2,062 research outputs found

    Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use

    Get PDF
    The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended

    An Innovative Human Machine Interface for UAS Flight Management System

    Get PDF
    The thesis is relative to the development of an innovative Human Machine Interface for UAS Flight Management System. In particular, touchscreena have been selected as data entry interface. The thesis has been done together at Alenia Aermacch

    RESCUE MANAGEMENT AND ASSESSMENT OF STRUCTURAL DAMAGE BY UAV IN POST-SEISMIC EMERGENCY

    Get PDF
    Abstract. The increasing frequency of emergencies urges the need for a detailed and thorough knowledge of the landscape. The first hours after a disaster are not only chaotic and problematic, but also decisive to successfully save lives and reduce damage to the building stock. One of the most important factors in any emergency response is to get an adequate awareness of the real situation, what is only possible after a thorough analysis of all the available information obtained through the Italian protocol Topography Applied to Rescue. To this purpose geomatic tools are perfectly suited to create, manage and dynamically enrich an organized archive of data to have a quick and functional access to information useful for several types of analysis, helping to develop solutions to manage the emergency and improving the success of rescue operations. Moreover, during an emergency like an earthquake, the conventional inspection to assess the damage status of buildings requires special tools and a lot of time. Therefore, given the large number of buildings requiring safety measures and rehabilitation, efficient use of limited resources such as time and equipment, as well as the safety of the involved personnel are important aspects. The applications shown in the paper are intended to underline how the above-mentioned objective, in particular the rehabilitation interventions of the built heritage, can be achieved through the use of data acquired from UAV platform integrated with geographic data stored in GIS platforms

    NtoM: a concept of operations for pilots of multiple remotely piloted aircraft

    Get PDF
    The concept of operations proposed here pursues the feasibility, from a human factors perspective, of having a single pilot/aircrew controlling several remotely piloted aircraft systems at once in non-segregated airspace. To meet such feasibility, this multitasking must be safe and not interfere with the job of the air traffic controllers due to delays or errors associated with parallel piloting. To that end, a set of measures at several levels is suggested, which includes workload prediction and balance, pilot activity monitoring, and a special emphasis on interface usability and the pilot’s situational awareness. The concept relies greatly on the exploitation of the potential of Controller-Pilot Data Link Communications, anticipating future widespread implementation and full use. Experiments comparing the performance of the same pseudo-pilots before and after the implementation of part of the measures showed a decrease in the number of errors, oversights and subjective stress.Peer ReviewedPostprint (published version

    Military Application of Aerial Photogrammetry Mapping Assisted by Small Unmanned Air Vehicles

    Get PDF
    This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are defined to justify the feasibility and utility of the methods. The first application is to assess the damage of an attacked military airfield using photogrammetric digital models. Using a hex-rotor test platform with Sony A6000 camera, georeferenced maps with 1 meter accuracy was produced and with sufficient resolution (about 1 cm/pixel) to identify foreign objects on the runway. The other case examines the utility and quality of the targeting system using geo-spatial data from reconstructed 3-Dimensional (3-D) photogrammetry models. By analyzing 3-D model, operable targeting under 1meter accuracy with only 5 percent error on distance, area, and volume wer

    Small unmanned aerial system (SUAS) flight and mission control support system (FMCSS) design

    Get PDF
    Unmanned Aerial Systems (UAS) are playing a significant role in the Global War on Terrorism (GWOT). Until recently, small UAS (SUAS) were an insignificant part of these efforts. Now their numbers exceed those of their larger counterparts by an order of magnitude. Future projections anticipate a growing demand for SUAS making now the best time to examine the functions they perform in order to make better decisions concerning their future design and development. This thesis provides a brief history of UAS and discusses the current capabilities and mission areas in which they perform. Their relevance to modern warfare and assumptions concerning their future roles on the battlefield is presented. Predominant UAS missions are identified, as well as the technical requirements deemed necessary for their success. A generic UAS functional model is developed to illustrate where the challenges and technology gaps manifest in SUAS design. Possible technology solutions that could fill these gaps are presented and a field experiment is conducted to demonstrate the feasibility of several possible solutions. The goal of this thesis is to identify existing technology gaps and offer technology solutions that lead to better design of future SUAS flight and mission control support systems (FMCSS).http://archive.org/details/smallunmannederi109452574Approved for public release; distribution is unlimited
    corecore