668 research outputs found

    Functional Illinois Scan Design at RTL

    Get PDF
    Abstrac

    The Design of a Custom 32-bit RISC CPU and LLVM Compiler Backend

    Get PDF
    Compiler infrastructures are often an area of high interest for research. As the necessity for digital information and technology increases, so does the need for an increase in the performance of digital hardware. The main component in most complex digital systems is the central processing unit (CPU). Compilers are responsible for translating code written in a high-level programming language to a sequence of instructions that is then executed by the CPU. Most research in compiler technologies is focused on the design and optimization of the code written by the programmer; however, at some point in this process the code must be converted to instructions specific to the CPU. This paper presents the design of a simplified CPU architecture as well as the less understood side of compilers: the backend, which is responsible for the CPU instruction generation. The CPU design is a 32-bit reduced instruction set computer (RISC) and is written in Verilog. Unlike most embedded-style RISC architectures, which have a compiler port for GCC (The GNU Compiler Collection), this compiler backend was written for the LLVM compiler infrastructure project. Code generated from the LLVM backend is successfully simulated on the custom CPU with Cadence Incisive, and the CPU is synthesized using Synopsys Design Compiler

    Focal Spot, Fall/Winter 2002/2003

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1092/thumbnail.jp

    High-level synthesis design of scalable ultrafast ultrasound beamformer with single FPGA

    Full text link
    Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs. To address these challenges, the proposed work introduces a novel method of implementing an ultrafast ultrasound beamformer specifically for ultrafast plane wave imaging (PWI) on a field programmable gate array (FPGA) by using high-level synthesis. A parallelized implementation of the beamformer on a single FPGA was proposed by 1) utilizing a delay compression technique to reduce the delay profile size, which enables both run-time pre-calculated delay profile loading from external memory and delay reuse 2) vectorizing channel data fetching which is enabled by delay reuse, and 3) using fixed summing networks to reduce consumption of logic resources. Our proposed method presents two unique advantages over current FPGA beamformers: 1) high scalability that allows fast adaptation to different FPGA resources and beamforming speed demands by using Xilinx High-Level Synthesis as the development tool, and 2) allow a compact form factor design by using a single FPGA to complete the beamforming instead of multiple FPGAs. With the proposed method, a sustainable average beamforming rate of 4.83 G samples/second in terms of input raw RF sample was achieved. The resulting image quality of the proposed beamformer was compared with the software beamformer on the Verasonics Vantage system for both phantom imaging and in vivo imaging of a mouse brain

    VirtualScan: a new compressed scan technology for test cost reduction

    Get PDF
    This work describes the VirtualScan technology for scan test cost reduction. Scan chains in a VirtualScan circuit are split into shorter ones and the gap between external scan ports and internal scan chains are bridged with a broadcaster and a compactor. Test patterns for a VirtualScan circuit are generated directly by one-pass VirtualScan ATPG, in which multi-capture clocking and maximum test compaction are supported. In addition, VirtualScan ATPG avoids unknown-value and aliasing effects algorithmically without adding any additional circuitry. The VirtualScan technology has achieved successful tape-outs of industrial chips and has been proven to be an efficient and easy-to-implement solution for scan test cost reduction.2004 International Conference on Test, 26-28 October 2004, Charlotte, NC, USA, US

    Automated Exploration of the ASIC Design Space for Minimum Power-Delay-Area Product at the Register Transfer Level

    Get PDF
    Exploring the integrated circuit design space for minimum power-delay-area (PDA) product can be time-consuming and tedious, especially when the target standard-cell library has hundreds of options. In this dissertation, heuristic algorithms that automate this process have been developed, implemented and validated at the reg- ister transfer level. In some cases, the PDA product was 1.9 times better than the initial baseline solution. The parallel search algorithm exhibited 9x speed up when executed on 10 machines simultaneously. These two new methods also characterize the design space for the given RTL code by generating power-delay-area points in addition to the minimum PDA point in case the designer wishes to select a different solution that is a tradeoff among these metrics. As a final step, these two search algorithms are integrated into a fully automated ASIC design flow

    seihin kaihatsu ni okeru sekkei fuka to sono teigen : sekkei purosesu no koritsuka to kaizen ni kansuru kenkyu

    Get PDF
    制度:新 ; 文部省報告番号:甲2267号 ; 学位の種類:博士(学術) ; 授与年月日:2006/9/15 ; 早大学位記番号:新429
    corecore