146 research outputs found

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Research on the Prediction of Quay Crane Resource Hour based on Ensemble Learning

    Get PDF
    In Container terminals, a quay crane’s resource hour is affected by various complex nonlinear factors, and it is not easy to make a forecast quickly and accurately. Most ports adopt the empirical estimation method at present, and most of the studies assumed that accurate quay crane’s resource hour could be obtained in advance. Through the ensemble learning (EL) method, the influence factors and correlation of quay crane’s resources hour were analyzed based on a large amount of historical data. A multi-factor ensemble learning estimation model based quay crane’s resource hour was established. Through a numerical example, it is finally found that Adaboost algorithm has the best effect of prediction, with an error of 1.5%. Through the example analysis, it comes to a conclusion: the error is 131.86% estimated by the experience method. It will lead that subsequent shipping cannot be serviced as scheduled, increasing the equipment wait time and preparation time, and generating additional cost and energy consumption. In contrast, the error based Adaboost learning estimation method is 12.72%. So Adaboost has better performance

    Models and algorithms for berth allocation problems in port terminals

    Get PDF
    Seaports play a key role in maritime commerce and the global market economy. Goods of different kinds are carried in specialized vessels whose handling requires ad hoc port facilities. Port terminals comprise the quays, infrastructures, and services dedicated to handling the inbound and outbound cargo carried on vessels. Increasing seaborne trade and ever-greater competition between port terminals to attract more traffic have prompted new studies aimed at improving their quality of service while reducing costs. Most terminals implement operational planning to achieve more efficient usage of resources, and this poses new combinatorial optimization problems which have attracted increasing attention from the Operations Research community. One of the most important problems confronted at the quayside is the efficient allocation of quay space to the vessels calling at the terminal over time, also known as the Berth Allocation Problem. A closely related problem arising in terminals that specialize in container handling concerns the efficient assignment of quay cranes to vessels, which, together with quay space planning, leads to the Berth Allocation and Quay Crane Assignment Problem. These problems are known to be especially hard to solve, and therefore require designing methods capable of attaining good solutions in reasonable computation times. This thesis studies different variants of these problems considering well-known and new real-world aspects, such as terminals with multiple quays or irregular layouts. Mathematical programming and metaheuristics techniques are extensively used to devise tailored solution methods. In particular, new integer linear models and heuristic algorithms are developed to deal with problem instances of a broad range of sizes representing real situations. These methods are evaluated and compared with other state-of-the-art proposals through various computational experiments on different benchmark sets of instances. The results obtained show that the integer models proposed lead to optimal solutions on small instances in short computation times, while the heuristic algorithms obtain good solutions to both small and large instances. Therefore, this study proves to be an effective contribution to the efforts aimed at improving port efficiency and provides useful insights to better tackle similar combinatorial optimization problems

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Containership Load Planning with Crane Operations

    Get PDF
    Since the start of the containerization revolution in 1950's, not only the TEU capacity of the vessels has been increasing constantly, but also the number of fully cellular container ships has expanded substantially. Because of the tense competition among ports in recent years, improving the operational efficiency of ports has become an important issue in containership operations. Arrangement of containers both within the container terminal and on the containership play an important role in determining the berthing time. The berthing time of a containership is mainly composed of the unloading and loading time of containers. Containers in a containership are stored in stacks, making a container directly accessible only if it is on the top of one stack. The task of determining a good container arrangement to minimize the number of re-handlings while maintaining the ship's stability over several ports is called stowage planning, which is an everyday problem solved by ship planners. The horizontal distribution of the containers over the bays affects crane utilization and overall ship berthing time. In order to increase the terminal productivity and reduce the turnaround time, the stowage planning must conform to the berth design. Given the configuration of berths and cranes at each visiting port, the stowage planning must take into account the utilization of quay cranes as well as the reduction of unnecessary shifts to minimize the total time at all ports over the voyage. This dissertation introduces an optimization model to solve the stowage planning problem with crane utilization considerations. The optimization model covers a wide range of operational and structural constraints for containership load planning. In order to solve real-size problems, a meta-heuristic approach based on genetic algorithms is designed and implemented which embeds a crane split approximation routine. The genetic encoding is ultra-compact and represents grouping, sorting and assignment strategies that might be applied to form the stowage pattern. The evaluation procedure accounts for technical specification of the cranes as well as the crane split. Numerical results show that timely solution for ultra large size containerships can be obtained under different scenarios

    The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Digital Twins for Ports: Derived from Smart City and Supply Chain Twinning Experience

    Full text link
    Ports are striving for innovative technological solutions to cope with the ever-increasing growth of transport, while at the same time improving their environmental footprint. An emerging technology that has the potential to substantially increase the efficiency of the multifaceted and interconnected port processes is the digital twin. Although digital twins have been successfully integrated in many industries, there is still a lack of cross-domain understanding of what constitutes a digital twin. Furthermore, the implementation of the digital twin in complex systems such as the port is still in its infancy. This paper attempts to fill this research gap by conducting an extensive cross-domain literature review of what constitutes a digital twin, keeping in mind the extent to which the respective findings can be applied to the port. It turns out that the digital twin of the port is most comparable to complex systems such as smart cities and supply chains, both in terms of its functional relevance as well as in terms of its requirements and characteristics. The conducted literature review, considering the different port processes and port characteristics, results in the identification of three core requirements of a digital port twin, which are described in detail. These include situational awareness, comprehensive data analytics capabilities for intelligent decision making, and the provision of an interface to promote multi-stakeholder governance and collaboration. Finally, specific operational scenarios are proposed on how the port's digital twin can contribute to energy savings by improving the use of port resources, facilities and operations.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore