1,436 research outputs found

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class ⅁(D_n(ÎŁ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n≄1n\geq 1, where ⅁\Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    Rough sets theory and uncertainty into information system

    Get PDF
    This article is focused on rough sets approach to expression of uncertainty into information system. We assume that the data are presented in the decision table and that some attribute values are lost. At first the theoretical background is described and after that, computations on real-life data are presented. In computation we wok with uncertainty coming from missing attribute values

    Coq Modulo Theory - Short Paper

    Get PDF
    International audienceCoq Modulo Theory (CoqMT) is an extension of the Coq proof assistant incorporating, in its computational mechanism, validity entailment for user-defined first-order equational theories. Such a mechanism strictly enriches the system (more terms are typable), eases the use of dependent types and provides more automation during the development of proofs. CoqMT improves over the Calculus of Congruent Inductive Constructions by getting rid of various restrictions and simplifying the type-checking algorithm and the integration of first-order decision procedures

    Building Decision Procedures in the Calculus of Inductive Constructions

    Get PDF
    It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P' obtained from P thanks to possibly complex calculations. In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved
    • 

    corecore