6,413 research outputs found

    Neutral coding - A report based on an NRP work session

    Get PDF
    Neural coding by impulses and trains on single and multiple channels, and representation of information in nonimpulse carrier

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 171

    Get PDF
    This bibliography lists 186 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1977

    Spectral characteristics of phase sensitivity and discharge rate of neurons in the ascending tectofugal visual system

    Get PDF
    Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat's ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component

    Retinal processes involved in the evoked cortical potential to patterned stimuli

    Get PDF
    The purpose of this investigation was to study the underlying physiological processes involved in the evoked potential to patterned visual stimulation. Specifically, the study was designed to assess the role of the photopic and scotopic visual systems as mediatory processes subserving occipitally elicited potentials to a series of checkerboard patterns. In addition, it was hoped that the research would provide further information with respect to the hypothetical mechanisms of lateral inhibition and receptive field size and their contribution to complex visual processes. Six subjects participated in the experiment. Evoked potentials were recorded to a series of patterned stimuli that were illuminated with red and blue flashes presented to central and peripheral retinal sites against high and low levels of background luminance. Statistical analysis of the data revealed significant relations between evoked potential amplitude and the main effects of background, site, and check-size. Amplitude was also significantly related to the interaction effects of background x site, check-size x background, check-size x color, and site x color x background. Discussion of the results was in terms of the differential functional behavior of photopic and scotopic visual processes. Several comments were directed to the possible importance of lateral inhibition and receptive field size in the generation of these data

    The interaction between human vision and eye movements in health and disease

    Get PDF
    Human motor behaviour depends on the successful integration of vision and eye movements. Many studies have investigated neural correlates of visual processing in humans, but typically with the eyes stationary and fixated centrally. Similarly, many studies have sought to characterise which brain areas are responsible for oculomotor control, but generally in the absence of visual stimulation. The few studies to explicitly study the interaction between visual perception and eye movements suggest strong influences of both static and dynamic eye position on visual processing and modulation of oculomotor structures by properties of visual stimuli. However, the neural mechanisms underlying these interactions are poorly understood. This thesis uses a range of fMRI methodologies such as retinotopic mapping, multivariate analsyis techniques, dynamic causal modelling and ultra high resolution imaging to examine the interactions between the oculomotor and visual systems in the normal human brain. The results of the experiments presented in this thesis demonstrate that oculomotor behaviour has complex effects on activity in visual areas, while spatial properites of visual stimuli modify activity in oculomotor areas. Specifically, responses in the lateral geniculate nucleus and early cortical visual areas are modulated by saccadic eye movements (a process potentially mediated by the frontal eye fields) and by changes in static eye position. Additionally, responses in oculomotor structures such as the superior colliculus are biased for visual stimuli presented in the temporal rather than nasal hemifield. These findings reveal that although the visual and oculomotor systems are spatially segregated in the brain, they show a high degree of integration at the neural level. This is consistent with our everyday experience of the visual world where frequent eye movements do not lead to disruption of visual continuity and visual information is seamlessly transformed into motor behaviour

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org
    corecore