1,312 research outputs found

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    An algebraic semantics for QVT-relations check-only transformations

    Full text link
    Fundamenta Informaticae, 114 1, Juan de Lara, Esther Guerra, An algebraic semantics for QVT-relations check-only transformations, 73-101, Copyright 2012, with permission from IOS PressQVT is the standard for model transformation defined by the OMG in the context of the Model-Driven Architecture. It is made of several transformation languages. Among them, QVT-Relations is the one with the highest level of abstraction, as it permits developing bidirectional transformations in a declarative, relational style. Unfortunately, the standard only provides a semiformal description of its semantics, which hinders analysis and has given rise to ambiguities in existing tool implementations. In order to improve this situation, we propose a formal, algebraic semantics for QVT-Relations check-only transformations, defining a notion of satisfaction of QVT-Relations specifications by models.This work has been supported by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    Coq Modulo Theory - Short Paper

    Get PDF
    International audienceCoq Modulo Theory (CoqMT) is an extension of the Coq proof assistant incorporating, in its computational mechanism, validity entailment for user-defined first-order equational theories. Such a mechanism strictly enriches the system (more terms are typable), eases the use of dependent types and provides more automation during the development of proofs. CoqMT improves over the Calculus of Congruent Inductive Constructions by getting rid of various restrictions and simplifying the type-checking algorithm and the integration of first-order decision procedures

    Building Decision Procedures in the Calculus of Inductive Constructions

    Get PDF
    It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P' obtained from P thanks to possibly complex calculations. In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved

    Preface

    Get PDF

    Other Buds in Membrane Computing

    Get PDF
    It is well-known the huge Mario’s contribution to the development of Membrane Computing. Many researchers may relate his name to the theory of complexity classes in P systems, the research of frontiers of the tractability or the application of Membrane Computing to model real-life situations as the Quorum Sensing System in Vibrio fischeri or the Bearded Vulture ecosystem. Beyond these research areas, in the last years Mario has presented many new research lines which can be considered as buds in the robust Membrane Computing tree. Many of them were the origin of new research branches, but some others are still waiting to be developed. This paper revisits some of these buds
    corecore