obstacle to widespread implementation of FOWT. Reducing maintenance needs by limiting FOWT damage or failure in harsh environments will undoubtedly contribute to lowering costs and to improving on-site personnel safety. Resilience, an important concept in the field of risk management, may be instrumental in achieving these goals. Objective The objective of this thesis was to develop a thorough understanding of how resilience is understood and its applications to FOWT design and operation. The following issues were of greatest interest: the degree to which FOWT literature addresses resilience, the various interpretations and definitions of resilience that are employed in FOWT research, and how those definitions of resilience are applied to FOWT. These issues and objectives led to the question this thesis sought to answer, in order to map the knowledge and potential gaps in FOWT resilience research: How is resilience understood and applied in the context of FOWT design and operation? Methodology In order to answer this research question, a scoping review was conducted, in which two databases – ScienceDirect and GreenFILE – were searched for sources that discussed resilience with respect to FOWT. In accordance with the JBI scoping review methodology, a search and screening strategy, including search terms and inclusion criteria, was determined in advance. The multi-stage screening process ensured that all relevant sources were included, and the entire process is described in such a way as to be transparent and repeatable. Results Thirteen sources, consisting of twelve articles and one report, were found to meet the inclusion criteria, and these were thematically analyzed in order to investigate the definitions/interpretations and applications of resilience to FOWT technology. Several trends were discovered among the included sources, including a dominant engineering perspective and a glaring lack of explicit resilience definitions. Despite this lack of definitions, however, several interpretations of resilience were found to be used among the thirteen sources, and these are discussed in depth. Furthermore, the various applications of resilience to FOWT were mapped in order to identify popular topics, and these findings were compared to trends noted elsewhere in the literature. Conclusions The results of this review provide valuable insight into the main interpretations of resilience that are used in relation to FOWT. They also provide a solid foundation for future work and for improvements in FOWT resilience research. Among these are the need for a clear definition of resilience in FOWT studies and the potential benefits that could come from the development of a risk management approach to enhance the strong engineering perspective within the field of FOWT resilience research

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Blade-pitch Control for Wind Turbine Load Reductions

    Get PDF
    Large wind turbines are subjected to the harmful loads that arise from the spatially uneven and temporally unsteady oncoming wind. Such loads are the known sources of fatigue damage that reduce the turbine operational lifetime, ultimately increasing the cost of wind energy to the end users. In recent years, a substantial amount of studies has focused on blade pitch control and the use of real-time wind measurements, with the aim of attenuating the structural loads on the turbine blades and rotor. However, many of the research challenges still remain unsolved. For example, there exist many classes of blade individual pitch control (IPC) techniques but the link between these different but competing IPC strategies was not well investigated. In addition, another example is that many studies employed model predictive control (MPC) for its capability to handle the constraints of the blade pitch actuators and the measurement of the approaching wind, but often, wind turbine control design specifications are provided in frequency-domain that is not well taken into account by the standard MPC. To address the missing links in various classes of the IPCs, this thesis aims to investigate and understand the similarities and differences between each of their performance. The results suggest that the choice of IPC designs rests largely with preferences and implementation simplicity. Based on these insights, a particular class of the IPCs lends itself readily for extracting tower motion from measurements of the blade loads. Thus, this thesis further proposes a tower load reduction control strategy based solely upon the blade load sensors. To tackle the problem of MPC on wind turbines, this thesis presents an MPC layer design upon a pre-determined robust output-feedback controller. The MPC layer handles purely the feed-forward and constraint knowledge, whilst retaining the nominal robustness and frequency-domain properties of the pre-determined closed-loop. Thus, from an industrial perspective, the separate nature of the proposed control structure offers many immediate benefits. Firstly, the MPC control can be implemented without replacing the existing feedback controller. Furthermore, it provides a clear framework to quantify the benefits in the use of advance real-time measurements over the nominal output-feedback strategy

    Oscillating rolling element bearings: A review of tribotesting and analysis approaches

    Get PDF
    Rolling element bearings, when subjected to small oscillating movements or vibrations, run the risk of being damaged by mechanisms such as Standstill Marks and False Brinelling. Damages resulting from these phenomena can decrease bearing fatigue life and increase wear-induced friction torque. These failures do not correlate well with standard life estimation approaches. Experimental studies play a crucial role in gaining knowledge in this area. The review integrates knowledge from experiments ranging from single contacts to laboratory and full-scale bearings in wind power and aerospace applications. The generalization is achieved using a non-dimensional amplitude parameter that relates rolling element travel during an oscillation to the Hertzian contact size. The review encompasses testing methods, procedures, reporting practices, result scaling, and application-specific considerations
    • …
    corecore