9 research outputs found

    Functional grouping analysis of varying reactor types in the Spiky-RBN AChem

    Get PDF
    We explore the effects that different reactor types have on Spiky-RBN AChem systems, looking at mass conserving and flow reactors. To assist in analysing the behaviour we introduce an activity measure based on possible system state changes as a result of changes in particle properties. This leads to a discussion on approaches to engineering complex systems towards specific goals

    Spiky RBN: A Sub-symbolic Artificial Chemistry

    Get PDF
    We design and build a sub-symbolic artificial chemistry based on random boolean networks (RBN). We show the expressive richness of the RBN in terms of system design and the behavioural range of the overall system. This is done by first generating reference sets of RBNs and then comparing their behaviour as we add mass conservation and energetics to the system. The comparison is facilitated by an activity measure based on information theory and reaction graphs but tailored for our system. The system is used to reason about methods of designing complex systems and directing them towards specific tasks

    Algebraic approaches to artificial chemistries

    Get PDF
    We have developed a new systematic framework, MetaChemisty for the description of artificial chemistries (AChems). It encompasses existing systems. It has the flexibility and complexity to allow for new features and new systems. A joint description language will allow comparisons to be drawn between systems. This will allow us to write metrics and benchmarks for artificial chemistries. It also enables us to combine existing systems in different ways to give a wealth of more complex and varied systems. We will be able to build novel chemistries quicker through reuse of code and features between chemistries allowing new chemistries to start from a more complex base line.We have also developed an algebraic artificial chemistry, Jordan Algebra Artificial Chemistry (JA AChem). This chemistry is based on existing algebra which is leverage to ensure features such as isomers and isotopes are possible in our system. The existence of isotopes leads naturally to the existence of elements for this chemistry. It is a chemistry with both constructive and destructive reactions making it a good candidate for further study as an open-ended system.We analyse the effect of changing probabilistic processes in JA AChem by modifying the probability spawning functions that control them. We also look at the algebraic properties of these probability spawning functions. We have described Swarm Chemistry, Sayama (2009),in the MetaChem showing it is at least more expressive than the previous framework for artificial chemistries, Dittrich et al. (2001).We use the framework to combine two artificial chemistries using a simple environment link structure to produce eight new modular AChems with a modular approach. This link structure requires minimal addition to existing code for artificial chemistry systems and no modification to most modules

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    corecore