1,551 research outputs found

    Middleware’s message : the financial technics of codata

    Get PDF
    In this paper, I will argue for the relevance of certain distinctive features of messaging systems, namely those in which data (a) can be sent and received asynchronously, (b) can be sent to multiple simultaneous recipients and (c) is received as a “potentially infinite” flow of unpredictable events. I will describe the social technology of the stock ticker, a telegraphic device introduced at the New York Stock Exchange in the 1860s, with reference to early twentieth century philosophers of synchronous experience (Bergson), simultaneous sign interpretations (Mead and Peirce), and flows of discrete events (Bachelard). Then, I will show how the ticker’s data flows developed into the 1990s-era technologies of message queues and message brokers, which distinguished themselves through their asynchronous implementation of ticker-like message feeds sent between otherwise incompatible computers and terminals. These latter systems’ characteristic “publish/subscribe” communication pattern was one in which conceptually centralized (if logically distributed) flows of messages would be “published,” and for which “subscribers” would be spontaneously notified when events of interest occurred. This paradigm—common to the so-called “message-oriented middleware” systems of the late 1990s—would re-emerge in different asynchronous distributed system contexts over the following decades, from “push media” to Twitter to the Internet of Things

    Overlay networks for smart grids

    Get PDF

    Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications

    Get PDF
    We claim the strong potential of data-centric communications in Unmanned Aircraft Systems (UAS), as a suitable paradigm to enhance collaborative operations via efficient information sharing, as well as to build systems supporting flexible mission objectives. In particular, this paper analyzes the primary contributions to data dissemination in UAS that can be given by the Data Distribution Service (DDS) open standard, as a solid and industry-mature data-centric technology. Our study is not restricted to traditional UAS where a set of Unmanned Aerial Vehicles (UAVs) transmit data to the ground station that controls them. Instead, we contemplate flexible UAS deployments with multiple UAV units of different sizes and capacities, which are interconnected to form an aerial communication network, enabling the provision of value-added services over a delimited geographical area. In addition, the paper outlines an approach to address the issues inherent to the utilization of network-level multicast, a baseline technology in DDS, in the considered UAS deployments. We complete our analysis with a practical experience aiming at validating the feasibility and the advantages of using DDS in a multi-UAV deployment scenario. For this purpose, we use a UAS testbed built up by heterogeneous hardware equipment, including a number of interconnected micro aerial vehicles, carrying single board computers as payload, as well as real equipment from a tactical UAS from the Spanish Ministry of Defense.This article was partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795-C6-3-R) funded by the SpanishMinistry of Economy and Competitiveness

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Bringing pervasive embedded networks to the service cloud: a lightweight middleware approach

    Get PDF
    The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute to build new context-aware applications that interpret the state of the physical world at real-time. However, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an internetworking approach is proposed in order to address that important issue. The main part of our proposal is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols which enable developers and business processing designers to deploy, expose, discover, compose, and orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Middleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetworking approach has been validated through a real healthcare telemonitoring system deployed in a sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded networks to the Service Cloud

    A Semantic-Based Middleware for Multimedia Collaborative Applications

    Get PDF
    The Internet growth and the performance increase of desktop computers have enabled large-scale distributed multimedia applications. They are expected to grow in demand and services and their traffic volume will dominate. Real-time delivery, scalability, heterogeneity are some requirements of these applications that have motivated a revision of the traditional Internet services, the operating systems structures, and the software systems for supporting application development. This work proposes a Java-based lightweight middleware for the development of large-scale multimedia applications. The middleware offers four services for multimedia applications. First, it provides two scalable lightweight protocols for floor control. One follows a centralized model that easily integrates with centralized resources such as a shared too], and the other is a distributed protocol targeted to distributed resources such as audio. Scalability is achieved by periodically multicasting a heartbeat that conveys state information used by clients to request the resource via temporary TCP connections. Second, it supports intra- and inter-stream synchronization algorithms and policies. We introduce the concept of virtual observer, which perceives the session as being in the same room with a sender. We avoid the need for globally synchronized clocks by introducing the concept of user\u27s multimedia presence, which defines a new manner for combining streams coming from multiple sites. It includes a novel algorithm for estimation and removal of clock skew. In addition, it supports event-driven asynchronous message reception, quality of service measures, and traffic rate control. Finally, the middleware provides support for data sharing via a resilient and scalable protocol for transmission of images that can dynamically change in content and size. The effectiveness of the middleware components is shown with the implementation of Odust, a prototypical sharing tool application built on top of the middleware

    Securing SOME/IP for In-Vehicle Service Protection

    Get PDF
    Although high-speed in-vehicle networks are being increasingly adopted by the industry to support emerging use cases, previous research already demonstrated that car hacking is a real threat. This paper formalizes a novel framework proposed to provide improved security to the emerging SOME/IP middleware, without introducing at the same time limitations in the communication patterns available. Most notably, the entire traffic matrix is designed to be configured using simple high-level rules, clearly stating who can talk to whom according to the service abstraction adopted by SOME/IP. Three incremental security levels are made available, accounting for different services being associated with different requirements. The core security protocol, encompassing a session establishment phase followed by the transmission of secured SOME/IP messages, has been formally verified, to prove its correctness in terms of authentication and secrecy properties. Performance-wise, in-depth experimental evaluations conducted with an extended version of vsomeip confirmed the introduction of quite limited penalties compared to the bare unsecured implementation
    • 

    corecore