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Abstract

We have developed a new systematic framework, MetaChemisty for the description of ar-

tificial chemistries (AChems). It encompasses existing systems. It has the flexibility and

complexity to allow for new features and new systems. A joint description language will

allow comparisons to be drawn between systems. This will allow us to write metrics and

benchmarks for artificial chemistries. It also enables us to combine existing systems in dif-

ferent ways to give a wealth of more complex and varied systems. We will be able to build

novel chemistries quicker through reuse of code and features between chemistries allowing

new chemistries to start from a more complex base line.

We have also developed an algebraic artificial chemistry, Jordan Algebra Artificial Chem-

istry (JA AChem). This chemistry is based on existing algebra which is leverage to ensure

features such as isomers and isotopes are possible in our system. The existence of isotopes

leads naturally to the existence of elements for this chemistry. It is a chemistry with both

constructive and destructive reactions making it a good candidate for further study as an

open-ended system.

We analyze the effect of changing probabilistic processes in JA AChem by modifying the

probability spawning functions that control them. We also look at the algebraic properties of

these probability spawning functions. We have described Swarm Chemistry, Sayama (2009),

in the MetaChem showing it is at least more expressive than the previous framework for

artificial chemistries, Dittrich et al. (2001).

We use the framework to combine two artificial chemistries using a simple environment

link structure to produce eight new modular AChems with a modular approach. This link

structure requires minimal addition to existing code for artificial chemistry systems and no

modification to most modules.
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“It’s a dangerous business, Frodo, going out of your door,” he used to say. ”You

step into the Road, and if you don’t keep your feet, there is no knowing where

you might be swept off to.”

- J. R. R. Tolkien
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Chapter 1

Introduction

1.1 Artificial life and transitions

Artificial Life research looks into systems that model, simulate and are inspired by life. This

spans from work in labs attempting to create artificial cells and modify existing life for use in

computation to agent based models using bio-inspired algorithms to perform computational

tasks. Here we focus on software based systems designed to be inspired by life and help to

illuminate life.

There are many things about life and the complex interactions between living organisms

that are hard for us to determine through observation. One of the key sources of this problem

is often the “common ancestor”. All life on earth started in the same place. All animals

have a common ancestor. This means if we want to know anything about how “life” behaves

or comes about then from observation of the world around us we can only draw conclusions

for “carbon based life on earth”. Considering the size of the universe this might be a very

limiting restriction on “life”. Can life develop without gravity? We don’t really know if

gravity is important for the development of complex life. So far the best we can do on this

question would be to see if existing life can survive in zero gravity. This does not answer

the question though. Humans can survive in zero gravity, but obviously the bipedal human

would not evolve in zero gravity.

This is where artificial life with life forms entirely in silico can help us. We could simulate

a simple environment with life at the point where we think gravity starts to become important

(eg flat worms) and compare evolutionary potential of models with and without gravity. The

key part of this technique is that we can control different aspects of the environment and

speed up the timescale. Putting flat worms in space and waiting for them to evolve would

take a very long time.

14



CHAPTER 1. INTRODUCTION 15

1.1.1 Different scale perspectives on artificial life

As well as the difference in time scales we also have very different scales of interest in the

development of life. Artificial life in social networks, how we learn, the development of

intelligence and language: these are all involved with or inspired by very high level lifeforms.

But there is also work at the very low levels, looking at the movement of single cell organisms,

evolution in terms of mutations in genomes, and abiogenesis: the emergence of life from non-

living matter.

This forms a cohesive whole as the field strives in different directions trying to connect

the movement of the cell to the behaviour of the organism and the evolution of the brain to

the development of different types of social learning. Changes as we move, for example, from

single cell to multi-cell organisms are called major transitions and are the target of much

of artificial chemistry research. At the lowest level of artificial life we have the ultimate

bottom-up approach to answering these questions through artificial chemistries.

1.2 Artificial Chemistry

In the early 2000s Dittrich et al. (2001) declared that an artificial chemistry could be de-

scribed by the triplet (S,R,A). In this form we have three parts to an artificial chemistry:

a set of particles, rules for reactions, and the algorithm. Expanded we have the particles of

our chemistry described as a set. The rules of our reactions are the second aspect meaning

we must have a discrete rule set describing all reactions possible in the system. Finally all

other aspects of our system as clumped in A as part of the algorithm. This is a large number

of things including global variables, timing, logging and rule application.

Another interpretation of an artificial chemistry may be more vague but also more in-

clusive of all artificial chemistry systems. An artificial chemistry is a system with minimal

components designed to use or explore the higher order emergent properties of their inter-

actions. This allows for chemistries with purely kinetic interactions and others that do not

distinguish between R and A parts of the previous definition. It also acknowledges that some

systems are distinguished as different due to the the differences in A rather than S or R.

This definition can also be seen as the broadest possible definition encompassing any system

in the universe, but then again this may be bias caused by living in a universe so heavily

populated by at least one chemistry.

1.2.1 Different artificial chemistries

Artificial Chemistry systems have many differences. Almost all systems have unique and

different particle sets, S and rules R. There is more overlap in other areas to do with

timing and motion in the systems. To talk about the differences in artificial chemistries in

these terms we could talk about implicit rules vs explicit rules and the size of particle sets.
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However a better overview of chemistries is to discuss the difference in intent and features

of chemistries.

Features, like spatiality and movement of particles, appear in some chemistries but not

others. In particular some particles move independently of the reactions in the system or

based on a “flow” pushing all particles in a direction. In some cases obstacles or particular

reactions might also effect this movement. We also have some systems with resources and

kinetics, and others that do not even have conservation of the number of particles in the

system. We have systems with discrete vs continuous time. A key difference between systems

can be the existence or not of destruction in the system: do structures once built ever break?

These kinds of features can all exist somewhat separate to the nature of the particles and

rules of the interactions in the system, but have a big effect on what a system can do.

What a system can do is to different extents, in artificial chemistries, defined by the

designer. Some artificial chemistries are designed with the concept of producing a system

capable of building a cell-like structure, or a membrane. These systems can then do these

things. Other systems are designed to be capable of evolution and individual self-replication,

and are then examined for larger scale organisation and the maintenance of that broader

object.

1.2.2 Issues with (S,R,A) description

In the (S,R,A) description, almost all the features described above are in A. This one

variable contains huge amounts of very important parts of an AChem system but is bundled

as “everything else”. Also, aspects of a system that may indicate intent or over-design

towards a goal can be lost in A. If a system has to use an extra reaction to make membranes

possible, where do we find this in (S,R,A)? If a system is probabilistic based on a property

of the environment, is that in R for the reaction or A the algorithm? It is impossible to

rigorously define differences or similarities between systems with such a crude language of

only three words.

The (S,R,A) description was a good tool for its time, when artificial chemistries were

often still small toy systems or even thought experiments. It was even sufficient for the many

“proof of concept” chemistries that demonstrated that an artificial system could produce cell-

like objects capable of self-maintenance and self-replication. However, as artificial chemistries

move into new realms of being used for computation and as the basis for open-ended evolution

systems, we need to be able to analyse them more rigorously and make comparisons. We

need to develop a new, more complicated but also more descriptive, framework for artificial

chemistries.
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1.3 Rigorous Design

1.3.1 Challenges of designing a framework

Designing a framework for such a diverse a set of systems is a distinct challenge. It cannot

be done just by attempting to break up A into more distinct and descriptive objects. This

would possibly be able to cover existing artificial chemistries, but could limit the creation of

new ones as new features may not be included. To avoid that issue we would still need an

A-like object capable of being “everything else”.

We instead want a framework that considers the dynamic nature of these systems. They

are not just a set of features and particles and rules. They are how these are all executed.

We therefore need a framework that can follow the execution of the system as well as the

static description of it. This needs to be able to encompass existing artificial chemistries and

not limit the design of new ones. With such a broad definition of what an artificial chemistry

is, this is a very difficult challenge.

1.3.2 Why algebraic structures?

We want to describe a large set of systems and not limit future systems. We also want a

framework that lends itself to comparison between systems. For this we want systems to

be able to have identical components within their very different settings, or at least have

equivalent components. This means we need a concept of equivalence. We also need a

rigorous definition that will encourage identical description of identical components. This

level of restriction over large possibilities is done well in most cases by algebraic structures.

There are also a large number of options available to us for this, as the world of algebraic

structures has been well explored. This means that the correct structure could naturally

lend us pre-existing morphism definitions, for instance, that could be used for comparison

between systems.

1.3.3 Using but not being constrained by algebra

The one drawback to an algebraic approach could be over constraint due to the difficulty of

describing a vague idea in a specific manner. Algebra can provide considerable structure to a

framework, but we must be careful not to allow this to lead to us feeling required to describe

every possibility in minute detail in algebra, or to provide constraints on everything such

as the kinds of interactions possible for our systems. This is not required for an algebraic

description it is only a risk thereof. We can easily avoid this through awareness of the issue.

Much like artificial life is inspired by but not constrained by nature, an artificial chemistry

framework can be described by but not constrained by algebra.
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1.4 Structure of thesis

We will start by reviewing current literature and artificial chemistries with particular con-

sideration for what we would like from an artificial chemistry framework. We will outline the

goals of our work. We will then describe and formally define a new framework for artificial

chemistry (MetaChem). We will describe an algebraically inspired artificial chemistry in

MetaChem, Jordan Algebra Artificial Chemistry (JA AChem) and its elements and reac-

tions. We will investigate the effect of variation in the probabilistic nature of JA AChem

using probability spawning functions. We will review an existing artificial chemistry (Swarm

Chemistry) described in our MetaChem framework. We will use the properties of our frame-

work to combine both the described artificial chemistries in a hierarchical system and analyze

the effect of this on the components of both systems. We will discuss how this allows us to

build multilevel artificial chemistries towards transitions.
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Literature Review

2.1 Artificial Life

Artificial life is a broad field dealing with many living and life-like systems. There are wet lab

systems building artificial protocells (Walde, 2010) and studying evolution in E.coli (Elena

and Lenski, 2003). There are hardware systems such as robotic fish shoals (Liu and Hu,

2010) and self-maintaining robot swarms (Turgut et al., 2008). There are software systems

at many levels from social learning models (Acerbi and Nolfi, 2007), evolution models (Ofria

and Wilke, 2004; Andrews and Stepney, 2014; Knibbe et al., 2007) and artificial chemistries

(Hutton, 2002; Ono and Ikegami, 2001; Liu, 2018; Clark et al., 2017; Sayama, 2009; Dittrich

et al., 2001). These all exist for many different reasons, some practical for computation and

problem solving like evolution systems (Nguyen et al., 2012; Branke et al., 2000; Yamamoto,

2010), others for hypothesis testing to try to prove theories about origins of life or the

development of society and learning (Knibbe et al., 2007; Elena and Lenski, 2003; Carter

et al., 2018). Some systems are just the first steps in exploring the broader space of potential

life.

2.1.1 Origins of Life

The origins of life debate within chemical and biological sciences was long dominated by

the information or replication first vs metabolism first argument (Pross, 2004; Faulconbridge

et al., 2009; Anet, 2004). More recently it has become commonly accepted that this differ-

entiation is incorrect. Information has no purpose without a metabolism to maintain and

use it, otherwise we just have a photocopy of random strings, this is not life. Similarly

metabolism without information is just a processing system, a plumbing system that can

process resources and maintain itself to some extent, but this is not on its own “alive”. Most

conceptualizations of ”life” as needing to pass itself on-wards to a future system or a copy

of itself. For this a concept of self is needed normally associated with the information in a

life form.

19
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With this change in focus many models have been built to try to emulate early life and

its formation from non-life, to test theory in a more controlled and less random environment,

(Higgs and Lehman, 2015; Ruiz-Mirazo et al., 2017). These models are artificial life systems,

and many such systems built with ALife in mind are trying to achieve the same thing,

although they often step beyond simulation of possible earth-like conditions for the beginning

of life into exolife (possible life on other planets) (Szostak, 2017; Michalski et al., 2018) and

strict ALife, completely artificial systems,(Yampolskiy, 2016; Froese et al., 2014; Nitash et al.,

2017). Within these systems we begin to talk in a new way about top-down and bottom-up

approaches, which we hope will meet in the middle (Hickinbotham et al., 2016; Allen et al.,

2005).

Artificial systems may seem at first to have very little to do with the origins of life on

earth. However if we can find the conceptual limitations of the development of a system

with both metabolism and information this may help focus more practical experimenters

onto more promising routes for how life started, in particular protocells (Ackley, 2018). It

also presents a timescale advantage: life began on this planet almost certainly over a very

long time period as systems slowly changed and moved to cross the line into life. In an

artificial system we can guide change and speed up the generational clock such that as soon

as a state has been evaluated we can change and move to the next possible state and not

have to wait for “natural” processes to complete.

This also applies for systems looking at the development of life which take the existence

of “living” material as a given, and attempt to build to more complicated organisms and

behaviours. Particularly of interest to ALife research has been the cause and identification of

transitions in systems, often called major transitions (Bedau et al., 2000). These are points

where it becomes possible to differentiate “higher level entities from cooperative organizations

of lower-level entities” (Stewart, 1997). It is these processes that allow us to move from

chemistry to biology, from particles up to cells and then on to multi-celled organisms. This

question at the level of chemistry has started to be addressed in practice only recently

(Sayama, 2018a), despite being an important artificial life question for almost 20 years. This

is mostly due to scale restriction on artificial chemistries up to now, and the use of symbolic

and “stick and ball” chemistries that make broader behaviours harder to view. This is

discussed further in section 2.2.

2.1.2 Open ended evolution

Here we define open ended evolution as ”processes that do not stop and have no specific

objective” taken from (Banzhaf et al., 2016). Open ended evolution is an area of artificial

life which reaches for systems that, like life on earth, display an ability for unending novelty at

all levels. Recently these novelties have been categorised at three levels: variation, innovation

and emergence (Banzhaf et al., 2016). This is a propety that has proved challenging just

to define, let alone achieve (Maley, 1999; Adams et al., 2017). It has been more possible to
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say what some of the necessary conditions are, though we are still not sure on what would

be sufficient(Soros, 2018). Despite their elusive nature, such systems appeal strongly to the

artificial life community as a chance at a true “origin of artificial life” story. If it were possible

to build a truly open-ended system capable of evolution that we could run on a large enough

scale, then we would have the chance to see an interpretation of the first development of

an artificial life system from infancy to unplanned adulthood of complex artificial life forms.

The first steps in identifying the major transitions of an ALife system are the first steps

towards identifying open-ended evolution and have been taken on in artificial chemistries

(Sayama, 2018a,c).

2.2 Artificial Chemistries

Artificial Chemistries have for the last two decades hovered on the periphery of artificial

life. It is only now with the increase in computational power that we are starting to see

artificial chemistry systems that can do more than just be proofs of concept systems or even

toy systems.

Up until now artificial chemistry systems have been best described in the (S,R,A) frame-

work given in Dittrich et al. (2001). This framework does a good job of classifying those

early artificial chemistry systems. It does this through distinctions based on the S and R

aspects of the systems.

We have explicit particle sets, S, such that every particle is separately defined, or implicit

particle sets, where the bounds of the particle set is defined.

There is similar distinction between the rule sets, R. Some rule sets are lists that state

the exact particles in each reaction and in the result. Others have general rules and describe

the types of particles and based on the starting particle what the result will be.

The A aspect of the framework is given a few categories: stocastic molecular collisions,

continuous differential or discrete difference equations, metadynamics, mixed approaches,

and symbolic analysis of the equations. These all describe reaction dynamics in well-mixed

tank models. They do not even begin to describe systems with spatial dynamics or can only

capture an approximation of automata systems which actually replicate their own particles

using clock cycles.

This framework has been applied to artificial chemistries since its creation, but has not

kept up with the increasing complexity of these systems. Here we discuss artificial chemistries

with a different categorisation based on the purpose of the chemistries.

2.2.1 Subsymbolic artificial chemistries

Subsymbolic chemistries are one of the types of chemistry that has emerged in recent years.

These are systems whose particles have their own properties which are used to define their

interactions by more than just a label, (Faulkner et al., 2018). This category of artificial
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chemistries in terms of the (S,R,A) format have particles with internal structure in S, im-

plicitly defined rules in R based on those internal structures, and no particular requirements

on A.

This category of AChems includes intentionally subsymbolic chemistries such as RBN-

World (Faulconbridge et al., 2009, 2010; Faulconbridge, 2011) and its variants such as Spiky

RBN-World (Krastev et al., 2016, 2017). This category also includes automata chemistries

based on instructions which form programs, whose interactions are defined by the operation

of those programs. Examples include Stringmol (Hickinbotham et al., 2016) and Avida (Ofria

and Wilke, 2004).

There are other artificial chemistries that have internal structure to their particles and

those with implicit reaction rules such as Swarm Chemistry (Sayama, 2009) where particles

have their own parameters that dictate their reactions to other particles. This could also

be considered as a subsymbolic chemistry, but without physical linking this is very different

from the other chemistries mentioned.

2.2.2 AChems for behaviours

The previous grouping of AChems were described by their low level properties. Here we

wish to move away from that and look more at discussing AChems in terms of intent and

the utility for achieving that intent of a structure like (S,R,A).

Many AChems exist that are designed with a clear aim for a system capable of a spe-

cific behaviour. Common choices are self-maintenance of cell-like organisations and self-

replication of particles or cell-like organisations. These vary between systems in which the

behaviour has been found, and some where the system has been evolved or manipulated into

producing the behaviour. The second of these is useful as a proof of concept that a system

can exist with that behaviour within an artificial chemistry. However such systems often

have very little broader applicability. It is harder to expand their capabilities as they are

often lack destructive reactions and are not truly open ended systems.

However these proofs of concepts have shown the very broad behaviours artificial chemistries

are capable of. For example Squirm3 is a basis for self-replicating molecules (Hutton, 2002,

2003), enzymes (Hutton, 2007) and parasites (Lucht, 2012). This has been simulated also in

Soula (2016).

2.2.3 AChems for modelling

Artificial Chemistries are not limited to just abstract systems for origin of life or evolution.

They also feature as simulations of natural chemistry. In some cases we have artificial life

systems which simulate chemistry but we also have the fact that simulations of chemistry

are at times artificial chemistries.

A particular grouping of these are stochastic simulation chemistry (Gillespie, 1977). A

more recent addition in this area (Andrews and Bray, 2004) is very much a system we could
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class as an artificial chemistry that just happens to be attempting to closely mimic natural

chemistry. These systems are important to remember when we look at designing our own

framework, as any artificial chemistry framework should also encompass natural chemistry

and its simulation. On an abstract and conceptual level these are the same class of system

so should be included.

2.2.4 AChems for computation

A small number of Artificial chemistries have been designed to perform computation. In-

cluded in this set is the artificial chemical reaction optimisation algorithm for global optimi-

sation (Alatas, 2011). This algorithm meets all the requirements to be an artificial chemistry

in its own right even if as a system it is designed to converge on a solution rather than display

new behaviours.

We likewise can mention systems like AVIDA which have proved capable of computation;

it evolves its organism to compute logic functions to receive resources (Ofria and Wilke, 2004;

Goldsby et al., 2012). These systems are generally inefficient at computation compared to

modern computer processors but similar to all evolution based computation it has greater

power on some problems as it is better at exploiting unexpected solutions.

2.2.5 AChems for Open Ended Evolution

There are many systems searching for open ended evolution. Swarm Chemistry looks for

spatially organised entities as higher-order entities for transitions (Sayama, 2018c). We also

have simple systems such as “Hash Chemistry” (Sayama, 2018a), which shows that we can

create an infinite possibility space by leveraging higher-order entities for a “cardinality leap”.

Even the more designed artificial chemistries are being used to explore the mechanisms

behind open ended evolution (Young and Neshatian, 2013), though with acknowledgement

that this is a property more likely to be discovered than designed.

The automata chemistries (Hickinbotham et al., 2010; Ofria and Wilke, 2004) also look

for open ended evolution. We can classify the features of these systems into physical and

biological. The lower level of the system becomes the physics and the higher level of the

system the biology (Hickinbotham et al., 2016).

2.2.6 Problem with (S,R,A) format for comparison of systems

Over time systems have become more complex in all cases. Systems for modelling have to

take into account the importance of separation and barriers in life systems. For computation

we have the need for multiple layers of “physics” in the form of assigning entities their own

simulated processor or clock cycles. For open-ended evolution we need the concept of higher

order entities. All of these things are lost in the (S,R,A) definition.

We need greater complexity to capture greater complexity.
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2.3 Applications of Algebraic structures to real world and

computational problems

Algebra is often seen as pure mathematics, a subject that furthers only mathematics and has

no real direct application to the rest of the world. However algebra and algebraic structures

have many applications.

We can find algebra in fluid dynamics (Vreman, 2004), and quantum physics (Haag and

Kastler, 1964). It is in virology (Keef and Twarock, 2009) and genetics (Shannon, 1940).

We find various algebras in computation including graph theory (Ehrig et al., 2010), and

category theory (Barr and Wells, 1990). Fields that have advanced in recent years are pushed

by their applications.

In this work we are particularly interested in two kinds of algebra: non-associative al-

gebras and semi-rings. Non-associative algebra has been associated with genetics for a long

time (Etherington, 1941), and many other applications exist (Sabinin et al., 2006). These

algebras have an innate ordering to them, or time installed, by not being able to rearrange

their operation. This makes them perfect for describing the results of irreversible operations.

Semi-rings are also widely used in varied applications. These include constraint satis-

faction and optimisation (Bistarelli et al., 1997), and many fields within mathematics and

informational sciences (G lazek, 2002). These applications then apply onwards to many other

fields and subjects.
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Research Hypothesis

3.1 Expressing Artificial Chemistries in a single logical frame-

work

We will develop a framework which will allow us to describe artificial chemistries. This will

make it quicker and easier to talk about these systems when we can do so directly as compare

like for like. This give us a basis for categorisation and joint analysis. This could allow us to

develop metrics and benchmarks for artificial chemistry systems that are not possible using

only the existing (S,R,A) framework. This system will be logically consistent so that while

versatile to expressing artificial chemistries it will also provide the basis for rigorous analysis.

3.2 Rational Design

3.2.1 Framework

Our framework will be described as an algebraic structure. It will also be modularised so we

can recombine our systems and compare them. This will be done in a bottom up approach

in which we will incorporate both information and algorithm into a single description of the

system. We will also isolate the particles of our system from our environmental variables.

This will allow for focuses attention on our particles and for general analysis algorithms for

particle networks.

3.2.2 Artificial Chemistry

In order to test our framework we will also need an artificial chemistry to test it on. We

will keep with our philosophy of rational design and will build the chemistry based on a

mathematically derived set and operation. We will describe this system using our framework.

25
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3.3 Combining existing artificial chemistries to increase com-

plexity

We will use the modularised framework to combine both our algebraic artificial chemistry

and a pre-existing artificial chemistry. This will be chosen to be as different as possible from

our own system to highlight the diverse capabilities of the framework to describe artificial

chemistries. The combination chemistry will be designed to be have a greater richness than

either individual chemistry. Whether this means a greater complexity to the individual

particles, interactions or additional features such as kinetics or greater degrees of freedom in

their behaviour.
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MetaChemisty

We introduce MetaChemistry, a representation language for Artificial Chemistries. We con-

sider the motivation for modularisation and standardisation in representation of artificial

chemistries. We describe a mathematical formalism for MetaChemistry as a static graph

based system. We introduce StringCatChem (String Concatenation Chemistry) a simple

artificial chemistry which we use to illustrate the concepts of different levels of description

possible with MetaChemistry. We also use StringCatChem to illustrate our mathematical

formalism.

In artificial chemistry we struggle to talk about our systems in terms of the whole field.

It is hard to make comparisons between systems. This is because many of our systems have

similar goals but very different components and algorithms. This makes building even a

basic classification system such as in Dittrich et al. (2001) very challenging.

There are concepts that we build on in artificial chemistries. We work on the basis of

small components interacting to generate our systems. We are in general interested in the

emergent properties and behaviours of these systems. To differentiate an artificial chemistry

from an individual based model we add requirements for a level of simplicity and tractabil-

ity in our particles and their interactions. The intention is that these systems work over

large collections of individuals over long time periods, though most are currently limited by

computational capability.

From this we can identify many common elements of artificial chemistry systems. We

can use these as the basis for a bottom up approach to modularisation of artificial chemistry

systems in general. Small, simple individuals and their interactions are our primary focus.

We call these individuals particles. These are a constant through out artificial chemistry sys-

tems. Systems also have other variables, properties and values. Much like in real chemistry

we separate the chemistry of the beaker from our consideration of its contents. We separate

these other values and properties into the environment. We also have multiple containers in

our systems that allow us to isolate particles and move them. This splits the dynamic parts

27
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Table 4.1: Common parts of Artificial Chemistry Systems
Primary Focus Auxiliaries

Objects Particles Variables
Containers Tanks Environment

of our system as shown in Table 4.1.

This handles the ”things” in our systems. However there are far more commonalities in

the algorithms than there might seem. Control flows related to time and generations occur

in most systems. Some systems perform an update across all objects in the system at once.

Others continuously update objects at random. If we can identify the modularised control

that produces these timing systems designers could switch between them. These sorts of

structural combinations would then allow designers to focus on the new AChem specific

features of their design. They could do this by using existing elements to implement less

unique aspects of their systems.

By dividing our ”things” we can then define our control flow in relation to those divisions.

We have functions that modify our particles similar to reactions and interactions in chemistry.

We have functions that record observations of our system. We can modify our environment

such as by changing the temperature of the system. We move particles around our system.

Finally we make decisions about which of these things we should do next.

4.1 Modularisation: Components of an Artificial Chemistry

System

We conceptualise these idea into the structure provided in Figure 4.1, which we use to build

a graph-based formalism. We have the overarching concepts of the System, made up of the

elements formalised as graph nodes (Containers, Control), and as graph edges (Information

Flow, Control Flow).

Control items become static nodes in the graph, defined at the start and remaining

unchanged. These control nodes are connected by Control Flow edges, which together give

the system’s algorithm.

Containers are also static nodes in the graph (that is, the location and connectivity of

these nodes is unchanging), but they have a mapping to the dynamic “things” in our system:

particles and environmental values. Information flow edges allows control to influence the

connected containers’ states. Information flows in either direction: read or pulled from

containers’ state to control, and pushed from control to update containers.

These general concepts are captured in the set of graph nodes in Table 4.2 and edges in

Table 4.3. We can then create graphs that provided a view of our systems once modularised.

This can be done as an overview and then we can expand nodes to give us greater detail.
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System

Containers

Particle Containers Environment

Tank Sample

Particles

Composites

Atoms

Values

Control

Action Administrative Nodes

Control Admin

Decision

Particle Admin

Sampler

Observer

Information Flow
⇐⇒

Control Flow~www�

Figure 4.1: Conceptual structure of modularisation of Artificial Chemistries

4.1.1 Particles

The most fundamental parts of our systems are the particles. These and their emergent

properties are the focus of our studies. These can be split at times into two subsets: atoms

and composites. Atoms are the most basic particles they can not be divided or broken down

into smaller parts. Any internal structure of the atoms is unbreakable.

Example: Atoms can take many forms: characters in a string chemistry, instructions in

an automata chemistry or symbols that do not feed into a one to many rule associated with

them in a symbolic chemistry.

Composite particles are made up of combinations of atoms. In symbolic systems the

atoms making up a composite particle may be hidden or unknown.

Example: Composites would be strings in string chemistries, programs in automata chemistries

or symbols that result from many to one rules in symbolic chemistries.

Some systems may only have atoms and due to lack of physical bonding rules may not

seem to form composites. Other systems may be symbolic and assume that all particles are

complex and the symbols represent composites.
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Element Description

Containers

T Tank containing particles.

S Sample containing an editable subset of particles.

V Environment containing non-particle variables and information in
the system.

Control

s
Information administration node moves particles between containers
by sampling them

o
Observes particles and produces summary statistics (saved in the
environment), also an information administration node.

d
Control administration node makes weighted decisions on control
flow based on the state of the particles and the environment

a
Performs actions on particles based on state of particles and envi-
ronment

Table 4.2: Legend of graph nodes in MetaChem

Element Description

Information Flow

Reads information from container into control node.
Pull moves information out of a container into the control nodes local
storage during it’s operation.
Writes information from control node into a container.

Control Flow

Arrow between Sampling, observer and action nodes to indicate
control flow in system.

Table 4.3: Legend of edges used in MetaChem

4.1.2 Container Nodes

Container nodes split in to two sets: Particle nodes and environment nodes. Particle nodes

are mappings which take the node and the state of the system and returns the set of particles

in that container at that state. When the system is in a particular state the set of mappings

of all the containers forms a partitioning of all the particles in the system. There are two

types of particle nodes: samples and tanks. Tanks are protected containers. Particles in
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tanks can be moved in and out but not changed. This is so that any changes must be made

over samples so we have to decide what we will be changing before we can effect it.

Example: A beaker being used for an experiment and a pipet or petri dish.

Environment nodes work similarly to particles nodes but contain the other objects and

information in our system. The system can have multiple environments to make reference

to the things in the environment easier. For instance one might want to store a time record

separately to summary statistics or log information. These are all still accessed via a mapping

from the node and state of the system to the dynamic information and objects.

Example: Temperature readings, Bunsen burner, stirrer or observation log.

4.1.3 Action Nodes

Actions are where we actually modify particles through movement, linking, decomposition

or any other change. These can only modify particles in a sample. This means we need to

designate those particles we are changing before change occurs. This protects the tanks.

Example: Concatenate string, form chemical bond or split program

4.1.4 Admin Nodes

We start with our Information Admin nodes: sampler and observation. Sampler nodes move

particles between particle containers (tanks and samples).

Example: Extracting a sample for testing with a pipet or choosing a neighbour to combine

with the current particle.

Observer nodes of the particles and/or environment do not change any internal properties

of particles or move them between containers. They can only see particles and can then

modify the environment.

Example: Taking notes in a log book, updating time in a discrete time system or updating

the number of particles in the system.

Our Control Admin nodes, Decision nodes, are used to change control flow. This is the

only place control flow can branch based on the state of the whole system or a subset of it.
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Example: Triggering an event, continuing to the next phase or looping over a process,

completing a time step or deciding to take a beaker off the heat.

4.1.5 Edges

The nodes of our graphs are connected by two sorts of relationship, Table 4.3. The first

relationship marks movement of information between nodes. These relationships are al-

ways between container nodes and control nodes. Container nodes can not directly transfer

information, the same is true of control nodes.

Example: An action node might read information in from a sample to give it two particles

to combine and then write to the results of their linking to the sample. This would be a

double ended information edge, both a push and a pull edge.

Our second relationship type marks the movement of control. These edges are between

control nodes and indicate what order we use the nodes in. For most control nodes there can

be only one outgoing control edge. The exception to this rule is decisions whose purpose is

to provide a branch point in control flow.

Example: After an action node forms a physical link between particles in the sample we

move to a sampler node which returns the content of the sample to the tank. There is a

control edge between the action and the sampler describe this ordering. After returning this

we have a control edge leading to a decision which checks if the system is finished with linking

and has two control edges coming out of it. If the system is finished we loop to continue

linking, if not we continue on to the next process in the system.

With this modularisation we can break down an AChem into subcomponents. The level

at which we define these subcomponents is the descriptive level of our graph.

4.1.6 Graph as an Executable Algorithm

We have so far discussed separating out the parts of an artificial chemistry into nodes and

briefly described forming this into a graph using edges between these nodes. Once we have

this graph it is important to discuss what this new representation of an AChem is. In this

work we treat this graph as a program. During execution we would have a single execution

pointer on a control node which would move following the control edges around the graph

executing the processes in the control nodes.

In this version our graph is a static object that is predefined before execution and remains

unmodified by execution. This is the static graph form of MetaChem.
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Our information flow edges can be seen as directing input and output of our nodes. In a

way our container nodes act like “blackboard systems” (Hayes-Roth, 1988) being constantly

modified and updated by our “experts” the control nodes. Samples in this work exist to

section off part of a container and prevent it being modified by multiple ”experts” at once.

In terms of a real blackboard they allow us to box the content of our tank and write ”Do

not erase” next to it.

4.2 Overview of descriptive levels

To help the reader get an idea of the use and power of MetaChem at different levels of

detail we introduce a “toy” chemistry, which we call StringCatChem. The purpose of this

chemistry, which is simple and small enough to run by hand, is that it can be fully and

succinctly decomposed into its parts.

This is a chemistry whose atoms are character stings and composites are formed via

concatenation. StringCatChem is situated in a collection of well mixed tanks. When our

particles combine or split they remain in the tank. When we select a string we check if it

contains any double letters we split it between them. If not we select a second string at

random and concatenate them. We also randomly transfer strings between tanks.

The simplicity of this system means we are unable to build particularly large particles

since any selected particle that can split will. This means StringCatChem is a very bad

choice of AChem if one wishes to study open-endedness or the transition to life. However

it is simple making it perfect for our purpose here of giving an example of an AChem fully

expressed in MetaChem at three different levels of abstraction: Macro, Micro and Physics.

4.2.1 Macro Level

The Macro level view is the view that rarely deals with individual values, atoms or interac-

tions in the AChem. Even a generation or time step at this level is just an update process.

4.2.1.1 Macro StringCatChem

At the macro level StringCatChem loads a set of strings into a set of tanks. The observer

o:time then iterates the time variable. We then have an a:process node which is responsible

for the reactions that occur inside the individual tanks. This is expanded later in Figure

4.3 but results in new strings replacing old in the tank. Either by concatenating two strings

together or by splitting a string between two identical letters. We track the number of

reactions we’ve done per time iteration in V:reactions using the o:reactions observer. We

use a decision to check if the update is complete and loop to the process if not. If the time

step is finished we move to the sample s:transfers which moves particles between our tanks.

We then loop back to o:time.
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Figure 4.2: Macro level description of string concatenation chemistry.

Figure 4.3: Micro level description of the a:process node of the StringCatChem.

This description gives us an eagle eye view of the main operating loops of our system

and the set of significant processes. We can see here that we have a random unsynchronised

update. Our timing is discrete and we have multiple tanks with movement between them.

These are the sorts of elements and properties of our system that should be visible at the

macro level.

4.2.2 Micro Level

The Micro level view focuses more on the actual action and effects on different particles

and environments in the system. It can be thought of as the algorithm or pseudo-code level

description of the AChem.

4.2.2.1 Micro StringCatChem: a:process

As an example we have expanded the a:process into a graph showing the internals of how

this action occurs, Figure 4.3.

Briefly, we choose a tank, then choose a particle from it. We then decide based on the

presence of a double character whether to decompose our string or not. In one case we then
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Figure 4.4: Physics level description of a:split node from StringCatChem a:process.

split the string in the other we sample a second string and concatenate them. The string(s)

in S:composite are then returned to the same tank the original came from and the tank is

returned to the collection of tanks.

This level of description more accurately mimics pseudo code or high level programming

language description of the systems algorithm. This can become even more detailed at the

physics level where we describe things at closer to machine code or hard coded level, see

Figure 4.4 for a description of a:split.

4.2.3 Physics Level

The Physics level view deals with the hard-coded details of implementation. It is the de-

signers choice what the lowest level of detail needed is but anything the designer considers

to be unchangeable occurs at this level. This could be the program code level description or

even the machine code level of description or one could even reduce this level of description

to the movement of electron on the motherboard. The last however is never the correct

choice though as it provides very little insight into our systems to treat actual physics as the

physics of our system.

4.2.3.1 Physics StringCatChem: a:split

We can expand the a:split node from Figure 4.3 to the graph given in Figure 4.4.Notably

here we have expanded an action node into a graph made only of sampler and decision nodes.

This is quite reasonable when you consider we have moved from a high level program to low
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level. The NAND logic gate can give Turing complete computation on its own. Likewise we

do not at our lowest levels of computation need an actual function or action to perform our

computation. We can do it with just comparison and moving particles.

In Figure 4.4 we select our string particle a character at a time and check if the following

character matches, based on this we funnel our string characters into two different particles

which we treat as separate samples. We then place these two new particles back into the

original sample container.

In the case of most processes the lower level instructions will not need to be explained

as they will be simple or familiar processes.

4.2.4 Abstraction levels

These abstraction levels are designed to extend beyond the limitations of three levels. There

can be systems made up of systems (Chapter 8) requiring additional macro levels and our

physics layers can go down to give as much detail as is wanted. If one wished they could

summarise their entire system as a single action node or could extend their physics level

description down to logic gates and actions on the circuit board level. In most cases though

these extremes are not needed or helpful. It is up to the designer or modifier of the Artificial

Chemistry to choose from these levels for abstraction what is needed and useful to properly

express and illuminate their own system.

4.3 Formalisation of MetaChem

4.3.1 Static Graph MetaChem

We provide a mathematical formalism here for our static elements. These consist of the

mathematical elements that make up the static graph, G, of our system. In the following

section we discuss the dynamic properties of our system and its static components.

We start with two graphs, GΩ, IΩ, of our system Ω, capturing control and information

respectively. For the purpose of this explanation we assume we are always referring to

elements of a single system and so drop the system label from all elements such that our

graphs GΩ, IΩ become G and I.

As shown in our hierarchy, Figure 4.1, our system is composed of containers, control,

control flow and information flow. Control and information flow appear in our static graphs

as edges, EG and EI , of G and I respectively. Containers and control both appear in both

our static graphs as nodes, N .

G = (N,EG), I = (N,EI)

Our graph nodes partition into two sets: Control nodes C and Container nodes B. (We use
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the notation X = 〈X1, . . . , Xn〉 to mean that the set X is partitioned by its n subsets Xi.)

N = 〈B,C〉

We can see in our hierarchy that each of these is partitioned further. In the case of the

containers there are three categories of node: Environment nodes V , Tank nodes T , and

Sample nodes S.

B = 〈V, T, S〉

Control nodes are more complicated in the hierarchy but the static components that partition

the set of control nodes are: Action (Ca), Decision (Cd), Observer (Co) and Sampler (Cs).

C = 〈Ca, Cd, Co, Cs〉

We define an edge as pairs of nodes and are either control edges or information edges. Control

edges are between control nodes

EG ⊆ C × C

Information edges come in three varieties.

Eread ⊆ C ×B, Epush ⊆ C ×B, Epull ⊆ B × C

The Eread edges are directed from control nodes to containers and indicate readable

information for the control node, in visual graphs they are shown as undirected edges as

there is no change to the container node. Epush edges are directed edges which indicate

the containers edges the control nodes can push information and objects to. Similarly Epull

edges are directed and indicate the containers which a control node can remove information

or objects from.

All Epush and Epull must have a corresponding Eread edges. So Epush ⊆ Eread and

Epull ⊆ E−1
read.

4.3.2 Dynamic System State

Once we have these static graphs we can start a dynamic process guided by them. In order

to do this we define the system state, ω ∈ Ωs. In systems with a time element this may be

denoted as ωτ for the state of the system at time τ .

We denote the dynamic aspects of our system using the greek alphabet to distinguish it

from our static components. Our system state is made up of five components at any time:

the Control Graph (G), the Information Graph (I), the current state node (C), a mapping

from the container nodes to the bag (or multiset) of particles they contain (B → P(Φ→ N)),

and the dynamic environment (V → Υ). The state of the system is:

Ωs = G× I × C × (B → P(Φ→ N))× (V → Υ)
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action decision sample observer

read X X X X
check X
pull X X X

process X X X
push X X X

Table 4.4: Transition functions used by different types of control nodes; unchecked functions
always return their default behaviour

The system being formalised here has static graphs G and I, so we often do not include them

explicitly in the state of the system.

The current state node C, a pointer in this static graph case, is a control node dynamically

assigned and changing over time. This pointer indicates the current control node, whose

transition is to be run in order to find the next state of the system.

4.3.3 Transition Functions

Each node has a transition function.

transition : Ωs → Ωs

The overall transition function is decomposed into five component functions: read(), check(),

pull(), process() and push(). For any node some of these may be null (identity) functions.

Using function composition (•) this gives the following definition of transition:

transition = pull • process • push • check • read

A graphical explanation for how this works is given in Figure 4.5. For some kinds of nodes,

some components are always null or defaulted, Table 4.4.

Each of these transition function components plays a different role in the transition and

thus uses a different aspect of the state.

The read() function allows our node to collect information from external containers into

temporary local containers to be used by the rest of the transition functions. This does not

modify the external containers in any way. In Figure 4.5 we see the default behaviour where

the node reads all information from containers with information edges connecting to it into

internal container nodes.

The check() function uses local information to generate a threshold probability which

it checks against a uniform random number, r, to determine if the rest of the transition

function (the part that actually alters containers) occurs. If our threshold probability is

less than r we continue, otherwise we exit. In Figure 4.5 we see that our node uses the

information it has read to choose between moving to the next control node y and moving to

the pull() function.
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The pull() function is then used to remove information from external containers where

appropriate. The information removed has already been copied to local containers in read(),

so is available for local processing. In Figure 4.5 we see a subset A∗ of A is removed from

the A container node, while the internal copy of the contents of node A remains unchanged.

The process() function acts as the main computation for the node. It modifies the state

of local particles and variables including creating new particles and variables and destroying

old ones. In Figure 4.5 we see that the internal information has now been changed and

merged into a single internal container node. This is an extreme example as it has destroyed

all previously read information in the internal container nodes, including the partitioning

into four containers.

Finally the push() function pushes variables and particles from the local variables back

to external containers and wipes the local containers contents. This preserves information

for the system state but means the control nodes themselves do not have state or memory.

In Figure 4.5 we see that the internal container has been destroyed but its contents has been

added to container C so no information is lost but the control node x is now back in the

initial state.

Transition functions operate on local state, which exists only for the duration of the

transition. Let LB be a local particle container and LV be a local environment container.

These are destroyed as soon as the transition function is completed, so the control nodes

have no lasting state or memory. Any information used by a control node must come from

containers at the start of a transition using the read() or pull() functions and any information

or objects that should remain in the system should be written back to a containers by the

push() function.

These operations are summarised in Figure 4.5 and formalised below.

4.3.3.1 read()

This function does not change the state of the systems containers. As a default read() copies

of the content of all containers with read edges to a set of local containers, in practice it need

not always read all available containers. This is a null function in terms of the system state.

Bc and Vc are the sets of particle container nodes and variable container nodes connected by

read edges to our control node c.

Bc = {b|∃(c,B) ∈ Eread}, Vc = {v|∃(c, V ) ∈ Eread}

Then the sets of local container nodes, Lb and Lv within the control node after the read

function have identical mappings to those of the nodes within Bc and Vc respectively.

∀b ∈ Bc ∃c ∈ Lb s.t. φ(b) = φ(c)

∀v ∈ Vc ∃w ∈ Lc s.t. υ(v) = υ(w)
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Figure 4.5: Summary of the effect of the five state transition operations
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action decision sampler observer

tank X
sample X X
variable X X

Table 4.5: Containers which control nodes are allowed to have push and pull edges with.

where φ(b) ∈ P(Φ→ N) is the content of particle container b and υ(v) ∈ υ is the content

of variable container v.

Here we refer to the content of a container using the mapping from the container to the

partitioned particle bag but in later chapters we begin to abuse our notation and refer to

the content of containers by the container label, this is done for readability and brevity.

The default behaviour of this function is to read everything it can read, however this is

not always needed and implementations may choose to only read a subset. This information

is then written to the local containers.

4.3.3.2 check()

This function also makes no change to the state of the system, or the local state. The check

function uses a psf (probability spawning function) (Faulkner et al., 2017) to determine if

the rest of the transition will occur. The default behaviour in this case is to return true,

which it does for administrative nodes which always operate in a deterministic manner.0 r > psf(ω)

1 r ≤ psf(ω)

where r ∈ [0 : 1] is a uniformly distributed random number.

On a return of 0 the transition function exits and does not proceed to any further func-

tions, else the other functions are executed as expected.

4.3.3.3 pull()

The pull() function allows the node to delete information or objects from external containers.

These containers must be in the set of node connected by pull edges in the information graph.

{b|(b, c) ∈ Epull, b ∈ B}

where c is the current pointer.

The default behaviour of this function is to do nothing. This function needs only to

delete information and objects as Epull is a subset of Eread, so all information pulled should

have been copied into local storage previously during the read() function.

There are limits on the containers which different node types are allowed to pull from

and push to, these are given in Table 4.5.
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4.3.3.4 process()

This is the part of our transition which performs computation on our local information. This

function is free to make any modification to the state of the local containers. It does not

however have the ability to modify any other containers.

4.3.3.5 push()

The push command allows the node to add information or objects from the local containers

to external containers. These external containers must be in the set of nodes connected by

push edges in the information graph.

{b|(c, b) ∈ Epush, b ∈ B}

where c is the current pointer.

The default behaviour of this function is to do nothing.

4.3.4 Examples from StringCatChem

4.3.4.1 Micro level: s:sampler

As listed in Table 4.4, s:sampler has a read(), pull() and push() functions. This is a simple

sampler which randomly selects a single particle to move to a sample container.

read(): It reads only two containers T:tank and S:composite. Thus after the read function

the local particle container s:samplerB is in the following state:

s:samplerB =< T:tank,S:composite >

pull(): It selects at random a particle from the T:tank which it then delete from the

T:tank.

push(): We push the same random particle to the S:composite sample.

4.3.4.2 Macro level: o:time

Observers have four of the five functions: read(),pull(), process() and push(). This is a basic

observe that simply increments times.

read(): o:time has only one information edge: (o:time,V:time). This means it that after

the read() function we have:

o:timeV = V:time, o:timeB = {}
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As o:time does not observe the state of any of our particle containers.

pull(): As our V:time container only contains a single variable our pull function clears the

V:time container.

V:time = {}

process(): This observer is part of a subset referred to as a counter observer as it pulls in

a single variable and increments it. In this case the variable is time and the increment is 1.

This is performed on the variable now in local storage.

push(): We push the local variable back out into the V:time container for storage as the

local storage will be destroyed on termination of the transition function.

V:time = o:timeV , o:timeV = {}

4.3.4.3 Micro level: a:split

Action nodes use all five transition function, or may use all five transition functions. In the

case of a:split we use some of these functions and others operate under their defaults.

read(): There is only one information edge: (a:split, S:composite) for a:split. So the

S:composite sample is read into the local particle container.

a:splitB = S:composite

check(): In this particular system reactions are deterministic so we use the default be-

haviour of the check function. This is to use psf(ω) = id(ω) = 1 ∀ω ∈ Ω. So the check is

always true and the rest of the action always happens.

pull(): We clear the content of the S:composite node as the a:split node will process the

full content. This is the only possible pull given the only pull edge of a:split is (S:composite,

a:split).

S:composite = {}

process(): This is the function which can be split into the the actions of a metachem

subgraph. In this case the function divides the string at the double letter. The two new

strings are both stored in the local particle storage.

push(): Both parts of the string are transferred back into the S:composite sample. This is

the only possible destination for these strings as the only push edge is (a:split, S:composite).

S:composite = a:splitB
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4.3.4.4 Micro level: d:decomp?

Decisions only use two of the four transition functions. This is because they don’t change

the state of any of the containers, just the pointer status. This is done with a read and a

process that returns an indication of which of the possible next control nodes the transition

goes to.

read(): d:decomp? has a one read edge, (d:decomp?, S:composite), which is copied into

the local storage.

d:decompB = S:composite

process(): This section performs the computation that makes the decision. It returns one

of the nodes given by {c|(d : decomp?, c) ∈ Ec}. In this case {s:sampler,a:split}, where the

return function is: s:sampler if pn 6= pn+1 ∀n

a:split otherwise

where p is the particle in S:composite and pn is the nth character in p.

4.4 Static and Grown Graphs/Graph Language

In this work we are dealing with static graph MetaChem. The graph exists before the

system is run and does not change at run time, similar to most programs. We have both a

the mathematical formalism for this form of the graph and have implemented this form in

code. This implementation relys on the user defining as set of nodes and a graph structure

before running our system in terms of node transitions. The transitions are what we use to

limit the length of the implementation as the graph has no built in concept of time with in

the system just the number of times it has processed the node.

The advantage of a graph-based form is that with further work we will not be limited to

such a static form.

The dynamic edge graph of MetaChem would allow the graph to add and remove edges

during run time. Thus G would change in the system state, and we would add further

control nodes that would be responsible for this change. In terms of our hierarchy, Figure

4.1, these nodes would fall under the grouping of control flow admin nodes. So the system

could reorder its own control flow, or even connect entirely new nodes or subgraphs to the

control flow that, while existing at the start, were not connected.

We could use these new nodes to trigger events in our system based on complexity. We

could also use this as part of evolving Artificial Chemistries by having a set of nodes to start

with and allowing our edges to change over time until the control flow became stable. This

could be controlled by the system itself so it would “learn” an artificial chemistry.
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For true evolution and change we move to graph language MetaChem (or dynamic graph

MetaChem), which would create and destroy its own nodes and edges at run time, so the

graph would grow and remove parts that were no longer needed, allowing it to prune its own

process. This type of system would allow the artificial chemistry to change completely at

run time so it could truly transition and change abstraction levels and experiments as it ran.

This could open paths in open-ended evolution and open-ended systems research which have

not been possible before.

This system will give us changes in our artificial chemistry’s similar to the change in

chemistry as we move from atoms to organic molecules. This is the difference between undi-

rected reactions and a chemistry that runs alot like a machine purposefully manufacturing

new chemicals needed. This is a very different system to the initial presumed starting state

of a stochastic chemical soup. There are other examples such as the development of bacteria

and cells which makes these sorts of machines properly contained and mobile. This was not

possible with out breaking until they have that sort of distinction.

Finally we have MetaChemistry the artificial chemistry itself to consider. Once we have

the dynamic graph language MetaChemistry, we can consider any isolated MetaChemistry

subgraph as forming a subAChem or a full AChem. We can treat nodes as atoms and

subAChem and AChems as composite particles. An instance of MetaChemistry is there for

not a single graph but a collection of graphs (possibly all possible graphs). This gives us

MetaChemistry as the universe composed of Artificial Chemistries.

4.5 Next Steps

We now have a formal language in which to discuss different Artificial Chemistries. All

current systems we are aware of can be described by the static graph MetaChem.

To show the power of this modularisation and graph based representation, we next present

two case studies of Artificial Chemistries. The first of these is our own chemistry Jordan

Algebra AChem, originally developed based on algebraic structures, but here re-described

in the MetaChem format. The second AChem is Swarm Chemistry, chosen for being a well-

established artificial chemistry. Swarm Chem and JA AChem are very different chemistries

with next to no overlap in their nature. Swarm Chem also represents an independent example

of description of an existing AChem in MetaChem.

We then show that these descriptions can enable further investigation of these AChems.

Our first example of this is an in-depth investigation of particular behaviours of JA AChem by

variation of a single process. Our second example is the combination of these two chemistries

to create a set of new more complicated AChems through the creation of a small set of nodes.
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Jordan Algebra Artificial

Chemistry

Jordan Algebra Artificial Chemistry (JA AChem) was initially designed at the beginning

of this work to conform to algebraic structures observed in natural chemistry. It was this

philosophy of defining the low level algebraic stuctures of a system and building on them

to develop an algorithm and experiments that lead to the conception of MetaChem. In this

chapter we re-describe JA AChem using MetaChem as a case study. In the following chapter

we show how this description makes modifications to JA AChem simpler.

5.1 Introduction

Our MetaChem system, while designed subsequent to our original Jordan Algebra Artificial

Chemistry (Faulkner et al., 2016), can allow us to describe this algebraically driven chemistry.

We do this using the graphs and functions described in Chapter 4. In this chapter we focus

on the mathematical and conceptual motivations of this chemistry, while using MetaChem

as a clear language for how our system fits together into a complete algorithm. Later we see

how this separation of factors allows us to manipulate and tune our Jordan Algebra AChem

(Chapter 6) and combine with another AChem (Chapter 8).

5.2 Open-Endedness through rigorous design

Most Artificial Chemistries (AChems) seek to produce a system capable of displaying specific

behaviours associated with abiogenesis, the transition from inorganic to organic (living) ma-

terials (Hutton, 2002; Lucht, 2012; Suzuki et al., 2003). Those systems succeed in generating

their particular behaviours because that is what they are designed to do. Another approach

is to consider that we are seeking open-ended behaviour in our systems. In order to design

for open-ended behaviour we need to approach the problem in an open-ended way.

46
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We need to design a system that is rich and complex, with properties that allow us to

define all the reactions of our AChem implicitly. We can then start looking for, and finding,

behaviours that are emergent from the design, rather than engineered explicitly. We need

a set of building blocks and connectors that do not limit the structure we design. Think of

this as the difference between a prefabricated house and a brick house. A prefab has pieces

that are specifically designed to fit together and form a house, and have a limited capability

to do anything else. A brick house is just the bricks and the mortar that joins them. The

bricks are not limited to building a certain house, or even a house of a particular size. We

could even build a bridge instead or some other structure. With enough bricks and mortar

the possibilities are endless. Likewise in an open-ended AChem the only limit should be the

material and the amount of energy in the system.

We also need to consider not just constructive but destructive behaviours in our design.

Not all reactions need to be irreversible. In fact this is not a desirable property in any system

seeking to be open ended with a reaction that combines particles into a larger structure. This

is because without destruction we will quickly reach a point where all possible links will have

been made and nothing more will change. However destruction brings the potential for links

to break and new links to be made.

We need to consider desirable properties of the interactions of our particles, rather than of

the whole system, while ensuring that we do not over- or under-constrain the AChem. Here

we do this by taking a mathematical approach, and taking advantage of existing mathemat-

ical theory and structures. This allows us to discuss not just the properties and behaviours

of the particles, but also the different links and linking structures between them. We can

then use established mathematics that has many emergent properties with interesting forms

of interactions. We can also expand our view to talk about the effects of these properties on

the system as a whole.

5.3 Assessment of Desirable Mathematical Properties of Link

for correct structure of Composite Particles

Our ssAChem (subsymbolic artificial chemistry) rules have two functions: a set of mathe-

matical products (or mathematical operations) for forming links and composites, and a set

of probabilities used to determine probability of a reaction (probability spawning functions,

psfs).

In this section we discuss the properties of the mathematical product function. The

probabilities will be discussed briefly later and in more detail in the following chapter.

5.3.1 Desirable Properties for Particles

Before we discuss the desirable properties of an operator for joining our particles we need

some idea of desirable properties for the particles themselves. We are looking to build
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a subsymbolic system so our particles will first be required to have some sort of internal

structure and properties.

We are also taking an algebraic approach to our system. We therefore want particles

which can work with our algebraic operator. If possible we want therefore well known and

well studied mathematical objects. For instance the integers, Z, do have internal structures.

There are various different possible decompositions of an integer, most well known would be

the prime factorization but there is also 2-factor integer factorization often used with large

primes for cryptography.

However a richer object would be matrices which have many defined operators and map-

pings that could be used in this work. More interestingly perhaps there are many well defined

interesting subsets of Matrices and they come in different sizes such that we could tailor our

system to work with a subset well suited to our operator to give us an atomic set as well as

the general particles.

5.3.2 Algebraic Axioms

In mathematics there are two properties of a product on a set that are easily defined, and

that can be indicative of many further properties of an algebra. These are associativity and

commutativity.

Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) (5.1)

Commutativity: a ◦ b = b ◦ a (5.2)

When we have a binary product, thereby linking two particles, combinations of these prop-

erties lead to four distinct structures, Table 5.1.

For an associative, commutative binary product we can change the order of evaluation

and the ordering within any evaluation. No matter how we link a given set of particles, we

get the same result. The structure is a bag. For an associative, non-commutative binary

product we can change the order of evaluation such that there is no ordering on the products,

but we cannot change the ordering within the product; the structure is a string.

Associativity is an assumed property of most algebras. Non-associative algebras, while

rare, normally appear in an applied setting. They have been used in connection with genetics

(Reed, 1997) and physics (McCrimmon, 1978) as well as a broad range of applications to

mathematical theory (Gonzalez and Martinez, 2003). One of their main attractions is that

with their enforced evaluation order they can embody a loose form of time, or at least an

ordering of interactions.

For a non-associative, commutative product we can reorder particles in a product, but

we have an enforced order of products. The structure is a binary tree, with unordered

child nodes. For a non-associative, non-commutative product, we have an enforced order

of products and ordering of particles within the products. The structure is a graph, with
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Associativity Commutativity Structure

Yes Yes Bag
Yes No String
No Yes Tree
No No Graph

Table 5.1: Summary of structure provided by different mathematical properties

complicated directionality restrictions requiring labelling on both edges and nodes; these are

not simple structures and do not conform to any of the normally used graph subtypes.

Let us consider these four structures in terms of an AChem. A bag has no internal

structure, and limits us to a set of composite particles with the cardinality of the power set

of the component particles. In real chemistry there are isomers: molecules with different

inherent properties despite containing the same atoms in different arrangements (Muller,

1994). Isomers add complexity and increase the size of the combinatorial space. An AChem

with a bag structure has no equivalent of isomers, so we do not want to base ours on an

associative commutative product.

In terms of the real world we can see that bag structures are rare. The world orders itself.

things group together in structures. Gases and liquids may seem like bag structures until

you see a flow or a convection current that make the whole more than just the individual

objects within. Strings are more common appearing in DNA and proteins. In physics even

signals produce data with a string type structure and these signals are produced by the stars

themselves. Trees though seem to be the mark of life itself. Reproduction either sexual

or asexual produces a tree structure in terms of ancestors. As previously stated chemistry

has a tree structure. Finally we have graphs that appear everywhere. In physics we can

find graphs of force interactions. In chemistry we get reaction networks whose structure are

graphs. In biology, sociology, environment all have social and resource graphs for interaction

and resource access.

Strings are structures that have received a lot of attention in the computing community,

but they are rather simple mathematical objects that lack room for expansion. They have

very simple combinatorial power of

Cn−1 =
(2n− 1)!

n!(n− 1)!
(5.3)

Strings support analogues of isomers, but there are not many of them. There is also no

ordering of operations, so how they are formed does not affect the result. So we reject

associative non-commutative products.

The tree structure given by the non-associative commutative product not only has more

room for expansion to larger trees, it also has an implicit ordering. Because we cannot change

the order of operations we get a variety of structures, and a system in which structure is as
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important as the building blocks themselves. This gives us a system with greater intrinsic

flexibility.

The graph structure of a non-associative non-commutative product provides yet more

structure, but makes it hard for the product to have any regularity to exploit as it allows so

many possible structures. It is not necessary that we work with a structure this complex so

we stick to trees.

Keeping the structure simple is particularly a concern in our system as we have both

composition and decomposition which will require us to keep a record of this structure in

case it breaks apart later.

5.3.3 Expanding to n-ary linking operator

We can look beyond binary products to products that take more arguments, combining

multiple particles with a common link.

This does not affect the structure of the system if we have an associative non-commutative

product: since it is associative this changes nothing and we still have a string. However in

the case of the non-associative commutative product as we expand from a binary product to

a larger product we move from a binary tree to a general tree.

There are a larger number of possible trees with n ≥ 4 leaves than strings with n ≥ 4

elements. For n = 3 we have s3 = 6 and t3 = 4, where sn is the number of strings with n

elements and tn is the number of trees with n leaves. For n = 4 we have s4 = 24 and t4 = 37

using products of any size, see Figure 5.1. We can show that from this point onward there

is a larger number of possible trees than strings.

The number of possible strings increases with n such that sn+1 = sn(n+ 1). For trees we

have a faster growth. We can show that if we link the extra element to the result of each of

the graphs with n nodes with a binary link then the new element can be swapped with any

of the other elements to give at least tn+1 ≥ tn(n+ 1). We also always have more graphs as

this does not include the graph of the (n+1)-product (see Figure 5.2) making tn+1 strictly

greater than tn(n+ 1). Thus as we have more trees at n = 4 and a faster growth in the trees

than in the strings, for n ≥ 4 we always have more possible trees than strings.

In terms of an AChem, these properties show that we have a more interesting selection of

possibilities in a non-associative system than otherwise, and these possibilities are controlled

by the order in which reactions occur. Hence we focus on non-associative commutative prod-

ucts for our ssAChem design. This means that our particles will consist of a mathematical

subsymbolic object with internal structure and a structure emergent from the combination

of particles used to create the particle, unless it is atomic.

5.3.4 Jordan Algebras

Having established that these mathematical properties are desirable, we need to find a system

in which we have these properties. Mathematics as a field has already found and studied
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dc
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a

Figure 5.1: Tree structures with four leaves with multipliers indicating the number of relevant
rearrangements of leaves, giving an indication of all possible trees with four leaves with in
this system.

(a)

ni+1subtree size i

(b)

ni+1ni· · ·n2n1

Figure 5.2: Trees showing greater growth than strings
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systems with such properties, in the case of non-associative commutative systems we have

Jordan Algebras (McCrimmon, 2006).

Jordan Algebras were originally conceived to find a solution to describing observables in

quantum mechanics, but were later discarded for that purpose because none of the Jordan

Algebras were able to solve the problem. They have two important properties which define

them:

Jordan identity: (x • y) • x•2 = x • (y • x•2) (5.4)

where x•n = x • x • · · · • x (n times)

Power associative: x•mx•n = x•(m+n) ∀m,n ≥ 0 (5.5)

Power associativity tells us what happens when we work with just one kind of particle.

There are several Jordan Algebras (McCrimmon, 2006). One of these exists over the

Hermitian matrices (a matrix is Hermitian if it equals its Hermitian conjugate, see Equa-

tion 5.14). These are a well defined subset of square matrices, allowing us to choose the size

of the matrices we use. This makes Jordan Algebras the perfect choice for our chemistry.

With this Jordan Algebra we start with a binary product formed of familiar matrix

multiplication and addition to define the Jordan product:

X • Y := 1
2(XY + Y X) (5.6)

As one can see X • Y = Y •X. It is also non-associative:

(X • Y ) • Z = 1
2(XY + Y X) • Z (5.7)

= 1
4(XY Z + Y XZ + ZXY + ZY X) (5.8)

6= 1
4(XY Z +XZY + Y ZX + ZY X) (5.9)

= 1
2X • (Y Z + ZY ) (5.10)

= X • (Y • Z) (5.11)

One of the advantages of Jordan algebras is the existence of an expansion from the binary

product and the binary tree to a general product and its general tree. We can expand the

binary product linearly to give the Jordan triple product:

{X,Y, Z} = (X • (Y • Z) + (X • Y ) • Z − (X • Z) • Y )

= 1
2(XY Z + ZY X) (5.12)

We can further extend this to an arbitrary length n product, called an n-tad in Jordan theory

(McCrimmon, 2006):

{X1, X2, · · · , Xn} = 1
2(X1X2 · · ·Xn +Xn · · ·X2X1) (5.13)
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Using the n-tad notation, (X • Y ) = {X,Y }.
Commutativity of this product means that we can fully reverse the order of the elements

in the product, but not freely rearrange the order completely. So there is a large number of

possible n-tad products for a particular set of n objects, increasing our combinatorial power

and the ability of our system to exploit some properties of composite particles. Thus Jordan

Algebras equip us with products that are open-ended, and are applicable to the open set of

Hermitian matrices.

5.4 Particles and their subsymbolic structure

Other AChems have used ‘matrices’ as the basis of their particle set S. In particular, the

binary string chemistry (Banzhaf, 1993), dubbed the matrix-multiplication chemistry by

Dittrich et al. (2001), makes use of matrix multiplication. However, it does not treat its

particles as mathematical objects; rather, it folds binary strings into a matrix in order to

give a simpler definition of a function over the binary strings. This is common for the use of

‘matrices’ in systems that use ‘matrix’ to mean a two dimensional storage array rather than

the mathematical object that we use here.

All of the previous discussion in this chapter has been building towards creating a system

that uses mathematical objects for both the particles and links of our system. This is the

beauty of a mathematical product: it is in some ways an object with properties in its own

right.

Additionally, the matrices themselves are rich in emergent properties that might be

exploited by our system.

5.4.1 Hermitian Matrices as Subsymbolic Particles

The atoms in the Jordan Algebra AChem used here are 3× 3 Hermitian matrices.

Hermitian matrices use the Hermitian conjugate of a complex matrix:

a11 a12 a13

a21 a22 a23

a31 a32 a33


†

=

ā11 ā21 ā31

ā12 ā22 ā32

ā13 ā23 ā33

 (5.14)

The elements aij are complex numbers, and ā is the complex conjugate of a. A matrix

M is Hermitian if M = M †. Hermitian matrices are closed under the Jordan product

(McCrimmon, 2006).

Hermitian matrices provide a rich variety of properties such that we can use them as

prime material for creating a subsymbolic AChem (ssAChem) where emergent properties of

the matrices dictate the linking capabilities/probabilities of a particle, and the algebra gives

the structure of the composite particles.
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Figure 5.3: Macro level description of JA AChem operating over link and decomp loops

5.4.2 Atoms

We have 14574 atoms with 66 different sets of eigenvalues. Many of these overlap and are

different. We have a lot of options and a lot of different sorts of operations and linking

behaviours. The atom set is given in Equation 5.15.A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 : aij ∈ ±1, 0,±i,±1± i

 (5.15)

5.5 Macro Level Description of Jordan Algebra AChem

Now that we have described the motivation behind the system and the objects within it,

we describe the system as a whole at the macro level, including observations, processes and

containers.

Our algorithm loads our initial atom or particle set and then operates over two loops.

These two loops are remarkably similar, starting with a sampling of the tank followed by

an operation. The loops finish by returning their samples, updating timing variables and

checking if enough operations or time has passed to say whether the loop continues or if the

system moves to the other loop.

If we make observations of our system, we add them to our logger, which may or may

not be included in our system. The logger pushes to an external environment which is never

pulled from. These observations can provide many different summary statistics. In later

examples relating to linking and probabilities we will observe: number of atoms in each

particle, number of different atoms in each particle, size of particle trace, weight of particles,

size of largest link in particles.

This macro system level description does not clarify the internal workings of our link and

decomposition nodes. These are expanded in the next two sections to give the micro level

linking and decomposition processes for this work in terms of the mathematical and graph

terminology given in the previous chapter.
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Figure 5.4: Micro Level description of a:link node from Figure 5.3. Below are the labels
for the grouping of control nodes according to transition function in the the outer node.
External nodes are depicted my a double box. All other containers are lost at completion of
control flow.

5.6 Linking Process

The a:link action has all five transition functions. The read, pull and push functions are all

performed from and to the S:reactant sample. More interesting are the check and processing

functions in this case. To highlight these actions we expand the a:link action node into a

micro level subgraph of the macro system. This means that all five transition functions are

made more explicit, and we see the local containers LB,LV .

5.6.1 read()

The observers gathers the information needed for the probability check. They do this by

reading and processing information from S:reactants. The information about the internal

structure and other derived values are stored under various names in the local environment

storage. In Figure 5.4 we denote this by labeling our environment with the variable names

for each element being stored there.

Our first observer extracts the matrix, normalised eigenvalues and unit eigenvectors for

each particle in our samples reactants. For a matrix M , consider

Mv = µv (5.16)

The solution vectors vi are the eigenvectors; the corresponding scalars µi are the eigenvalues.

Here we choose these unit eigenvectors and the corresponding normalised eigenvalues λi as

our emergent properties of interest to define our linking probabilities:

λi = µi/
∑
µj (5.17)

We normalise the eigenvalues to ensure sensible linking probabilities of larger composites.
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Our second observer reads those values and uses them to calculate the best pairs of

eigenvalues to use based on their “alignment”. This does not take into account the sign

of their eigenvalue. This was done on purpose to create a situtation where a particle can

happen to be generated such that it is ”facing the wrong way” for linking. This is something

we see as adding dimension and richness to our system.

aAiBj =

(
1− 1

2
((vAi · vBj ) + 1)

)
Alignment uses the dot product between the corresponding unit eigenvectors of each pair

of particles. The dot product between two unit vectors is the cosine of the angle between

them. The overall term has a value between 0 and 1, and is 0 if the vectors are perfectly

aligned and 1 if the vectors are anti-aligned. We choose the highest value pair for each pair

of particles and record the pair (i,j) and its alignment value in V:Pairs.

Our third observer uses this information to then calculate the strength between each pair

of particles in our reactants. Using the (i,j) pair selected by the alignment in the previous

step.

sAiBj = N(λAi − λBj ) (5.18)

This is the probability density of the normal distribution (µ = 0, σ = 1) at the point

given by the difference in the normalised eigenvalues. This means the probability of linking

is larger for more similar normalised eigenvalues. The normal distribution is not the only

option; we simply need a symmetric distribution centred on zero, and the normal distribution

is a well-known such one. We investigate other options for this distribution in Chapter 6.

This ends our read() function, which has done a lot of processing but has only read from

the S:Reactants. Processing does not normally occur in the read action, but as we are taking

the lower level view of this function we can reveal more of our implementation and with it

the shortcuts we take to ensure less repetition of calculations and a smoother flow. This is

why we are using observers for our read function.

5.6.2 check()

Our check() function in the a:link node looks like:pass r < particle strength & Matrix valid

fail otherwise

In our micro level view we break this down into two decisions. The first compares the

minimum of the linking probabilities with a uniformly distributed random value on the

interval [0:1]. If the minimum linking probability is more than the value, the decision node

transitions to the next macro level node, else we continue with our a:link. This means the
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weakest pairing dictates if our link happens.

The probability of linking check based on the strength of the link and its alignment.

pAiBj = sAiBjaAiBj (5.19)

In-between our two decisions we again sneak in some early processing. We use a deter-

ministic action (one that always runs in full) to calculate what the new matrix would be if

we did create the new particle. We store this for possible later use as V:New Mat.

Our second decision uses this result to make its decision based on the trace of the new

matrix. As long as the matrix has a non-zero trace we continue otherwise we exit the a:link

node with out ever pulling information.

5.6.3 pull()

This single node action just empties the existing reactants out of the S:reactants container.

We have collected all the information we need from them to create our new particle and no

longer need these particles, they are dumped in a local container which will disappear at the

end of the process.

5.6.4 process()

This single node uses the new matrix to create a new particle. To do this it creates a link

with a strength (this will be used later). In the case of a binary link the strength is the sAiBj

value we have already calculated, for larger links it is the minimum of the set of these. This

link also includes the memory of the reactants that were used to form the link, taken from

our local container. These properties, the list of eigenstate pairs used and the matrices are

used to generate a new particle object which is stored in its own labeled section of the the

local storage, T:New Part.

5.6.5 push()

Finally we use a sampler to move the content of T:New Part in to the empty S:Reactants

and then exit the node. Exiting the node means losing the content of all the local containers,

so there is no need to explicitly delete the generated information.

5.6.6 Subsymbolic Link

Because of the subsymbolic nature of our link, our composite particles can be seen as having

more complicated overall strengths and probabilities.

The probabilities and strengths above relate to a single reaction but a composite particle

can be formed over the course of many reactions. So the final particle has a different total

strength and probability of existing in our system.
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5.6.6.1 Composite Particles Probability

In our system the links have properties of their own. Equation 5.19 is the probability of the

link forming given the presence of its components and that we choose that many reactants.

We need a further two probabilities to work out the probability of the resulting composite

of the link existing, fA. We need a probability of a particle existing, eA:

eA =

1 if A is an atom

fA if A is a composite
(5.20)

And we need a probability that each particle takes part in the reaction. All reactions

that form a link require us to select at least two components. We define the probability

of selecting further components for the reaction as 0.1 for each component. This choice

discourages our system from constantly forming large links and quickly becoming one large

composite. This is implemented within the s:Sample node in the macro level description.

r{A1,··· ,An} = 0.1n−2 (5.21)

So together the probability of a composite forming in terms of its last link is:

fX = f{A1,··· ,An} = pXrX

n∏
i=1

eAi (5.22)

5.6.6.2 Composite Particles Strength

Link strength in our system is truly a property of the link rather than the composite. The

composite particle contains a series of links all with different properties; each link has the link

strength given in Equation 5.18. The overall composite strength is given by the probability

of each of the links not decomposing, and is the product of all the link strengths in the

system. The result is that larger links are stronger than a series of smaller links as there is

less chance for the composite to break down. This is given by:

sX =
∏
Y⊂X

lY (5.23)

where lY is the link forming Y a sub-particle of X.

5.6.7 Elemental Table

One of the results of this model of linking is that the defining linking characteristic of an

atom is its eigenvalues. The eigenvectors may be considered simply rotations of the same

atom if they are paired with the same set of eigenvalues.

This allows us to categorise our atoms into elements, with in which the isotopes have the

same linking properties but different orientations. This is equivalent to saying that we are
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more interested in the linear mapping represented by the matrix than in its orientation.

We start with our atomic set of 14,574 atoms which we can partition into the isotopes of

69 elements defined by eigenvalues. For each different set of eigenvalues we assign a set of

capitol letters which are reused if the set of eigenvalues appear again. We do the same thing

with atoms traces to give us a label for each element. These can be sorted into a periodic

table. To do this and to find a representative isotope for each atoms we define property

which we call ”weight”:

For matrix A = (aij) and a′ij = aij mod 3:

wA =a′11 + 3a′22 + 32a′33 (5.24)

+ 33Im(a′12) + 34Im(a′13) + 35Im(a′23)

+ 36Re(a′12) + 37Re(a′13) + 38Re(a′23)

By minimising this we designate the representative isotope to be the isotope with the

largest number of zero value real and imaginary elements (mod 3 sets 0 ∼= 0, 1 ∼= 1 and

−1 ∼= 2). Since we are minimising we prefer zero or positive elements. We particularly

penalize real numbers off the diagonal and prefer numbers on the diagonal. We organise this

in the period table such that similar sets of eigenvalues are in the same column as each other

and so that nothing is below or two the left of another element with a higher weight.

To determine if this is a good definition of an isotope we generate the self-synthesis of

each atom with itself and check given different groupings how similar the linking values of the

resultant composites are. We do this across the entire set, the set of trace based partitions,

the set of linking value based partitions and the set of isotopes of each element. This gives

us the distributions shown in Figure 5.6, as is shown isotopes/atoms with the same trace

or the same linking values are identical under self-synthesis, this means the element is well

defined as it incorporates both of these strong similarities. It is also important to note that

while there are 66 different sizes and 66 different sets of linking values there are 69 elements

meaning these are not all the same partition so it is important to use both metrics rather

than one or the other. It also means that for future work due to the similarity of isotopes

it is valid to simply use the isotope with the lowest weight to represent the element most of

the time.

5.6.8 Structure

The Jordan Algebra underlying this system means that the structure of the composite is

as important as the particles that make it up. Through this we can see that not only does

the structure add to the properties of the composite, but also we can find behaviour in the

structure independent of the particles. By this we find the analogue of an isomer from real

chemistry.
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854 1093 3028 3279 3302

TTb Db Xt Vr Aav
2.6 0 -1.6 1.1 0.5 -0.2 1.4 0.3 -0.7 1.5 0.4 -2 1.2 0.7 -1

1057 1094 3037 3320

Ws RRjj Ga Ji
1.4 0 -0.4 2.7 0.2 -1.9 1 0 -0.3 0.9 0.6 -0.5

1066 3271 9836

Ff Qm So
1 0 0 1.5 0.3 -0.8 1.4 0.7 -1.1

1081 1084 3280 9854

HHHpp Rn Cc Ee
2.7 -0.3 -1.4 1.5 0 -0.5 1.1 0.3 -0.4 1 0.6 -0.6

1102 1084

OOhh NNgg
2.9 -0.2 -1.7 2.9 0.3 -2.2

3297 3306 9841

FFFa Tp Aa
3 -1 -1 1.6 0 -0.6 1.2 0.1 0.3

3297 3307

IIIqq Bb
2.9 -0.5 -1.5 1.2 0 -0.2

3298 3308

Pl QQa
1.7 -0.2 -0.5 3 0 -2

3310 9823
MMff Ok

3.1 -0.4 -1.8 1.7 0 -0.7

9842

LLeee
3.3 -0.2 -2.1

Figure 5.5: Periodic Table of Elements for normalised 3x3 matrixes
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Figure 5.6: Comparison of difference in linking values in different partitions of self-synthesis
composites

5.7 Decomposition Process

The decomposition process in JA AChem, expanded in Figure 5.7, attempts to break the

different bonds in a JA AChem composite starting with the weakest bond. This was done to

simplify matters, we only want to break a single bond so we test them starting with the one

most likely to break. Since the structure of a JA AChem bond is important the decomposition

of one of these composite is nontrivial. We have marked out the different parts of this process

in terms of the transition functions they perform in the macro decomposition node. We step

through the graph in the following sections.

5.7.1 read()

Uses two observer nodes to extract the link structure of the particle and the strengths of the

links.

5.7.2 check()

Chooses acts based on whether the min of the strengths is greater than a uniformly dis-

tributed random number in [0:1]. If this is greater it exits the node. Otherwise we continue.
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5.7.3 pull()

As in link, we pull our reactants into a local tank, to be disposed of at the end of the transfer

functions.

5.7.4 process()

This is the most complicated section of our system. We start with the most basic part. The

first action node breaks our weakest link and removes it from the list of links. We add the

components of the link to the S:components node.

Our second node check in our links to see if there is a particle whose link is missing

as the component of another link. If there is we then have to work out any need for the

remaining structure to fix itself. If there is this is done by the following node and decision.

The conditions for a structure to fix is described in the next section. Otherwise if the

decomposition is finished and there are no “hanging” links we move to the push() function.

If we do have hanging links we replace the missing particle with the first siblings we find.

This means that if there are other siblings in the link we form a different new link with just

the siblings to create a replacement particle. If there is only one sibling then that sibling is

considered the replacement particle. We then remove the hanging link from the list of links

and store the replacement particle in sample.

Finally we check again for hanging links. If we have any then we loop back to replace

the missing particle again with the replacement particle from this point forward. As long as

there is a replacement particle it is used for this process and swapped out for the result.

If any of these particles are completely unable to form (the particle would be invalid) we

place the components we would use to form them into the S:components sample.

Once this loop finds no hanging links we continue to the push() function.

5.7.5 push()

Our push function returns the content of both components and the replacement samples to

the S:reactants container. We then clear our local containers and exit the node.

5.8 Resolving “hanging” link

When we break internal links we have to occasionally form new links. This is dictated by

the following structure change rules, in these rules we denote the link being broken by bn

where n is the depth of the link in the structure. In the following diagrams we will list

the possible situtations when breaking a link and the resultant products. The initial graph

before the link is broken is given on the left. The resultant products are given on the right.

In all cases we have labelled, bn, the bond we are breaking. We use lower case letters here

to denote atoms and upper case to denote arbitrary particles (composites or atoms). There
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are 5 different sorts of situtations to consider here (1) single link of 2 atoms, (2) single link

of m atoms, (3) single link of particles, (4) one level nested link of particles, (5) two level

nested link of particles.

1. b0

ba

→ (b0) a b

2. b0

bca

→ (b0) a b c

3.

3.(a) b0

BA

→ (b0) A B

3.(b) b0

CBA

→ (b0) A B C

4.

4.(a)

b1

CB

A

→ (b1) A B C

4.(b)

b1

CDB

A

→ (b1) A B C D

4.(c)

b1

DC

BA

→ (b1) A B C D

4.(d)

b1

DEC

BA

→ (b1) A B C D E

5.
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5.(a)

b2

DC

B

A

→ (b2)

BA

C D

5.(b)

b2

DEC

B

A

→ (b2)

BA

C D E

5.(c)

b2

ED

CB

A

→ (b2)

CBA

D E

5.(d)

b2

EFD

CB

A

→ (b2)

CBA

D E F

5.(e)

b2

ED

C

BA

→ (b2)

CBA

D E



CHAPTER 5. JORDAN ALGEBRA ARTIFICIAL CHEMISTRY 66

5.(f)

b2

EFD

C

BA

→ (b2)

CBA

D E F

5.(g)

b2

FE

DC

BA

→ (b2)

DCBA

E F

5.(h)

b2

FGE

DC

BA

→ (b2)

DCBA

E F G

We can apply these rules to larger composites by considering each of the starting composites

in rule 5. Call them K(a), K(b),...,K(h) and make them a subcomposite of a larger composite

M, we call the other subcomposite N: M

NK(n)

Then decomposition occurs as before but

the following new composite is formed in each case by taking the result given the composite

result in (x) above and using it to replace K(x) in M to give a new composite, M∗:

(a)

BA

N

(b)

BA

N
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(c)

CBA

N

(d)

CBA

N

(e)

CBA

N

(f)

CBA

N

(g)

DCBA

N

(h)

DCBA

N

This can then be applied iteratively to allow for a link of any depth to be broken by letting

M be K(x) in the larger composite and repeating the process replacing K(x) with M∗. In

our system this is applied by our loop including a:replace part.

Decomposition and the forming of new composites caused by it occurs in the same manner

regardless of the position of the link in any larger links. This means that while all examples

here use at most a 3-tad link and all nested links occur on the far right position the concepts

are the same. In links nested two deep all remaining components of the previous one deep
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link are used to form a new link at zero deep along with any remaining zero deep components.

This means we have a decomposition algorithm now which will work on any composite of

any size.

This replacement obviously causes the replacement of all composites above it such that

the whole composite changes and is replaced by M*. During this process we do not change

the eigenvalue indices used in each link, these same indices used with new components and no

probabilistic checking during link formation means that decomposition can allow the forming

of extremely weak links that will easily lead to further decomposition. In general as we use

the strongest linking indices in linking decomposition will on average weaken the links in a

composite. Sometimes though it will cause the creation of stronger links with composites

that would not otherwise exist.

5.8.1 Example

For this section we show each possible decomposition of a randomly generated composite

(generated without decomposition) and the strength of the link before decomposition.

The particle we use for this was in this run the 52 generated composite:

52

4

3

HHHppAAv

Bb

9

MMffSoAAAa

For the associated matrices for the atoms in 52 see Appendix.

We then can list the result of decomposing the composite at the bond forming each of

our subcomponents: 3, 4, 9 and 52. We list these bellow with the number of the composite

that resulted from the bond, the strength of the bond and then the resultant particles from

the decomposition:

52: Strength -¿ 0.3918 9

MMffSoAAAa

4

3

HHHppAAv

Bb

9: Strength -¿ 0.3124 4

3

HHHppAAv

Bb

AAAa So MMff
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4: Strength -¿ 0.3484 9

MMffSoAAAa

3

HHHppAAc

Bb

3: Strength -¿ 0.3669 0

Bb9

MMffSoAAAa

AAv HHHpp

In general the decomposition of this composite proceeds in a normal fashion with com-

posites simply breaking apart except in the last case of composite 3 breaking. This leads to

the left over Bb atoms maintaining a connection to the 9 composite to form a new composite,

here called 0.

5.9 Conclusion

We have used a rigorous algebraic approach to define an artificial chemistry capable of both

constructive and destructive behaviour. The algebraic structure of our particles has provided

us with an equivalence of atoms giving us a period table based on the properties of our atoms

within larger particles. Our algebraic links have enabled greater combinatorics in particles

with the same atoms. Our destructive behaviours have allowed otherwise unseen or highly

unlikely particles to form.

These properties of our chemistry are all identifiable in particular elements of our graph

description of it. The particles themselves, the linking node and the decomposition node.

This chapter contains no systematic numeric simulation results. These are presented in the

following chapter. There are other aspects of our graph description that have not been

considered here such as our choice of probability spawning function used in both linking and

decomposition action nodes. In the following chapter we explore what effects this has on our

system. In this case we do so through observation (top-down) rather than through axioms

(bottom-up).



Chapter 6

Modifying AChems with

Probability Spawning Functions

We explore the potential of a non-deterministic system through probability spawning func-

tions. We define this functions and provide a set of examples in our Jordan Algebra Chem-

istry. We vary these in an attempt to affect the emergent properties of the system. We

then briefly consider combinations of these functions to make building complex probabilistic

effects quicker to build.

Natural chemistry deals with non-deterministic processes, and this is reflected in some

artificial chemistries. We can tune these artificial systems by manipulating the functions that

define their probabilistic processes. In this work we consider different probabilistic functions

for particle linking, applied to our Jordan Algebra Artificial Chemistry. We take five basic

functions and their variations to investigate the possible behaviours of the system, and try

to connect those behaviours to different traits of the functions. We find that, while some

correlations can be seen, there are unexpected behaviours that we cannot account for in our

current analysis. While we can set and manipulate the probabilities in our system, it is still

complex and still displays emergent behaviour that we can not fully control.

6.1 Probabilistic AChems

We present an exploration of the space of and effect of ‘probability spawning functions’(psfs)

in artificial chemistries (AChems). We use Jordan Algebra AChem (JA AChem) as an

example of the use of psfs.

Natural chemistry is a probabilistic process where environmental variables (such as tem-

perature) can affect the probability of bonding. AChems are inspired, to a greater or

lesser degree, by natural chemistry, but there are many probabilistic attributes of natural

chemistries that are often made deterministic in artificial chemistries, such as some aspects

70
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of movement, linking, and decomposition of links. This ignores a key feature of natural

chemistry that could help our AChems to exhibit more complex behaviour.

Different AChems take different approaches in terms of determinism. Some systems,

such as Hutton (2002), always link particles that encounter each other and match a linking

rule. Young and Neshatian (2015) investigate different approaches by which reactants are

chosen for linking, but the linking is then deterministic. There are a few AChems that have

probabilistic processes, such as the selection of parameter sets in a recipe in SwarmChem

(Sayama, 2009), or probabilistic movement in the 2D membrane AChem (Ono and Ikegami,

2001).

Here we focus on our Jordan Algebra Artificial Chemistry, JA AChem (Chapter 5,

(Faulkner et al., 2016)), which is a subsymbolic AChem, one where various particle and

linking properties emerge from the underlying structure of the particles (Faulkner et al.,

2017). Subsymbolic AChems may include stochastic processes, such as stochastic decay in

Stringmol (Hickinbotham et al., 2010; Clark et al., 2017), but others are deterministic, for

example RBN world (Faulconbridge et al., 2010, 2009) and Spiky-RBN (Krastev et al., 2016,

2017).

6.2 Jordan Algebra AChems

JA AChem used the matrices’ eigenvalues and vectors to define a few probabilistically driven

processes, including particle linking and decomposition. In Faulkner et al. (2016), and the

previous chapter, the design of these probabilistic processes is chosen in a somewhat arbitrary

manner. Here we explore how different choices for these processes may be exploited to “tune”

our system in different ways and towards different behaviours, while still keeping an open

mind about systemic properties.

6.2.1 Probability Spawning Functions Options

There are many psfs we can use to determine linking probability. For example, a link would

always be formed using the constant function c(x) = 1.

There are many aspects of such functions that we can consider. Here we focus on three:

total area (under function between 0 and 3), position of peak, and size of tail. To help us

identify effects on the system caused by each of these aspects, we start with a basic set of

functions that cover a variety of different possibilities for each of these. Our basic functions

are shown in Figure 6.1.

Consider the uniform function (Figure 6.1a):

u(x) = 0.15 (6.1)

Here we have an infinite area overall, no peak, and a very large tail. All links, regardless of

the eigenvalues, have a probability of 0.15. This particular value is chosen to give it a similar
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(a) (b) (c) (d)

(e)

Figure 6.1: Plots of the five basic functions used in JA AChem. (a) uniform u(x); (b) Gaus-
sian g(x); (c) Maxwell-Boltzmann b(x); (d) Energy Maxwell-Boltzmann k(x); (e) triangle
t(x).

area as the other basic functions within our main zone of interest. The other functions that

extend to + inf all converge to 0. The zone we are mainly interested in here is x ∈ [0, 3].

Consider the Gaussian distribution (Figure 6.1b), as used in chapter 5 (sAiBj ) and

Faulkner et al. (2016):

gσ(x) =
1√

2σ2π
exp
−x2

2σ2
(6.2)

Here we take σ = 1, so use g = g1. Our prior use of the unit standard deviation Gaussian

explains the choice of constants in the other functions here, to roughly match area and cutoff.

This function has a peak at zero, so near equal eigenvalues have the highest probability of

linking. It has a slightly larger area in our zone of interest, x ∈ [0, 3], than does u. It has

a long but quickly diminishing tail, so eigenvalue pairs with large differences can link, but

with a quickly decreasing probability.

Consider the Maxwell-Boltzmann velocity distribution: (Figure 6.1c):

ba(x) =

√
2

π

4x2

a3
exp
−4x2

2a2
(6.3)

Here we use b = b1.5. This has a similar area to g, but has a shifted peak. So linking is more

likely with pairs of eigenvalues that are similar but not the same.

Consider the alternative Maxwell-Boltzmann distribution, k = k0.23; this has a different

tail shape due to the change to the exponential. This requires different variables to match

the peak height and rough area of the other base functions. (Figure 6.1(d)):

ka(x) =

√
2

π

0.04x2

a3
exp
−0.2x

2a2
(6.4)

This has a fatter tail, to see the effect of a large tail and a shifted peak.

Finally, consider the triangle function, which we use to examine the separate effects of
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long tails and non-zero peaks (Figure 6.1e):

t(x) =


4
15x : 0 < x ≤ 3

2

4
15(3− x) : 3

2 < x ≤ 3

0 : 3 < x

(6.5)

This has a shifted peak at a similar position and height to b, but has no tail. We use it to

assess the effects of long tails. It is also the only function in this set whose slope is discon-

tinuous, which may allow us to assess the appropriateness of functions with discontinuous

derivatives for our purposes.

6.2.2 Psfs in linking in Jordan Algebra AChem

We test these psfs g, b, u, k, and t in our JA AChem (Faulkner et al., 2016), to investigate how

changes in peak and tail affect the behaviour of our system. Three probabilities contribute to

the overall probability of linking in JA AChem: Xcoll, a and s (and p which is a combination

of others).

The initial occurrence of a probability is when we select the list of reactants for our

link. We randomly sample with replacement from our well-mixed tank, using a uniform

distribution. After we sample the first two components, we have a probability for sampling

further reactants, to produce an n-tad Jordan product link. We continue to sample, for one

reactant at a time, with success probability Xcoll, until we fail. This gives a small but non-

zero probability for attempting links with more than two reactants. Here we consider this

to be part of the sampling of how our tank functions, rather than an aspect of the linking

node, and we set Xcoll = 0.2.

If we have more than two reactants in our link attempt, we take the reactants in sampling

order, and consider the linking probabilities between each neighbouring pair of reactants. The

minimum of these is taken as the linking probability of the overall link. So the probability

of success depends on the probability of the weakest link forming. For four reactants, this

is:

p(A,B,C,D) = min{p(A,B), p(B,C), p(C,D)} (6.6)

This linking probability p comprises two probability terms, combined here, and used

separately elsewhere. We relate these to two different analogies with natural chemistry. We

have the strength or potential strength, s, of the link, and the relative orientation, a, of the

particles.

The orientation probability is defined as:

a(A,B) = 1− (va · vb) + 1

2
(6.7)

where va · vb is the scalar (dot) product of the real parts of the two unit eigenvectors, this
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is again not taking into account sign so it matches with alignment. When the vectors are

parallel, a = 0; when they are anti-parallel, a = 1.

This orientation probability is used in two ways. It first defines which pair of eigenvalues

are used to calculate link strength. We select the pair of eigenvalues ea, eb (where ea is

one of the three eigenvalues of matrix A) such that their corresponding eigenvectors va,vb

maximise a. We can interpret this as the best aligned set of eigenvalues. The orientation

probability also contributes to the probability of the link actually occurring.

Once we have used a to select ea and eb, we calculate x = |ea − eb|. This value of x is

used to calculate s(A,B) = s(x), the strength of the link that the particles would form using

these eigenvalues. As well as its part in forming links, s is also the strength of the link once

formed, and is the probability of the link not decomposing on a decomposition attempt.

We define the probability of the link occurring to be:

p(A,B) = max{a(A,B), s(A,B)} (6.8)

So linking happens if the link will be strong or if the particles are particularly well aligned.

Here we compare the effect on the system’s behaviour when we use each of the above

functions, u, g, b, k, t, as s. For each function, we run 5 rounds of linking and decomposition

phases. We initialise the tank with 69 atomic particles. A linking phase performs a number

of linking attempts equal to the number of particles in the tank at the beginning of the phase.

For each linking attempt, we select a sample of particles from the tank. If the attempt is

successful, and if the resulting particle is a novel particle, it is added to the tank. The

reactants are not removed, allowing them to take part in further reactions. Hence the tank

contains one of each kind of atom, and one of each kind of composite particle made. This

particular system does not have mass conservation, as here the “tank” is just the collection

of possible particles found by the system so far. We have no interest here in the frequency

with which any particle is formed; our focus is on finding novel particles so only these are

added to the tank.

6.2.3 Psfs in decomposition in Jordan Algebra AChem

A decomposition phase performs a decomposition attempt on particle in the tank. If this

leads to any new particles, they are added to the end of the tank and we attempt to decom-

pose them in this phase. (We do not perform a decomposition phase after our final linking

phase due to computational memory limitations.)
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Function Area Particles

u 0.45 1331
g 0.49865 1796
b 0.499433 1938
k 0.715772 1852
t 0.6 1900

Table 6.1: The area under each of the probability spawning functions (integrated between 0
and 3), and the number of unique particles produced on running algorithm for 200 generations
including the 69 atoms.

6.3 Effects of psfs on JA AChem

6.3.1 Known effect: Speed and Area

The area under the psf directly relates to the general probability of any particular link

occurring. The larger the area the more links will occur and the stronger they will be. We

can see the area then as a sense of ‘speed’ in this system. If we do not change the shape of

the function but simply decrease its area, then we should see roughly the same behaviour. It

would be slowed down, as fewer links will form and decompose per generation. Due to this

we try to keep the area of our functions reasonably similar with in the zone of interest (here

taken to be x ∈ [0, 3]). We do not keep the areas exactly the same, preferring to have the

peak height, shape and position more equal across functions, e.g. matching triangle peak

height and span in t to peak height and span of zone of interest in b.

From the areas shown in Table 6.1 we can see that the functions’ varying areas have

similar numbers of particles produced in each system, allow for a sensible comparison of

results. It is important to note that Table 6.1 gives the area in our “zone of interest”,

x ∈ [0, 3]. The overall area of u is much larger than that of the other functions as it is

constant along the entire x axis while the other functions all tend to 0.

6.3.2 Looking for unknown effects

In this section we look at the influence of these functions on different properties of the

particles in our system. While we can collect data on many properties (such as total number

of atoms in particles, number of distinct atoms in particles, . . . ), we focus here on three

properties that show the most variation across the shape of the functions used. Other

properties vary primarily with the size of the system. Systems that generate more particles

tend to having bigger particles (ones with more atoms in them).

We provide graphical descriptions of these properties in the form of whiskered boxplots

overlaid (except in the case of strength which is on a logarithmic scale) with violin plots. We

use violin plots, so called for their shape, to show the distribution of density of points with in

the boxplots so we can see the modality of the distributions as well as spread and normality.
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The violin plot is shaped to be wider where there are more points in the distribution therefore

showing if the results are clustered centrally or in multiple groupings or if the values are

uniformly distributed. We also make use of the Vargha-Delaney A test (Vargha and Delaney,

2000) which determines the effect size for the difference in two distributions medians. This

is done using correction for the size of the original data sets. The A value gives a small

effect for values greater than 0.56, medium effects are greater than 0.64 and large effects are

greater than 0.71.

The three properties reported here are:

1. Largest Link: The largest number of particles involved in a single link within a

particle (a link is formed by an n-tad Jordan product involving n particles).

2. Strength: The product of the strengths of each link in the composite particle:

Ps =
∑
l∈P

ls (6.9)

Atomic particles have no strength as they have no link, and are excluded from the

strength statistics

3. Self-synthesis: The number of times in each particle there is a link linking two

particles (atoms or composites) of the same kind

We consider how two features of our psfs may have affected each of these properties in

our system:

(a) Peak position: In our base functions there are three different sorts of peak positions:

none (u), zero (g) and non-zero (b,k and t).

(b) Tail size/length: We have four different sorts of tail in our functions: constant large

(u), constant zero (t), small (g, b, O(exp−x2)) and large (k, O(exp−x)).

In comparing these functions we are looking for how their features may be contributing to

“interesting” distributions of particle properties. Here we are looking for wide distributions

of values, preferably with outliers and a wide interquartile range. There should be a strong

sense of median or common particle properties, but there should also be outliers and less

common particles that stretch over a large range, indicating a rich variation in particles

produced.

6.3.2.1 Largest Link

We start with how our functions affect the ability of our system to form larger (and possibly

more complex) particles by looking at the largest links (Figure 6.2(a)).

Given a null hypothesis that psf has no effect on the number of particles in the largest

link, we calculate the p-values, using the ranksum test, and the effect size, using the A
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a) b)

c)

Figure 6.2: How particle properties vary with probability spawning function: (a) largest
number of components in a link in each particle; (b) log-strength of the particles; (c) number
of occurrences of self-synthesis in each particle.

g b t k

u 0 0.64 0 0.64 0 0.58 0 0.67
g - - 0.07 - 0 0.67 0.003 0.53
b - - - - 0 0.65 0.835 -
t - - - - - - 0 0.69

Table 6.2: p-values (left column) and effect sizes (right column) for size of largest link. Sta-
tistically significant p values (p < 0.05) are shown in bold; effect size A values are calculated
for these; medium or larger effect sizes (0.64 ≤ A) are shown in bold.

test (Vargha and Delaney, 2000), between the tanks produced with each function (Table

6.2). These results split our functions into two groups whose distributions only have small

differences: u and t; and g, b and k

For g, b and k there is very little spread and almost all particles have a maximum of 4

components in a link, but a few have as many as 7 or 8. Looking at u and t we see they

have larger interquartile ranges, but spanning a different range of values: half of the particles

produced with u have a largest link size of 3–4, and half of those produced with t have 4–6.

These groupings do match any particular peak position but do group to separate our

constant and non-constant tails.
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6.3.2.2 Strength

Since many of our particles have very small strength we use a log scale to make the distri-

butions clearer (Figure 6.2b). All of u, g, b and k have skewed distribution, with the largest

range being with k.

Notably t has a near non-existent distribution. Most of the particles in the t system have

zero strength, and so a probability of 1 of decomposing. This is due to the constant zero

tail. The selection of eigenvalues is based on alignment (see earlier), not on the similarity in

value. This means links can occur with large differences in values, that is, large values of x.

This results in low strength with long tails, but zero strength with no tail. So the tails on

our distributions are important for being able to generate stable particles.

There is no indication that peak position has any influence on strength in the system.

6.3.2.3 Self-synthesis

There may be an advantage to a lack of tail. All the distributions have at least one instance of

self-synthesis, but a median of zero (Figure 6.2c). The only function that produces significant

self-synthesis is t.

The u, g and k functions also have at least one instance of a particle with more than one

link with self-synthesis.

Again there is no connection to peak position, but there is a strong indication that having

no tail affects this property.

6.4 Variations of functions for tuning and testing effects

In order to further investigate the above results we need a larger number of functions with

different features. We now further test the effect of constant zero tails, and of tail size in

general. We look at four sets of variations on our existing functions:

1. b: b1.5 (original), and b1, b2. We also abuse notation with bc the peicewise function

formed of b1.5 cut off at 3 with equation:

bc =

{
b1.5 x < 3

0 otherwise
(6.10)

2. k: k0.23 (original), and k0.13, k0.33. We also abuse notation with kc the peicewise

function formed of k0.23 cut off at 3 with equation:

kc =

{
k0.23 x < 3

0 otherwise
(6.11)

3. g: g1 (original), and g0.5, g1.5
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a) b) c) d)

Figure 6.3: Sets of variations of base functions: (a) four variants of b; (b) four variants of k;
(c) three variants of g; (d) four variants of g based of on the shifted peak variant: gs.

a) b)

Figure 6.4: Distribution of largest link sizes with: (a) variants of b and k; (b) variants of g

4. shifted gaussian, gs: gs0.5, gs1, gs1.5, where

gsσ =
1√

2σ2π
exp

(x− 1)2

2σ2
(6.12)

The areas under these curves are not particularly similar, however any area effects caused

by this difference should be identifiable across all four sets of variations so normalisation is

not required. By allowing the areas to change we also allow ourselves to investigate if there

are any area effects not previously noted.

6.4.1 Largest Link

Although the results in Figure 6.4 show statistically significant differences (p < 0.05), these

all have small effect size (A < 0.61).

So the size of the largest link in each particle is not affected by the area under the curve,

its steepness, the position and height of its peak or the size of its tail. This means there

must be some other property involved that effects the size of the largest links. The largest

effect size between any pair of variations is between gs and gs0.5, with A = 0.61.

6.4.2 Strength

The results shown in Figure 6.5 show near non-existence of variation in the strength values

of both bc, with the cut-off, and b1, the larger area b function. This agrees with the previous

result: bc has no tail, and, because of the increased steepness of the curve in b1, it has much
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a) b)

Figure 6.5: Strengths of particles for: (a) variants of b and k, (b) variants of g

less of a tail than the other functions.

We can also see that b2, with its larger tail, has a larger range of strengths than the base

b functions. This further supports the idea that a longer tail results in a wider variety of

link strengths.

When we look at the k variants we see kc and k.13, the smaller of the functions, both have

low variation in strength. However k.33 has a larger tail than k—much like b2 and b—but a

smaller range of strengths, suggesting the spread of strengths is not simply correlated with

tail size.

Our g variants further break our established pattern. g0.5 has the smallest tail of the g

variants, but the largest range of values. g1.5 with the largest tail has the smallest range of

strength values. This is contrary to our results look at just the base functions but agrees

with our k results. The b and g functions have similar tails, so clearly something other than

the tail has a strong effect on strength.

The large range found on the g0.5 strengths might be connected to the larger range of

values the function has.g0.5 has a higher peak than g and a larger range of strengths. However

b1 also has a higher peak but has a very limited range of values.

The strength distributions of our particles seem to be more complicated than a simple

aspect of tails or peak position, though in some cases there is still a correlation.

6.4.3 Self-synthesis

The self-synthesis results are shown in Figure 6.6. These show another effect of the lack of

tail: an increased rate of self-synthesis. The only variant of b with any range of self-synthesis

is bc, which also has far more outliers than in the other functions.

The k variations seem to be anomolous until we consider the overall shape of k.13. This

function has a very small area and a very long tail meaning that because it has a very small

tail that starts early it acts more like a function with no tail than our other functions. On

the otherhand kc has a very little self-synthesis. The reasons for this are not clear but it is

the only function with a high value before the cut-off which may be influencing this.

Parameter changes have very little effect on self-synthesis in g functions, Figure 6.6b.
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a) b)

Figure 6.6: Occurrences of Self-synthesis with: (a) variants of b and k, (b) variants of g

6.5 Combinations of psfs

In natural chemistry multiple factors influence the probability of different reactions. We

already have a set of functions for our system that use the state of the system to yield a

probability for some event or reaction. The system state space Σ can encompass anything

from environmental variables, spatial positioning in the system, to the attributes of the

particles involved, and more. We can develop probability spawning functions to reflect the

effect of different parts of the system on the probability of linking.

For example, we concluded that to have strong links, requires the probability function to

have a long tail, but that functions without tails exhibit a better amount of self-synthesis.

These are both properties of the specific AChem (Faulkner et al., 2016) and the chosen

probability functions. It would be a step towards more control of our systems if we could

combine such probability functions that we know to produce certain effects in order to give

us both behaviours, rather than have to hand-craft new functions. To do so we need a

controlled way to combine our probability functions.

Following our philosophy of using tried-and-tested algebraic approaches for defining

AChems (Faulkner et al., 2016) we use a semi-ring algebraic structure to do so. Here we define

two operators that can be used to combine probability spawning functions, and demonstrate

their effect on two different AChems, the Non-Constructive Explicit Chemistry (Dittrich

et al., 2001), and our Jordan Algebra Artificial Chemistry (JA AChem) (Faulkner et al.,

2016).

6.5.1 Semi-rings

A ring is an algebraic generalisation of integer addition and multiplication, with their dis-

tributive and associative properties. A semi-ring does not require the additive operator to

have an inverse. Formally, a semi-ring (R,+, •), is a set R with two binary operators, referred

to as the semi-ring’s addition and multiplication, that satisfies the following axioms:



CHAPTER 6. MODIFYING ACHEMS WITH PSFS 82

• Addition forms a commutative monoid:

∀a, b ∈ R . a+ b ∈ R (6.13)

∀a, b, c ∈ R . (a+ b) + c = a+ (b+ c) (6.14)

∃0 ∈ R . ∀a ∈ R . a+ 0 = 0 + a = a (6.15)

∀a, b ∈ R . a+ b = b+ a (6.16)

• Multiplication forms a monoid:

∀a, b ∈ R . a • b ∈ R (6.17)

∀a, b, c ∈ R . (a • b) • c = a • (b • c) (6.18)

∃1 ∈ R . ∀a ∈ R . a • 1 = 1 • a = a (6.19)

• Annihilation: 0 annihilates over •

∀a ∈ R . 0 • a = a • 0 = 0 (6.20)

• Distributivity: • distributes over +

∀a, b, c ∈ R . a • (b+ c) = (a • b) + (a • c) (6.21)

6.5.2 Semi-ring of probability spawning functions

We take the set to be the set of probability functions F. We need to find binary operators

that combine two probability functions to produce a further function, that obey the semi-ring

axioms. For usable probability functions we require our operators to have further desirable

properties.

We use a semi-ring formalism to allow us to work with multiple operators in a structure

that allows us to combine the results of our operators. While this would be possible without

resorting to a semi-ring, we could not then reach conclusions about the resultant combined

probability function, and could not simplify using associativity and commutativity, without

case-by-case proofs.

Closure (eqns.6.13,6.17) means that our binary operators must produce a probability

function, with values in the interval [0, 1]. This limits our options of binary operators; in

particular it disallows normal addition. It does not disallow normal multiplication: f(x) •
g(x) = f(x)g(x). However, we avoid it here: multiplication in this context rapidly decreases

overall probability of linking the more it is used. This is not a desirable property in many

cases, so we choose instead binary operators with less constrictive effects on our resulting

probabilities.

Two simple choices for binary operators are min and max over functions. Both of these
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meet the requirements of our axioms. In these cases the identities are the constant functions:

Idmin = Idmin(x) = 1 (6.22)

Idmax = Idmax(x) = 0 (6.23)

Since our functions are limited to producing values between 0 and 1 the min functions Id

with be constant as 1 as nothing can be larger than this meaning that taking the minimum

for this function and any other will always given the value of the other function. Similarly

for the max function there can not be a value lower than 0 so the max operator will only

return the value of the Id function if the other function also equals 0.

Both these operators meet the requirements for the addition operator. They also meet

the requirements for being each other’s multiplication operator, as min and max distribute

over each other, and their identities annihilate each other:

max(Idmin(x), f(x)) = max(1, f(x)) = 1 = Idmin (6.24)

min(Idmax(x), f(x)) = min(0, f(x)) = 0 = Idmax (6.25)

Proof of distribution is not provided here; it requires case by case evaluation of the

different ordering of the function values (e.g. f(x) < g(x) < h(x)); a version of it can be

found in ProofWiki (2011).

These two functions form a semi-ring over the probability spawning functions. We can

use combinations of probability functions in many ways in different artificial chemistries.

6.5.3 Example

As an example of how these semi-rings can be used, we consider the Non-constructive Explicit

Chemistry (Dittrich et al., 2001). This system has deterministic reactions. If two particles

are chosen for which there is a reaction rule in the system, then the reaction takes place.

The set of particles of the system are {A,B}. The reaction rules for this system are:

r1 :A+A→ A+A+B

r2 :A+B → A+B +B

r3 :B +A→ B +A+B

r4 :B +B → B +B +A

The newly produced particle randomly replaces an existing particle in the tank, so the

total number of particles is conserved. We start in all cases with an equal number of A and

B particles, 500 of each.

In this AChem, the level of B increases (as 3 of the 4 rules add a B) and then stabilises
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Figure 6.7: Original behaviour of Non-Constructive Explicit Chemistry (Dittrich et al., 2001)
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Figure 6.8: Behaviour of Non-Constructive Explicit Chemistry with (a) pt; and (b) pc

and holds steady (with some noise). We can see the behaviour in this system in Figure 6.7.

This stabilises completely over time. It can be described by differential equations, meaning

we know from the start where and how this system is going.

We now perturb and change the behaviour of the system without changing the linking

rules, just their probabilities. To do this we include a probability of the reaction happening

based on two environmental variables: time (t) and concentration of the particles cB (con-

centration of B). We have time measured in reactions and a time decay type probability

function. We also have the concentration of B particles in the system.

pt(t, cB) = e−t/1000 (6.26)

pc(t, cB) = cB (6.27)

Using these two functions does change and perturb the system, Figure 6.8. Using pt

causes the system to stabilise more, and using pc slows the upward trend of B. However,

neither of these systems are very different from the original system, though pt does change

the stabilisation point for B: with the original pc, B tends towards 650 while with pt it

stabilises closer to 600.
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Figure 6.9: Behaviour of Non-Constructive Explicit Chemistry with (a) max(pt, pc) and (b)
min(pt, pc)

We could experiment with other functions and see what they do to change this system.

However, with the semi-ring approach described earlier, we can instead combine these ex-

isting functions to see if a combination of them changes the behaviour in interesting ways.

And we do not need to prove that the resulting functions are probability functions: they are

by construction. Our two combined functions, using our operators, are:

max(pt, pc) (6.28)

min(pt, pc) (6.29)

These give us different behaviours from the uncombined functions, Figure 6.9. The max

function performs similarly to our original functions, and stabilises a little faster than the

original system. Not much happens in the min system: it stabilises much closer to the

original 500 than to the 650 that most of the other systems head towards.

6.5.4 Combinations in JA AChem

The Non-Constructive Explicit Chemistry is too simplistic to tune much further than this

as there is a limit to the possible behaviours of a system with this particular rule set. Thus

we now move to testing this method of tailoring AChem behaviour on the strength versus

self-synthesis problem of Jordan Algebra AChem.

We use two of the probability functions investigated in Faulkner et al. (2017).

b(x) =

√
2

π

4x2 exp −4x2

2a2

a3
(6.30)

t(x) =


4
15x : 0 < x ≤ 3

2

4
15(3− x) : 3

2 < x ≤ 3

0 : 3 < x

(6.31)
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Figure 6.10: Base functions from Faulkner et al. (2017)
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Figure 6.11: Comparison of (a) strength and (b) self-synthesis with different functions
(Faulkner et al., 2017).

These two functions are shown in Figure 6.10. Faulkner et al. (2017) find that function

b, based on the Maxwell-Boltzmann velocity function, produces a large range of particle

link strengths and next to no self-synthesis, while the triangular function, t, has a near non-

existent range of strengths but a large amount and range of self-synthesis. (See that work for

the details of the algorithm used to produce the data; in brief, data is gathered after many

reaction and decomposition attempts have been made in a well-mixed reactor.) Faulkner

et al. (2017) conjecture that both of these effects are controlled by the function’s tail. In the

case of self-synthesis the behaviour is caused by the lack of tail, while the range of strengths

is related to the large tail on b.

Faulkner et al. (2017) consider an alternative function to test that conjecture, by using

a version of b with a cut-off at x = 3, bc, mirroring the lack of tail of t. This exhibits the

expected features of t, with a limited strength range with an increase in range and amount

of self-synthesis, Figure 6.11. While bc does provide us with an increased range of strengths

and self-synthesis occurrences, nevertheless the range of strengths observed are still very

constricted compared to the original b function.

Instead of arbitrarily cutting off the tail as in (Faulkner et al., 2017), we can now use our

semi-ring approach to combine the original functions to get new functions with potentially
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Figure 6.12: Comparisons of strength and self-synthesis with different functions

both desirable behaviours. Figure 6.10 shows that in the tail region (3 < x), min(b, t) = t,

so no tail, whereas max(b, t) = b, with its tail.

If the conjecture is correct and the tail is responsible for both features in opposing ways,

then we need a way to have a tail and no tail. This is possible to some degree if we switch

between the two functions at different intervals of x in a regular manner. We introduce two

square wave probability functions.

s0(x) =

 1 : 2n− 1 < x ≤ 2n

0 : 2n < x ≤ 2n+ 1
(6.32)

s1(x) = 1− s0(x) (6.33)

If we take the min(s1, b) and min(s0, t), then we get the value of b when s1 is 1, that is

in intervals starting with an even value, and we get the value of t where s0 is 1, in intervals

starting with an odd value. We use max to combine these: s = max(min(b, s1),min(t, s0)).

We see in Figure 6.13 that s is non-zero between 0 and 4, then as it continues onwards it

alternates between 0 from the t functions and the very small tail values of b.

The results for s are also are shown in Figure 6.12 (rightmost boxplot). We still do not

have a large range of strengths, but we do have a larger range of self-synthesis than before,
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Figure 6.13: Developing piecewise functions using square waves s0 and s1, and the min and
max functions. The resulting function s is shown; it is zero between 3 and 4, but then has
a small tail again between 4 and 5.

even if they are outliers. This function both does and does not have a tail, to some degree,

meaning it may be correct that the tail controls both effects.

Clearly more investigation is needed to discover the precise effects of different features.

However, we now have a formalism within which to perform such investigations in a system-

atic manner.

Exploiting the semi-ring algebraic structure has allowed us to consider combinations of

existing probability functions. This provides us with the means to generate a large number

of possible probability functions generated from a small set of base functions.

We have used the semi-ring approach to test our conjecture from (Faulkner et al., 2017)

that the tail of the probability function used for link formation in Jordan Algebra AChems

influences the range of both strength and self-synthesis in opposing manners. As part of this

test we have developed the mathematical basis for a piecewise function to be formed using

the semi-ring. This means we can work with piecewise functions without having to check

the resultant is still a valid probability function.

This has allowed us to investigate the conjecture in a way that we were not able to in

(Faulkner et al., 2017). It is, of course, possible to define the piecewise function s from

scratch, but what the semi-ring approach gives us is that we can always form a valid proba-

bility function as a piecewise combination of existing probability functions.

This means that in later systems we may be able to automatically generate probability

functions, or change them in response to changing state variables. Using the semi-ring

structure given here we can do this in multiple ways without having to test validity.

6.6 Summary

We have developed a set of probability spawning functions for use in linking in Jordan

Algebra Artificial Chemistries. These have covered a wide range of options in terms of peak

height, area, tail length, and height. These have produced various and different effects in
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our system. Some of these effects correlate with particular features, such as the tail cut off

seeming to be connected to an increase in self-synthesis.

We have also found that there is a lot of complexity in our system. We see that different

sets of functions can have very different effects. There are complex interactions between our

psfs and the rest of our system.

6.7 Further Work

Here we have investigated only one of the probabilities used in our AChem: that used to give

the link strength. There are other probabilities that should be similarly investigated, and

potentially tuned, to give different behaviours. For example, parameters to the functions,

such as a and σ, could be coupled to states of the system, such as temperature, to allow the

probabilities to change with the system state.

The orientation probability pa (eqn.6.7) is a candidate for variation. It has a role in

both the overall linking probability pl, and, crucially, in the choice of pair of eigenvalues.

Currently we chose the eigenvalues and vectors that maximise pa. We might instead chose

by minimising pa, or weight the choice in a less deterministic manner. Allowing the system,

at times, to use less optimally “aligned” eigenvalue pairs may produce weaker or stronger

bonds between the same particles. This would allow hard-to-form but then very strong links

to occur. It would also provide weaker versions of particles. Because of their weaker links,

these may be better at enabling catalysis by linking to further particles before decomposing.

Currently pl uses the maximum of its two probabilities. Again, a different choice, such as

the minimum, or some other combination of the two functions, would give different system

behaviour.

We see there are many potential ways of combining probabilities. Further work will

investigate how algebraically-defined combinations of psfs could be used to give combined

properties that allow finer tuning of our system, for example, taking the maximum of the

high-peaked g0.5 and the large-tailed b2 to give both properties.



Chapter 7

Swarm Chemistry

In this chapter we modularise the existing Swarm Chemistry system. We describe our

variant of swarm chemistry using MetaChem notation. We discuss the advantages of

this description and implementation before it is used in later chapters.

So far we have developed a framework for describing artificial chemistries to replace the

limited (S,R,A) format. However all the chemistries we have described in the new framework

so far were built originally within (S,R,A).

In this chapter we look at describing Swarm Chemistry (Sayama, 2009), a system built

to explore beyond the (S,R,A) format. Despite not having a comfortable description in

the (S,R,A) framework, SwarmChem is widely known and accepted as an Artificial Chem-

istry. It is therefore important to show that while (S,R,A) may struggle with SwarmChem,

MetaChem comfortably describes it. In the description of SwarmChem in MetaChem we

start to see that SwarmChem is not some borderline AChem some have thought it. It has

many close similarities to other more classical AChems when we consider its controls and

algorithms, rather than simply its lack of physical connections.

Swarm Chemistry does not fit in the (S,R,A) format because it does not have direct

interactions between particles. The individuals in SwarmChem, often referred to as boids

or agents, interact by each boid changing its own velocity based on the local positions and

velocities of its neighbours. This involves no knowledge of the neighbours’ parameters, just

observation of velocity and position. This gives the effect of swarming or flocking like that

seen in birds. Different parameters sets produce different swarms in terms of the density of

the swarm and how it moves. In SwarmChem boids with different parameters are allowed

to mix as in Figure 7.1.

SwarmChem is a framework for a class of artificial chemistries. Its intention is to explore

how higher level statistical rules for chemical systems emerge from lower level local interac-

tions. It does this with the basic concepts of Reynolds (1987)’s Boids. The key change it

makes to the boids system is to assign parameter sets to individual boids rather than having

90
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Figure 7.1: Pulsating Eye swarms contributed to SwarmChem by Benjamin Bush us-
ing recipe: 102 * (293.86, 17.06, 38.3, 0.81, 0.05, 0.83, 0.2, 0.9) 124 * (226.18, 19.27,
24.57, 0.95, 0.84, 13.09, 0.07, 0.8) 74 * (49.98, 8.44, 4.39, 0.92, 0.14, 96.92, 0.13, 0.51),
http://bingweb.binghamton.edu/ sayama/SwarmChemistry/. An example of interesting 2D
organisation using 3 different parameter sets for three hundred boids.

them being global fixed values. This allows one to consider interaction of heterogeneous

swarms and the patterns these can form.

Flocking in both boids and swarm chemistry works as follows: at each time step for each

boid we first work out the neighbourhood of the boid. We then steer the boid towards the

centre of the group of boids; this is called cohesion. We then steer toward the average heading

of the neighbouring boids; this is called alignment. We then steer to prevent crowding,

moving to increase the seperation between boids. Finally we check the pace of the boid

towards its normal speed and move the boid. This is done on all boids at once so we use the

information of position and velocity from the current time step to calculate the next. See

Figure 7.2 for a visual description.

This framework has been extended to investigate open-ended evolution. This is done

through the addition to the system of recipes, which are a set of parameter values. Each

boid is currently operating based on a particular recipe, but in the extended versions might

carry many recipes (Sayama, 2010b,a, 2011). Recipes, or the weightings used to choose the

active recipe, can to exchanged and changed by other boids. This can be done based on

collision or other factors.

This allows boids to change and optimise to maintain structures giving us evolution in the

system if we consider a boid to be a child of itself when its parameters change. More recently

we have seen this go a step forward by identifying these larger structures and considering

them as their own entities.

Another extension has been to place the boids in the 3 dimensional environment (Sayama,

2012).
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Figure 7.2: A pictorial description of flocking in Reynolds boids and swarm chemistry. The
red disk shows R the perception distance of our boid.

7.1 Swarm Chemistry

SwarmChem boids have 8 parameters, Table 7.1. These are used to control the flocking, so

the agents move in group behaviours and do not crash about.

These parameters are used to define the properties of how to update each boid (i). The

algorithm elements for the update that we use are the position of the boid (xi), velocity(vi),

and acceleration(ai). We also use the properties of the boids neighbours, N , in the perception

range including the average velocity (v̄), position(x̄) and separation(s̄).

v̄ = Σj∈N vj/|N | (7.1)

x̄ = Σj∈N xj/|N | (7.2)

s̄ = Σj∈N (xi − xj)/|xi − xj |2 (7.3)

We can then undergo a series of processes described by the following equations: straying,

cohesion, alignment, separation, whim, acceleration, prohibit overspeeding and pacekeeping.

These are applied to each boid to give a new velocity, v∗i
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Parameter min max Description

R 0 300 Radius of local perception radius
vn 0 20 Normal speed
vm 0 40 Maximum speed
c1 0 1 Strength of cohesive force
c2 0 1 Strength of alligning force
c3 0 100 Strength of seperating force
c4 0 0.5 Probability of random steering
c5 0 1 Tendency of pacekeeping

Table 7.1: Swarm Chemistry parameters controlling flocking and their minimum and maxi-
mums. These are set individually for each agent rather than globally.

Straying: ai < −(r±q, r±q) (7.4)

where r±q is a small random change to the acceleration with random direction. Straying is

our random walk option otherwise:

Cohesion: ai < −c1(x̄− xi) (7.5)

Alignment: ai < −ai + c2(v̄ − vi) (7.6)

Separation: ai < −ai + c3s̄ (7.7)

Whim: ai < −ai + (r±q, r±q) (7.8)

Whetherweflockedorstrayedweperformtheremainingactions.Acceleration: v∗i = vi+ai

(7.9)

Where v∗i is the new velocity leaving vi as the old.

Prohibit Overspeeding: v∗i = min(vm/|v∗i |, 1) • v∗i (7.10)

Pacekeeping: v∗i = c5(vn/|v∗i | • v∗i ) + (1− c5)v∗i (7.11)

Once we have calculated a new velocity for all our boids we update their velocity and

apply it to update the position.

7.2 Description

Here we work with our own variant of SwarmChem. It has previously been presented in our

work with nested chemistries which can be found in chapter 8. Here we will describe it in

more detail with a full macro graph and micro graph of the update process, an expansion of

the flock action.

We load the initial parameter set and randomly position our boids using s:Load Parame-
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Figure 7.3: Macro level Swarm Chemistry graph. It includes the timing counter o:generation,
flocking and moving as well as collisions and the logging sampler to track the chemistry.

ters. We then iterate our clock with o:Generation. This “tick” is part of our discrete timing

system that is consistent with all current swarm systems. This is very evident in the rest of

the macro system as well.

We use the s:Copy to Previous sampler to copy the current generation to the tank

marking it as the previous generation. This gives the current position of all the boids

and their parameters. These will remain unchanged as we calculate the next generation in

a:Flock. a:Flock is where the update occurs, applied to each boid in turn and following the

classic boid set of effects. This is expanded upon in Section 7.3.

We then move all our boids based on their parameters and currently facings and velocities

with a:Move. This again is common to all swarm chemistries. As part of our variant we then

check for collisions (o:Collisions) and record them in V:Collisions. This then allows us to

update our parameter sets which are changed by collision. In our variant of swarm chemistry

we exchange a random number of parameters when a collision occurs. This is different to the

weighted recipe method used else where. It also means that collisions in our system are “no

fault” in that both boids are equally changed. In other versions one boid is dominant in the

collision and enforces its recipe on the other. There is a small amount of rationalization in

our version to prevent trading normal or max parameters if it would mean that our normal

would exceed our max.

Finally we complete the loop by logging the previous generation to external storage and

clearing the tank ready for the current generation to be copied in. This ends our macro

algorithm which then loops back on itself to the start.

7.3 Flocking

The flocking action in this system contains most of the activity of the system so in this

section we expand it in a micro level graph, Figure 7.4.

Here we see the break down of the graph into the different transition functions looping

over the entire set. In some sense this is actually a large number of action nodes and all the
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transition functions occur each time.

7.3.1 read()

We start by reading various individuals into different tanks. First we randomly read a single

boid from the current set in S:n for updating. We then read out all the neighbours of this

boid, defined by its perception distance, to speed up analysis. Finally we use an observer to

generate (v̄), (x̄) and (s̄) of the boids in the neighbourhood. This gives us a full set of values

for the rest of the process.

7.3.2 check()

This check not really a complete check; it never exits the function, but it does decide the

actual process of the function. It makes a choice between a random walk and normal flocking

behaviour based on the number of neighbours. If |N | > 0 then flocking else a random walk.

7.3.3 pull()

It is at this stage that we remove the selected boid from the current generation. This is done

at this stage regardless of which choice has been made. It would be possible to do this earlier

but then we would be breaking with the transition function format. This is not always an

issue but cannot correctly then be summarised into a single node.

7.3.4 process()

In the lower case processing consists of a random walk, so the boid sets itself with a random

velocity as shown in Equation 7.4.

In the case of flocking with neighbours four actions are needed from the formulae given

previously. We implement them in the following manner a:Cohesion implements Equation

7.5, then a:Alignment Equation 7.6, followed by a:Separation and Equation 7.7. Finally

a:Whim implements 7.8 which keeps the system from behaving too predictably.

Finally our branched systems rejoin and our remaining Equations 7.9-7.11 are applied in

a:Pacekeeping is applied. The intent here is to prevent boids from constantly increasing in

speed by modifying their speed back towards their normal velocity.

7.3.5 push()

Finally having finished processing we push the boid to a different sample to track the boids

which have already been updated. We then check to loop based on if the original generation

sample has been emptied yet. Finally when we are finished looping we push the content of

our new sample to the old sample so that it is available outside the flock function.

Note that at no point within this function do we update velocity, this is done along with

position in the outer a:Move node.
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7.4 Advantages for SwarmChem of MetaChem representa-

tion

This modularisation has the potential to seem overkill for SwarmChem. The system de-

scribed here has very little difference from basic versions of the chemistry and next to no

advantage as a system on its own. The advantage to this redescription and reimplementation

lies in the modularity through MetaChem itself. This holds advantages in three areas: vari-

ation, extension and analysis. The first is done through the modularity and the last allows

the potential for eventually developing this into a self-reflective system.

7.4.1 Modularity

This is the simplest advantage. There are already at least 5 different methods for resolving

collisions in Swarm Chemistry including the method given here. In the modular system these

can be easily interchanged. With little variation to the rest of the graph, a decision could

be added to allow different collision methods to be used in a single system.

Other aspects could also be swapped out to create new systems, such as the addition of

an event cycle that could flow new boids into the system and/or drain existing boids from

the system. Energy or temperature effects could be added through modification of only a

minimum of nodes and addition of new nodes, keeping coding required to a minimum.

Such modular design can help speed up development of new systems and allow the de-

signer to focus on the new features without concern for maintenance of back compatibility

and comparison, as long as their logging and analysis nodes (normally samplers and ob-

servers) remain unchanged.

7.4.2 Extension

We can also now extend beyond SwarmChem alone. With this MetaChem implementation

we can link this chemistry with others to create more complex multipart systems. This is

discussed more in the next chapter.

As well as the hierarchical nested chemistry we present in the next chapter, other options

are possible. For example, SwarmChem could be used as a basis for a larger chemistry in

which the swarm is the subsymbolic structure for larger particles. We could join it to another

chemistry such that the boids were paired with particles of another sort, and through the

other chemistry’s rule set it would become possible for the joint particles to form elastic or

rigid links. We could simply have SwarmChem occupy the same space as another chemistry

and introduce completely new interaction rules between the two species of particles.

We could even extend the current work on analysis of SwarmChem for higher level or-

ganisms to a form of swarm chemistry within swarm chemistry. All of this can now be done

with a minimum of re-implementation because of the common language and structure of our

MetaChem.
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7.4.3 Self-reflective SwarmChem

We briefly mentioned earlier (Section 4.4) the concept of the current static form of MetaChem

being the first in a process that could eventually develop dynamic graph MetaChems and

evolving MetaChems.

In terms of SwarmChem, in the first phase we would be able to produce swarm chemsitries

that could change at run time. This could be used to let them assess their own organisms

and build a population for a higher level chemistry that it could then trigger at the correct

moment. A designer would still have to preempt the development of a broad system and

provide the rule set and nodes for the system to build these new objects when needed.

The second phase takes the next step beyond this, and would allows swarm chemistry

to create the nodes and rules it needs to change itself and create a new chemistry. It could

introduce and remove elements as needed to reach a goal set by the designer or simply to

explore the space of artificial chemistries.



Chapter 8

NestedChem

We introduce a modularisation of artificial chemistries (AChems). This allows us to define

a standard linking method between AChems. We illustrate the approach with a system

that nests a Jordan Algebra AChem (JA AChem) inside agents of SwarmChem, and show

how our modular approach allows us to define and experiment with multiple variants in a

standard manner. Potential for future formalisation is discussed.

8.1 Introduction

Sub-symbolic artificial chemistries (AChems) (Faulconbridge et al., 2009; Faulconbridge,

2011; Faulkner et al., 2018) are generally AChems whose atoms and particles have inter-

nal structure that defines their behaviour. These systems so far have been analogous in their

behaviour to natural chemistry viewed at the level of atoms and molecules.

Many other AChems work to reflect the properties of chemistry at the level of cells

(Madina et al., 2003; Hutton, 2007) or chemical reaction systems (Soula, 2016). In natural

chemistry these different levels are closely related: cells contain chemical reaction systems,

and chemical reaction systems are based on individual particle and atom interactions. While

attempts have been made to bridge the gaps between such levels in individual systems (Liu,

2018), so far the systems are very simple and lacking in more complex features.

We propose to take advantage of feature-rich existing AChems by combining them to give

a system that can span different levels of activity and behaviour in a single AChem system.

We demonstrate this approach through our own Jordan Algebra Artificial Chemistry (JA

AChem) (Faulkner et al., 2016, 2017) and Sayama’s SwarmChem (Sayama, 2009, 2010b,

2011, 2018b).

JA AChem particles are algebraic objects. It can form particles with complex structures.

It is a sub-symbolic system that has probabilistic linking and decomposition. So far this

system has been aspatial, working on a well-mixed tank model in which all particles can link

with each other.

SwarmChem is based on Reynolds’ Boids (Reynolds, 1987). Its particles or agents move

99
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Figure 8.1: Communication link between first AChem (blue) and the second AChem (pink).
Solid arrows show control flow, dashed arrows show information flow. The observer node
observes the first AChem’s tank and pushed the information to the environment. The action
node acts on the second AChem’s tank based on information read from the environment.

and flock based on their parameter values. In existing SwarmChem instantiations the sets

of parameter values are generally evolved with human interaction to generate flocking be-

haviours. The system agents contain all sets of values in the system and choose one to use

based on a weight matrix. These are changed by collisions. In the version of SwarmChem

used here we do not have a predetermined set of possible values. In our version the agents

swap some number of parameter values. The only limitation is that the parameter values

must make sense after the exchange (for example, normal velocity must not exceed maximum

velocity).

8.2 Method

We can connect any two AChems by giving them the ability to communicate via their

environment, Rainford et al. (2018). This communication can be uni- or bi-directional. In

order to talk about combining AChems we need to be able to talk about different parts of

different AChems. We do this by representing information and control flow in an AChem in

a graph with multiple types of nodes and edges, Tables 4.2 and 4.3 respectively. The basic

graph structure of communicating AChems is given in Figure 8.1.

We use shading to indicate the ownership of a node by a single system. A node owned

by one AChem cannot directly communicate with the nodes owned by a different AChem.

Instead, information is shared using an environmental node that is not owned by either

AChem. So in Figure 8.1, the dark grey observation is of a tank in the ‘dark grey’ AChem,

and the light grey action is on a tank in the ‘light grey’ AChem. The figure shows uni-

directional communication, in which one AChem influences the other. By adding a second

link in the other direction we could establish bi-directional communication. Both the action

and the observation are defined by the designer.

For example, if we wish to establish side-by-side chemistries then our observation will

produce a summary statistic that is a value, or set of values, based on the whole system, which

will uniformly affect the entire system in the second chemistry. Alternatively, the observer
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Figure 8.2: Graph of nested chemistry using metachem modular graph notation. JA AChem
nodes are shown in pink, SwarmChem nodes in blue. White nodes are either shared or not
natively part of either AChem.

can generate statistics based on individual particles, which can then affect individual particles

in the second AChem.

We give an example of a “nested”, or multi-level, AChem with bi-directional communi-

cation. The observer of the lower-level AChem generates a set of values over a large number

of particles in that AChem. These values are then used to influence the behaviour of a single

individual in the higher-level AChem. In turn the behaviour and interaction of one or two

particles in the higher-level AChem influence a large number of particles in the lower-level

AChem.

8.3 Example: Nested Chemistry

We generate a new set of chemistries by combining two AChems from the literature (Faulkner

et al. (2016) and Sayama (2009)) by linking the modules in various ways to give seven

distinctive systems; an eighth system is achieved through a change in system settings.

The largest of these systems is a fully nested AChem that contains all modules used in

our systems, Figure 8.2.

In this system we treat each of the agents of SwarmChem as a well-mixed tank of JA

AChem particles.

We have two links in our nested system: Parameter Setting and Transfer. In Parameter

Setting we generate a set of parameters values for each SwarmChem agent based on the

particles in its tank. These sets are saved into the environment and used to update the

Swarm. In Transfer we detect collisions between members of the Swarm. This information

is saved in the environment and then used to transfer particles between the well-mixed tanks

of the JA AChem system.
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This provides a means of communication between the two systems. SwarmChem’s spatial

movement provides a limitation and control on particle exchanges in JA AChem between

different tanks. Likewise, the JA AChem tanks communicate with SwarmChem by chang-

ing its parameter values, which influences the agents’ spatial movement and likelihood of

collision.

We divide the nested chemistry system into five sections, as shown in Figure 8.2:

Initialisation Initial tanks of JA AChem particles and initial swarm agents are loaded into

the system and stored separately with matching indexing to allow for reference between

the two.

Parameter Setting The current contents of the tanks are analysed to produce a set of pa-

rameter values for each tank. These are stored in the environmental variable “V:parameters”

(8.2). The swarm then updates itself based on the content of this variable.

SwarmChem The agents of SwarmChem update themselves using a single SwarmChem

time step.

Transfer SwarmChem assesses whether any collisions have occurred between its agents in

the system. It stores out a record of these collisions in the environmental variable

“V:transfers”. JA AChem uses this variable to exchange parameter values between

tanks based on the SwarmChem collisions.

JA AChem Updates by performing a number 1 of attempts at bonding and an equal num-

ber of attempts at decomposition. All tanks are independent and mass-conserving

well-mixed tanks.

It might be noted that there are four invalid edges in the macro system graph of Nested-

Chem: (a:Update Parameters, T:Swarm), (a:Swarm Update, T:Swarm), (a:Transfer Par-

ticles, T:Tank) and (a:JA AChem Update, T:Tank). All of these edges appear to allow

actions to push to tanks which is not allowed. In the case of a:Swarm Update and a:JA

AChem Update we have seen the expanded graphs of these nodes in the system graphs of

each system. In those graphs we see that the actions carried out by these nodes mean they

always move the particles to samples before making any changes. Here we connect directly

to the tanks simply as an abuse of notation.

In the case of a:Transfer Particles if we were to expand this node we would see that

all the operations of this node are carried out by samplers and there is therefore no issue

that before starting the particles have not been moved to a sample. Finally in the case of

a:Update Parameters the process function is applied over all particles in the system meaning

the sample would be the entire tank so in another abuse of notation and to avoid introducing

a further two control nodes and a container to move the entire contents back and forth we

1See ”gen size” in Table 8.1
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allow the node to connect directly to the tank. Please take it as given that in the expanded

form this sampling would occur.

8.3.1 Modular Systems

From this full system we can derive eight variant systems. The control flow of these systems

is shown in Figure 8.3.

I. Nested. The full Nested AChem system as shown in Figure 8.2

II. Nested without collision. JA AChem particles are not transferred between tanks, but

still determine the parameter values of agents in the SwarmChem

III. SwarmChem. SwarmChem agents randomly exchange parameter values on collision;

there is no communication with the JA AChem.

IV. SwarmChem without collision. A very basic form of SwarmChem in which the

agents interact only through Boid like flocking behaviours.

V. JA AChem single tank. A single well-mixed tank of JA AChem. The same number

of evaluations are used per generation and the same number of starting particles are

also used as the other systems.

VI. JA AChem multiple tanks with no interaction. A JA AChem with the same num-

ber of tanks as in the nested version; there are fewer atoms and particles in each tank,

but the same number of overall atoms and evaluations are used.

VII. JA AChem multiple tanks with random transfers. The same system as in VI

but with tanks randomly selected to randomly transfer particles between them.

VIII. JA AChem multiple tanks with grid transfers. The same as in VII but trans-

fer tanks selected based on a Moore Neighbourhood, Figure 8.4

8.3.2 Settings: Jordan Algebra AChem

The Jordan Algebra AChem has previously been presented as a single well-mixed tank.

JA AChem’s properties emerge from its underlying algebraic structures. When linked, the

resultant particle can be represented as a tree, with atoms as its leaves and sub-particles at

each node. The algorithm for one generation of JA AChem is given in Chapter 5.

In order to nest JA AChem into SwarmChem we need to work with multiple tanks. The

algorithm is an update cycle for a single tank. We can apply this to each tank in the system.

The relevant settings for the six systems that include JA AChem here are given in Table 8.1.
2

2All systems use an additional collision probability of 0.2 and the Boltzmann inspired b probability from
Faulkner et al. (2017)
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I:

II:

III:

IV:

V & VI:

VII:

VIII:

Figure 8.3: System Combinations

Table 8.1: JA AChem Settings for each system
System I II V VI VII VIII

#tanks 50 50 1 50 50 50
tank size 200 200 10000 200 200 200
gen size 200 200 10000 200 200 200

#rounds 100 100 100 100 100 100
transfers collision none none none grid random

These settings give us the same number of linking and decomposition attempts in all

systems. The three collision methods work as follows:

Collision: Transfers happen between two tanks when their associated SwarmChem agents

collide.

Grid: Transfers happen by randomly selecting a single tank and then selecting a second

tank from a grid based neighbourhood, see Figure 8.4.

Random: Two tanks are chosen at random and exchange materials.

8.3.3 Settings: SwarmChem

SwarmChem is a spatial AChem based on Boids (Reynolds, 1987). There is one set of settings

relevant to SwarmChem. In all experiments we have 50 agents in a 2000 × 2000 space of

arbitrary spatial units.

IV is the most basic version of SwarmChem, in which parameter values are fixed through-

out and agents do not change their behaviour during a run.

In III we further develop the SwarmChem system to include changes in parameter values.

In traditional SwarmChem this is done with weight matrices that assign priority to different
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Figure 8.4: Grid based neighbourhood

parameter value sets. We use another method, still based on collisions being the trigger for

change. For comparison purposes, we make the parameter value changes more analogous

to the transfer of particles in the nested system. In the case of a collision in III we swap

a random number of the agents’ parameter values. Swaps are then reversed if they give

contradictory settings (e.g. maximum velocity less than normal velocity).

In I and II the SwarmChem agents have an internal state defined by the tank of associated

JA AChem particles. These particles change over time as they react, and in doing so change

the parameter values of the SwarmChem agent.

In I we also have collisions that cause the transfer of JA AChem particles from one agent’s

tank to another, allowing for information transfer between agents, which may prevent the

agents from becoming stable.

8.3.4 Analysis methods: Jordan Algebra AChem

We focus our analysis of the JA AChem level of our systems on the size of the particles and

the resultant number of particles in the system or tanks over time.

These numbers should stabilise quickly in the system, but we expect the systems with

transfers to be less stable than others. Particles being transferred in and out of the tanks

should disturb any equilibrium.

We also expect to see larger particles in the partitioned systems as the smaller size of

the tanks limit the sampling possibilities, increasing the chances of selecting molecules which

already contain multiple particles. As these are used and the number of particles in the tank

decreases, these probabilities should further increase.

8.3.5 Analysis methods: SwarmChem

We can observe many different statistics on the agents of the swarm; here we focus on the

relative position of an agent to its visible neighbours. This provides us with measure of how

well our agents are clustered with each other. In homogeneous flocking this parameter’s

value should be very similar across agents, as a flock all have the same perception radius and

tendency for avoidance. In SwarmChem these have greater variation but should be similar

in sets of agents forming a swarm. Here we therefore expect to see greater variation in the

nested SwarmChem where all values of perception radius and tendency for avoidance are

possible.
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Figure 8.5: Average number of atoms in each particle in each Jordan Algebra AChem tank
in a multitank system

8.4 Results and Discussion

8.4.1 Effect on JA AChem

There is a statistically significant difference in the sizes of particles in the system between

the single tank, III, and everything else (p < 10−33 ranksum test, large effect size A = 0.99

(Vargha and Delaney, 2000)). It also stabilises at a much higher number of particles (8824

particles) compared to the other systems (I, II, VI, VII, VIII, with 3750 – 3850 particles).

We can therefore reject the null hypothesis that our changes to the system have no effect.

Looking at the multitank systems we can see that these systems have similar particle

sizes, Figure 8.5. These have similar medians, but somewhat different distributions. Most

distinctive is VIII, which is statistically significantly different (ranksum) from all the medi-

ans (except II), with medium or larger effect sizes.

We can predict that II and VI should be equivalent at the JA AChem level. This is

because there is only a single uni-directional link in II. This is true in our results (p =

0.057, ranksum). This is particularly true as we are using Bonferroni corrections giving us a

threshold for significance at 0.0032 rather than 0.05. This suggests that the number of runs

and number of generations in the JA AChem has been sufficient in this example to give us

the general behaviour of these systems.
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8.4.2 Effect on SwarmChem

There are many different versions of SwarmChem, which can best be categorised in terms of

their morphogenic hierarchy:

Category A: Homogeneous Swarm

Category B: Heterogeneous Swarm

Category C: Heterogeneous Swarm with redifferentiation

Category D: Heterogeneous Swarm with redifferentiation and information sharing

Here differentiation means that a particular agent can have different parameter values

and redifferentiation means that those values can change.

Category A represents the original Boids work with its heterogeneous flocks of agents.

Category B can be seen in the early forms of SwarmChem where we have a heterogeneous

swarm. SwarmChem then moves to a Category C system by adding differentiation by chang-

ing the weighting of parameter value sets based on its local neighbours In more recent work

(Sayama, 2018b) SwarmChem introduces a version which could be seen as bridging the gap

to Category D by allowing local information sharing.

Our full system, I, falls solidly into Category D with transfers and the differentiation

that comes from the JA AChem. When we lose the transfers in II, we have a Category C.

Our simpler AChems both fall mostly in Category B as heterogeneous swarms.

We get flocking behaviour in all systems, despite no control or evolution to develop it.

Figure 8.6 shows that I and II form similar swarms to III and IV. This is contrary to

our original expectation that forming swarms would be harder for nested systems. It may

be because the JA AChem tanks tend to similar configurations of particles over time. In

comparison the SwarmChem-only systems finish with the same parameter values as they

start with. This seems to be reflected in our observations which show very little difference

in our systems. However we do over all runs find a large difference in the relative position,

pr, of agents to their neighbours (Figure 8.7)

pr = |〈x〉i − xi|2/R2
i (8.1)

where 〈x〉 is the average position of an agent i’s neighbours. xi is an agents current position

and Ri is the agents perception distance.

This shows we have significant differences between our nested systems (I and II) and our

swarm systems (III and IV). They are statistically different (p = 10−207, ranksum) with

large effect size (A = 0.90). Looking to further differentiate our systems we find no difference

between the swarm systems. We do not find any significant difference between I and II at

the SwarmChem level. This may be the length of run though as the transfers will have very
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Figure 8.6: Image of each swarm system at the end of a run which started from the same
initial conditions. Swarms are depicted in the full 2000× 2000 (units arbitrary) space

little chance to have an effect in 100 generations. We see no distinction between our two pure

SwarmChem systems either. Further research should look at the effect over longer runs.

This gives us distinction between systems with redifferentiation and without. This shows

that a multilevel system such as system I and II can produce distinctive behaviour in Swarm-

Chem. While System I does meet all the criteria of a category D system, more work is needed

to show what effect this has as opposed to II which is only a category C system.

8.5 Conclusions and Further Work

We have introduced the idea of modular graph based descriptions of AChems that allow ‘plug

and play’ composition. The modular nature of these representations allows us to build and

implement a wide variety of AChems from a single set of components. We can expand the

number of AChems simply by by expanding the number of modular components available

to us. We have implemented a general method of composition using indirect communication

for environment orientation (Hoverd and Stepney, 2009) at the level of our system graphs.

This approach enables us to use existing AChems to explore new questions with minimal

new code required. As well as new systems, this serves to expand the implementations and

capabilities of the individual AChems.
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Figure 8.7: Log scaled final position of each agent to its neighbours relative to the agent’s
perception distance

In this work we chose to nest JA AChem inside of SwarmChem, as this seems a natural

choice of combinations. Further work could investigate different forms of nesting, such as

inverse nestings and side-by-side combinations of these two AChems, or with entirely different

AChems.



Chapter 9

Discussion

9.1 Contribution

9.1.1 Algebraic approach

One of the tangible contributions of this work is the approach itself. The method of using

algebraic structures and axioms in our design and implementation of everything, from our

framework itself to how we assign a probability of linking to a reaction, has helped to shape

this work, and provides a guide for further work to take a similar approach. The advantage

of this approach is that it helps to prevent bottom up work from over-designing. It does

this by helping to generate a solid and complete structure based on the simple properties we

derive, so there is less temptation to “add-on” to the system. If we have to add-on to get a

particular behaviour then we are designing it in to our system. The algebra makes that very

visible in a system, and suggests that either that behaviour does not work how we think, or

we have the wrong algebra if it does not emerge for the system without add-ons.

9.1.1.1 Axiomatic approach to JA AChem

The axiomatic approach taken in designing JA AChem has allowed us to be very clear about

our design decisions. Thus we have a system which may contain isomers, and has a elements

as categorisation of our atoms. These are both features we have designed for, but in future

work their implications for the behaviour of the system can be explored.

The other advantage of this approach is that it lead us so easily to the Jordan Alge-

bra itself and the representation using Hermitian matrices, both of which have interesting

implications and properties. It provided us with a product operation that can be applied

to any number of particles at a time to produce a new particle whose matrix has the same

dimensions still. This helps to keep the computations for this system tractable.
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9.1.1.2 Formalisation of psf

The formal definition of a way of handling probabilistic processes in this work will ensure

greater consistency in future descriptions of artificial chemistries. It also provides a direct

manner in which to derive intended or designed cause-and-effect relations from those that

have more inadvertent effects. The probability spawning functions have direct information

from well-defined sources which have a well-defined effect on the likelihood of an action

occurring. This is traceable. If we find other correlations we can then determined that they

are “emergent” from the system.

The definition of a semi-ring structure over these psfs gives us a simpler definition for

more complex interactions. It allows us to define many separate influences and then combine

them. This also has potential for providing a structure around automatically generating psfs

for automatically generated nodes.

9.1.2 Static Graph MetaChem

The static graph MetaChem developed here is a first step towards standardised metrics for

artificial chemistries. It also provides a move forward in designing artificial chemistries. As

we gather more descriptions in this framework we can begin make use of parts of existing

descriptions in new systems. This will allow more efficient design of artificial chemistries.

It should also mean we can start to look at standardizing output values from artificial

chemistries to make use of standard visualizations and reporting of results. All of this will

assist in further development of artificial systems.

In particular the use of modularised structured nodes with defined functions should allow

us to generate new nodes easily. Algebraic structures around these functions such as the semi-

ring of psfs shown here will make it possible to combine existing functions and algorithms

into nodes to translate them into our framework. In turn they will also allow us to add to

our artificial chemistries without needing large changes to our systems by modifying existing

functions.

9.1.3 Developing JA AChem

We have developed a rigorously designed artificial chemistry. We have done so in such a

way that we were able to take advantage of the pre-existing Jordan Algebra to make our

artificial chemistry axiomatically sound. This produced a system with high combinatorics

and interesting particle structures.

We have also analysed the system and shown that the arbitrary choice of probability

spawning function could be changed in order to tune the system. This is a good demon-

stration of the general power of probability spawning functions and their uses in artificial

chemistries. In particular using the same function in both our linking and decomposition

functions allowed for large variation in the systems behaviours.
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9.1.4 MetaChems for use with AChems

The most direct and immediate contribution of this work is the potential metachem and

the link described for nestedchem open up in the field of artificial chemistry. The ability to

join up systems and use modularity to share parts of algorithms could provide, after more

development, significant speed ups in how long it takes to build a new AChem and what is

possible in the course of further PhD projects, which is the time frame under which much

research takes place.

Even more than this is the potential that we have modularity and clear designation of

particles and environmental properties. This means we can begin to design analysis tools,

visualisation tools, and metrics that can be used across similar systems. We can provide a

set of particles and their position to a visualiser regardless of our system’s other properties,

and use it to produce images and video of the AChem’s motions. We can look at writing a

more general purpose proximity based analysis for higher level object identification such as

that used in more recent Swarm Chemistry work (Sayama, 2018a,c).

9.2 Further Work

9.2.1 Dynamic MetaChem

Our static graph MetaChem can be treated as a graph, meaning once we have a set of possible

nodes we can define a set of rules for generating a graph. This can be a rule set intended

to produce a particular graph or multiple possible graphs. If we tied this process of graph

production through rule to the implementation and evaluation of the graphs as programs we

can then generate our graph as it runs. This means our system can grow at run time and

could grow differently dependent on differences in our particles and variables.

This could allow us to have a system capable of self-reflection and change at run time.

This opens new possibilities for transitions towards open-ended evolution, as we can build

systems capable of reacting to new emergent objects or behaviours if they can be identified.

For example, if a system identified a set of objects within itself, it could then attempt to

model those objects at a higher level and improve that model with information from the

original low-level implementation.

9.2.2 Evolving MetaChem

Our MetaChem can then itself be treated as an artificial chemistry. It has nodes as particles

with links between them. With a graph rule set to generate them we can start to see reactions.

We could run an artificial chemistry of artificial chemistries. Through this method we could

evolve an artificial chemistry.

If we then take one step further, make and consider instead our set of particles to be the

graph rules that generate our systems and reactions to change those rules, then we can evolve
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how our graphs form. This would allow systems not only capable of changing at run time

but of changing their basic components and how they can run during their execution. With

the correct initial rule set and reactions this could allow for the production of a completely

unexpected artificial chemistry with as little design bias as possible.

9.2.3 Jordan Algebra Artificial Chemistry

Jordan Algebra Artificial Chemistry is a simple system with a lot of potential to it. There are

many possible avenues for future work with this system, from looking at interesting initial

conditions, to performing longer runs and analysing the results looking for polymers or

monomers. A reaction-based analysis would be interesting as well in search of any reaction

networks. Beyond this there is the potential to look for other uses for the chemistry, for

example it could be used for reservoir computing. By feeding an input in that interacts

with chemistry, possibly through causing a flow, reaction or modifying reactions based on

proximity to input and then observing an output or set of outputs somewhere in the system.

9.2.4 Combining AChems

We have only touched on one option for combining artificial chemistries here, but the po-

tential is much broader. Firstly we could try combining Jordan Algebra AChem with other

spatial AChems to see if we get different results from a similar combination. Equally, nest-

ing different AChems inside Swarm Chem could be attempted, to see if that would have

different effects on behaviour and densities of swarms. Equally, completely new and different

hierarchical AChem combinations could be tried.

As well as nesting systems, there are also mixed systems and joint systems to consider.

Mixed systems would be systems sharing tanks or spatial environment with a new interaction

added between the different types of particles. Joint systems would work with a combined

particle made up of a particle from each system,. Which system is used in an interaction

would need defining in this case but may be probabilistic, depend on the kind of reaction,

or be defined by the result of the interaction. An example might be to use the reaction rule

that produces the stronger link.

9.2.5 Scaling and databases

Now that we have a framework for our systems, part of our further work must be to scale up

our systems. Artificial chemistries, much like other artificial life systems, should be working

over very large collections of particles and at very long timescales to allow for complex

emergence. However for us as designers this poses a complex trade off. If we wish to have

such large systems then we must make our components and calculations highly tractable to

manage within the memory limitations of systems available to us.

In the age of big data analysis there is a set of tools and skills that are being fast

developed in computer science that seem to be oddly overlooked in artificial life research.
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Databases are commonly used to store and analyze even relatively small datasets. A business

will start to use a database with only a few hundred customers, while artificial life systems

looking to contain thousands or more agents or particles still seek to operate without these

storage structures. These could allow us to work with far broader systems and run them

for longer while still having timely access to the results for analysis. They would allow us

to have complicated agents and particles, and only deal with those aspects for a particular

calculation.

While there is some added complexity to using databases with these systems those which

are properly modularised and built around a sensible framework such as MetaChem should

only need a database interface creating that would then take all issues with this technology

away from the user of any particular system. In large artificial chemistry systems this means

only entities currently being analyzed or edited would need to be in the computers memory

rather than stored externally in the database.

9.2.6 Analysis of AChems and graph based databases

If we are going to make use of databases we need to consider the options available to us. The

classic relational table database would solve the issues of data storage and access described

above, but the more recently emerging graph based databases have some advantages. These

sorts of databases are very flexible, without the fixed table structures. This means that new

types of objects and connections are always possible to store. In the case of an implementa-

tion in MetaChem this means we can write an interface with our database into our read(),

push() and pull() functions at a very low level. This would take away the need for any direct

interaction with the database, because the actual structure of the particles would not change

the push(), pull() interface to the database. The graph based databases are focused on the

relationships between the entries, and in most cases we can even infer further relationships.

This is a good fit for artificial life and the search for emergent entities in the interactions

between the elements. In particular this fits well with the the new research into identifying

these larger entities through clustering and mutual perception in Swarm Chemistry (Sayama,

2018a).



Appendix: Representative matrices

of elements

Here we provide a list of the representative matrices of elements referred to and used in 5.

They are provided in no particular order. These are the lowest weight atomic matrices for

each possible set of eigenvalues and trace. They are named based on their eigenvalues (upper

case letters assigned as they are generated) and trace(lower case letters assigned for each

new trace generated).

Element Matrix Element Matrix

Yu

 −1 1 + i i
1− i −1 i
−i −i 0

 Nf

1 0 0
0 1 0
0 0 1


BBw

 1 i i
−i 1 i
−i −i 0

 Tp

 0 1− i 1 + i
1 + i 1 i
1− i −i 1


VVmm

 −1 1− i 1 + i
1 + i 1 i
1− I −i 1

 Zn

 1 1 + i i
1− i 1 0
−i 0 0


IIn

 0 i i
−i 1 0
−i 0 1

 Ga

 1 1 + i 1 + i
1− i 1 0
1− i 0 1


LLLtt

 0 1− i 1 + i
1 + i −1 i
1− i −i 0

 YYoo

 1 i i
−i −1 0
−i 0 1


Qm

 1 1 + i 1 + i
1− i 1 i
1− i −i 0

 ZZi

 1 1− i 1 + i
1 + i −1 i
1− i −i −1


Kj

 1 i i
−i 1 0
−i 0 1

 Fcc

 1 i 0
−i 1 0
0 0 0


Vr

 0 1 + i 1 + i
1− i 1 i
1− i −i 1

 Hg

 −1 1 + i i
1− i −1 i
−i −i −1
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Element Matrix Element Matrix

KKcc

1 0 0
0 1 0
0 0 0

 So

 −1 1 + i 1 + i
1− i −1 1 + i
1− i 1− i 0


Aa

 1 1 + i 1 + i
1− i 1 1 + i
1− i 1− i 1

 Pl

 1 1− i 1 + i
1 + i 1 i
1− i −i 0


JJdd

 1 i 0
−i 0 0
0 0 1

 GGGa

 0 1 + i 1 + i
1− i 1 i
1− i −i 0


Dd

 1 1 + i i
1− i 1 i
−i −i 1

 MMMuu

 0 1 + i i
1− i 0 0
−i 0 1


OOhh

 1 1 + i i
1− i 1 i
−i −i −1

 Xt

 1 1 + i 1 + i
1− i 1 0
1− i 0 0


NNNvv

 0 i i
−i 1 0
−i 0 0

 QQa

 −1 1− i 1 + i
1 + i 1 i
1− i −i 1


Ws

 1 1 i
1 1 i
−i −i 0

 DDDh

−1 i i
−i 1 0
−i 0 1


IIIqq

 0 1− i 1 + i
1 + i 1 i
1− i −i 0

 LLee

 −1 1 + i 1 + i
1− i 1 1 + i
1− i 1− i 1


Ih

 1 i i
−i 1 i
−i −i 1

 TTb

 −1 1 + i i
1− i −1 0
−i 0 1


Cc

 1 1 + i 1 + i
1− i 1 i
1− i −i 1

 DDy

 1 i i
−i 1 0
−i 0 0


Ff

 1 1 i
1 1 i
−i −i 1

 EEEj

−1 i 0
−i 1 0
0 0 1


Ee

 −1 1 + i 1 + i
1− i −1 1 + i
1− i 1− i −1

 NNgg

 1 1 + i 1 + i
1− i −1 i
1− i −i 1


GGbb

 1 1 + i 0
1− i 1 0

0 0 0

 Rn

 1 1 + i i
1− i 1 i
−i −i 0


Ji

 −1 1− i 1 + i
1 + i −1 i
1− i −i −1

 Ok

 1 1 + i 1 + i
1− i 1 1 + i
1− i 1− i 0
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Element Matrix Element Matrix

HHl

 0 1 + i i
1− i 1 0
−i 0 1

 UUll

 −1 1 + i i
1− i −1 i
−i −i 1


Bb

 1 1− i 1 + i
1 + i 1 i
1− i −i 1

 FFFa

 1 1− i 1 + i
1 + i 0 i
1− i −i 0


Uq

 1 1 + i i
1− i 0 i
−i −i 1

 WWnn

−1 i i
−i 1 i
−i −i 1


La

−1 1 i
1 −1 i
−i −i −1

 Tww

 1 i 0
−i 0 0
0 0 0


AAv

 −1 1− i 1 + i
1 + i −1 i
1− i −i 0

 EEf

−1 0 0
0 1 0
0 0 0


RRjj

 −1 1 + i i
1− i 1 i
−i −i 1

 CCx

 −1 1 + i i
1− i 0 i
−i −i −1


JJJrr

 −1 1 + i i
1− i 0 i
−i −i 0

 MMff

 1 1− i 1 + i
1 + i −1 i
1− i −i 1


FFaa

−1 1 i
1 −1 i
−i −i 0

 CCCf

−1 i 0
−i −1 0
0 0 1


EEz

 0 1− i 1 + i
1 + i −1 i
1− i −i −1

 AAAa

 −1 1 + i i
1− i 1 0
−i 0 1


PPii

 −1 1 + i 1 + i
1− i −1 1 + i
1− i 1− i 1

 BBBj

 −1 1 + i 0
1− i −1 0

0 0 1


HHHpp

 1 1 + i i
1− i 0 i
−i −i 0

 SSkk

 −1 1 + i 1 + i
1− i 1 i
1− i −i 1


XXc

 −1 1 + i i
1− i 1 i
−i −i− 1

 Mf

 1 i 0
−i 1 0
0 0 1


KKKss

 1 1 + i i
1− i 0 0
−i 0 0
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