10 research outputs found

    Functions out of Higher Truncations

    Get PDF
    In homotopy type theory, the truncation operator ||-||n (for a number n > -2) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate into n-types, which makes it hard to construct functions ||A||n -> B if B is not an n-type. This makes it desirable to derive more powerful elimination theorems. We show a first general result: If B is an (n+1)-type, then functions ||A||n -> B correspond exactly to functions A -> B which are constant on all (n+1)-st loop spaces. We give one "elementary" proof and one proof that uses a higher inductive type, both of which require some effort. As a sample application of our result, we show that we can construct "set-based" representations of 1-types, as long as they have "braided" loop spaces. The main result with one of its proofs and the application have been formalised in Agda.Comment: 15 pages; to appear at CSL'1

    Constructions with non-recursive higher inductive types

    Get PDF
    Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs. It is an open question which classes of HITs can be encoded as non-recursive HITs. One result of this paper is the construction of the propositional truncation via a sequence of approximations, yielding a representation as a non-recursive HIT. Compared to a related construction by van Doorn, ours has the advantage that the connectedness level increases in each step, yielding simplified elimination principles into n-types. As the elimination principle of our sequence has strictly lower requirements, we can then prove a similar result for van Doorn’s construction. We further derive general elimination principles of higher truncations (say, k-truncations) into n-types, generalizing a previous result by Capriotti et al. which considered the case n=k+1

    A Rewriting Coherence Theorem with Applications in Homotopy Type Theory

    Get PDF
    Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approximate a series of open questions in homotopy type theory, such as the characterisation of the homotopy groups of the free group on a set and the pushout of 1-types. This paper expands on our previous conference contribution "Coherence via Wellfoundedness" (arXiv:2001.07655) by laying out the construction in the language of higher-dimensional rewriting.Comment: 30 pages. arXiv admin note: text overlap with arXiv:2001.0765

    The General Universal Property of the Propositional Truncation

    Get PDF
    In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of constant function is equivalent to the type ||A|| -> B. If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in Homotopy Type Theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a proposition Q with A -> Q and Q -> B

    A rewriting coherence theorem with applications in homotopy type theory

    Get PDF
    Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approximate a series of open questions in homotopy type theory, such as the characterisation of the homotopy groups of the free group on a set and the pushout of 1-types. This paper expands on our previous conference contribution Coherence via Wellfoundedness by laying out the construction in the language of higher-dimensional rewriting

    A rewriting coherence theorem with applications in homotopy type theory

    Get PDF
    Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approximate a series of open questions in homotopy type theory, such as the characterisation of the homotopy groups of the free group on a set and the pushout of 1-types. This paper expands on our previous conference contribution Coherence via Wellfoundedness by laying out the construction in the language of higher-dimensional rewriting

    On Induction, Coinduction and Equality in Martin-L\uf6f and Homotopy Type Theory

    Get PDF
    Martin L\uf6f Type Theory, having put computation at the center of logicalreasoning, has been shown to be an effective foundation for proof assistants,with applications both in computer science and constructive mathematics. Oneambition though is for MLTT to also double as a practical general purposeprogramming language. Datatypes in type theory come with an induction orcoinduction principle which gives a precise and concise specification of theirinterface. However, such principles can interfere with how we would like toexpress our programs. In this thesis, we investigate more flexible alternativesto direct uses of the (co)induction principles.As a first contribution, we consider the n-truncation of a type in Homo-topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncatedtypes instead of n-truncated ones, assuming extra conditions on the underlyingfunction.As a second contribution, we improve on type-based criteria for terminationand productivity. By augmenting the types with well-foundedness information,such criteria allow function definitions in a style closer to general recursion.We consider two criteria: guarded types, and sized types.Guarded types introduce a modality ”later” to guard the availability ofrecursive calls provided by a general fixed-point combinator. In Guarded Cu-bical Type Theory we equip the fixed-point combinator with a propositionalequality to its one-step unfolding, instead of a definitional equality that wouldbreak normalization. The notion of path from Cubical Type Theory allows usto do so without losing canonicity or decidability of conversion.Sized types, on the other hand, explicitly index datatypes with size boundson the height or depth of their elements. The sizes however can get in theway of the reasoning principles we expect. Our approach is to introduce newquantifiers for ”irrelevant” size quantification. We present a type theory withparametric quantifiers where irrelevance arises as a “free theorem”. We alsodevelop a conversion checking algorithm for a more specific theory where thenew quantifiers are restricted to sizes.Finally, our third contribution is about the operational semantics of typetheory. For the extensions above we would like to devise a practical conversionchecking algorithm suitable for integration into a proof assistant. We formal-ized the correctness of such an algorithm for a small but challenging corecalculus, proving that conversion is decidable. We expect this development toform a good basis to verify more complex theories.The ideas discussed in this thesis are already influencing the developmentof Agda, a proof assistant based on type theory
    corecore