
Copyright

by

Geewhun Seok

2011

The Dissertation Committee for Geewhun Seok
certifies that this is the approved version of the following dissertation:

Testability Considerations for Implementing an

Embedded Memory Subsystem

Committee:

Nur A. Touba, Supervisor

Baxter F. Womack

Tony Ambler

Earl Swartzlander

Gary Hallock

Testability Considerations for Implementing an

Embedded Memory Subsystem

by

Geewhun Seok, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011

Dedicated to my family

Acknowledgments

I thank God for letting me finish the dissertation. The dissertation is

a result of continuous discussion with Jesus. Jesus said “I am the vine; you

are the branches. If a man remains in me and I in him, he will bear much

fruit; apart from me you can do nothing (John 15:5).” I am grateful to my

parents and wife for their love and support. I greatly appreciate their prayers

throughout this endeavor.

I would like to thank to my Ph.D. committee members - Prof. Wom-

ack, Prof. Ambler, Prof. Swartzlander and Prof. Hallock for their guidance,

understanding and support throughout the course of this research. Working

with them has been a great experience and great fun. Thanks to my com-

mittee members for their ideas and invaluable feedback. I would also like to

thank Professor Nur A. Touba specially for his guidance and support. Thanks

to the Electrical and Computer Engineering staff for their assistance. Being

a part-time Ph.D. student and a full-time working employee is an adventure

that pushes a man to his creativity and production limits. I would like to

express my gratitude to my friends for their encouragement and assistance.

Special thanks to Hong Kim, Paul Policke and Mohammed Baker. Also, spe-

cial thanks to my colleagues and managers, Paul Basset at my employer for

their understanding and encouragement.

v

Testability Considerations for Implementing an

Embedded Memory Subsystem

Publication No.

Geewhun Seok, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Nur A. Touba

There are a number of testability considerations for VLSI design, but

test coverage, test time, accuracy of test patterns and correctness of design in-

formation for DFD (Design for debug) are the most important ones in design

with embedded memories. The goal of DFT (Design-for-Test) is to achieve

zero defects. When it comes to the memory subsystem in SOCs (system on

chips), many flavors of memory BIST (built-in self test) are able to get high

test coverage in a memory, but often, no proper attention is given to the mem-

ory interface logic (shadow logic). Functional testing and BIST are the most

prevalent tests for this logic, but functional testing is impractical for compli-

cated SOC designs. As a result, industry has widely used at-speed scan testing

to detect delay induced defects. Compared with functional testing, scan-based

testing for delay faults reduces overall pattern generation complexity and cost

vi

by enhancing both controllability and observability of flip-flops. However,

without proper modeling of memory, Xs are generated from memories. Also,

when the design has chip compression logic, the number of ATPG patterns is

increased significantly due to Xs from memories. In this dissertation, a regis-

ter based testing method and X prevention logic are presented to tackle these

problems.

An important design stage for scan based testing with memory subsys-

tems is the step to create a gate level model and verify with this model. The

flow needs to provide a robust ATPG netlist model. Most industry standard

CAD tools used to analyze fault coverage and generate test vectors require

gate level models. However, custom embedded memories are typically de-

signed using a transistor-level flow, there is a need for an abstraction step to

generate the gate models, which must be equivalent to the actual design (tran-

sistor level). The contribution of the research is a framework to verify that the

gate level representation of custom designs is equivalent to the transistor-level

design.

Compared to basic stuck-at fault testing, the number of patterns for

at-speed testing is much larger than for basic stuck-at fault testing. So re-

ducing test and data volume are important. In this desertion, a new scan

reordering method is introduced to reduce test data with an optimal routing

solution. With in depth understanding of embedded memories and flows devel-

oped during the study of custom memory DFT, a custom embedded memory

Bit Mapping method using a symbolic simulator is presented in the last chap-

vii

ter to achieve high yield for memories.

viii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Testing Around Memories . 2

1.1.1 Memory Bypass During Scan-Based Testing 3

1.1.2 Memory Write Through During Scan-based Testing . . . 4

1.2 Scan-based At-Speed Testing for Memory Interface Logic . . . 5

1.3 Custom Design Modeling For Test Pattern Generation 7

1.4 Test Time and Data Volume 7

1.5 Contributions and Organization of the Dissertation 8

Chapter 2. Write-through Method for Embedded Memory with
Compression Scan-based Testing 10

2.1 Introduction . 11

2.2 Memory Modeling for ATPG 13

2.3 Current Memory Scan Testing Methods 15

2.4 The Register Based Test Strategy for Embedded Memory . . 17

2.4.1 Memory that can Write and Read at the Same Cycle . 18

2.4.2 Register Based-ATPG for 6T Cell Based Memory Testing 20

2.4.3 X Masking Logic for Scanable Flip-Flops to Output Data
Paths . 22

2.5 X Prevention ATPG Method for Custom Embedded Memory . 23

2.5.1 Virtual X Prevention Logic for ATPG 23

ix

2.5.2 Two-Step ATPG Pattern Generation 26

2.5.3 Verification of X Prevention Logic 28

2.6 Experimental Result . 29

2.7 Conclusion . 30

Chapter 3. Verification of Gate Level Model for Custom Design
in Scan Mode 31

3.1 Introduction . 32

3.2 Design Flow . 34

3.3 Gate Level Model and Schematics Validation for ATPG 36

3.3.1 Step 1. Run Through ATPG Tool 38

3.3.2 Step 2. Validation Through HDL Simulation 39

3.3.3 Step 3. Validation with a Golden Model 39

3.4 Experimental Result . 42

3.5 Conclusion . 43

Chapter 4. An Efficient Scan Chain Partitioning Scheme with
Reduction of Test Data under Routing Constraint 44

4.1 Introduction . 45

4.2 Preliminaries . 47

4.3 Scan Chain Partitioning Algorithm 49

4.4 Experimental Results . 58

4.5 Conclusion . 61

Chapter 5. Automated Bit Mapping Generation Methodology
for Custom Embedded Memory 62

5.1 Introduction . 62

5.1.1 Objective of This Work 68

5.1.1.1 First Order Errors 69

5.1.1.2 Second Order Errors 69

5.2 Bit Mapping Flow Overview 69

5.3 Physical Coordination Information 71

5.4 Logical Simulation for Bit Mapping 72

5.5 Generating Memcell Box Data 74

x

5.6 Generating the Final FA File 75

5.7 Debugging the FA File . 77

5.7.1 Layout Overlay Cells . 77

5.7.2 Interactive Debug GUI 77

5.8 Conclusion . 78

Chapter 6. Conclusions and Future Work 80

6.1 Conclusion . 80

6.2 Future Work . 82

Bibliography 83

Index 92

Vita 93

xi

List of Tables

2.1 The Effect of X Propagation in Test Compression 16

2.2 The Effect of Register Based Testing and X Prevention ATPG
Method . 29

3.1 Simulation Time . 41

4.1 Results of the Proposed Scan Chain Partitioning Scheme . . . 60

5.1 Simple Bitmapping Table . 65

5.2 Simulation Time of Binary and Symbolic Bit Mapping 74

xii

List of Figures

1.1 Scan-based Testing with Memory Bypass Feature 3

1.2 Scan-based Testing with Memory Write Through Feature . . . 5

1.3 At-speed Scan Testing . 6

2.1 Shadow logic around memory 11

2.2 High Level Overview of Design Flow with Custom Embedded
Memory Showing The ATPG Flow and The Memory Model . 14

2.3 The Register Based Testing for a Multi-ported Register File . 19

2.4 (a) 6T Based Memory Array (b) Major Signal Waveforms . . 21

2.5 X Masking Logic . 23

2.6 Block Diagram of X Prevention Logic Behavior 24

2.7 Address Initialization and Updated Address 25

2.8 Contention Checking Method 25

2.9 Verilog Code for 256X8 Memory of X Prevention Logic 27

3.1 Custom Design Flow . 33

3.2 Gate Level Model Validation Framework 37

3.3 The Flow to Generate the Golden Model 41

3.4 Test Result . 42

4.1 Compatible and Not Compatible Column of a Column in Input
Test Set . 48

4.2 An Input Test Set and its Placement and its Optimal Scan
Stitching . 49

4.3 Reordering and Renumbering After the Division 50

4.4 List of the Scan Cells Compatible with the Scan Cells in the
First Half . 51

4.5 The Definition of a Window 52

4.6 Proposed Scan Chain Architecture 54

4.7 Process of Selecting Compatible Scan Cells 54

xiii

4.8 Step 3 - Process of selecting compatible scan cells 56

4.9 The Last state of the List of Compatible Scan Cells 57

4.10 Optimal Assignment of Scan Cells to Three Scan Chains . . . 57

4.11 (a) Routing of s15850 Obtained Without a Routing Constraint
and (b) Routing of s13207 Obtained by the Scan Chain Parti-
tioning Scheme with Three Scan Chains 58

5.1 Simple Memory Array Structure 64

5.2 8 entry x 4 bit Array Implemented Without Folding 66

5.3 8 entry x 4 bit Array Implemented with Folding 66

5.4 Bit Mapping Flow Overview (Left) Flow Details (Right) . . . 70

5.5 RC switch-level simulation flow (a) binary bit mapping (b) sym-
bolic bit mapping . 73

5.6 (a) Layout Overlay for Debug (b) MFAT Debug GUI 79

xiv

Chapter 1

Introduction

The role of DFT (Design-for-test) is to introduce logic which provides

for or enhances the testability of the functional logic and then to use that

logic for manufacturing test of the chip. Having said that, the main goal is

to achieve maximum test coverage with minimum test time so that minimum

DPPM (Defective Parts per Million) level with low cost can be ensured while

shipping the part to the customer. This exhaustive testing becomes more and

more important if the application of the chip is reliability critical (automotive,

communication, and medical applications). Hence, it is required to ensure that

we test every bit of the logic present on the chip and at the same time this

testing should be correct such that it addresses the faults which can come up

during the functional operation of the chip. A general System On Chip (SOC)

normally has lots of digital logic and some analog components, the major ones

being memories. High-performance embedded memory is a key component

in VLSI Design. The benefit to using embedded memory is improved per-

formance, multi-port memories, reduced power consumption, and dedicated

architecture [1].

This chapter provides background on the issues related to testing of

1

embedded memory interface logic using scan-based testing. It also presents

gate modeling of memory subsystems and Bit Mapping of embedded mem-

ories. Section 1.1 describes current testing strategies for memories interface

logic. Section 1.2 describes scan-based at-speed testing for memories inter-

face logic. Section 1.3 shows custom memory subsystem design modeling for

ATPG. Section 1.3 describes the issues related to test time and data volume.

Section 1.4 introduces Bit Mapping of embedded memories. The contributions

and organization of this dissertation are provided in Section 1.5.

1.1 Testing Around Memories

As memories are often the largest occupants of silicon real estate, it

becomes crucial to properly address the interfacing logic around them (shadow

logic). In this section, several testing strategies currently being deployed across

the industry to test this shadow logic will be presented, and detailed analysis

of each methods will be provided. There are two main method applied for

testing the shadow logic around the memories.

1. Memory bypass during scan-based testing - Black box model of memory

2. Memory write through feature during ATPG - Fully functional model of

memory

2

MEM

D Q

RE

WE

clk

scan_in scan_out
BIST_MODE

0

1

0

1

0

1

0

1

Bypass mode

Completely tested with MBIST

Incompletely tested during scan (stuck-at faults only)

Clock Control

Figure 1.1: Scan-based Testing with Memory Bypass Feature

1.1.1 Memory Bypass During Scan-Based Testing

This bypass mechanism allows the observation of values driven by the

input interface logic and at the same time it also gives controllability over

the values driven onto the output interface logic. Figure 1.1 shows bypass

wires which are implemented around the memory. The data values come from

the input interface logic to the output interface logic during scan-based testing

and thus bypass the memory completely. It can achieve high stuck-at coverage

on the interface logic, but, since the bypass path is not the actual functional

path, obtaining delay fault coverage on this logic would be incorrect. There is

wire overhead associated with this strategy. This bypass logic also degrades

the timing at the output side of the memory due to presence of an additional

multiplexer. These paths are generally the most timing critical paths in an

3

SOC and hence, the additional multiplexer can actually limit the maximum

operational frequency of the SOC.

In summary, the surrounding interface logic (shadow logic) is incom-

pletely tested. Only some of stuck-at faults get tested, whereas, the delay faults

remain untested. The logic that remains untested (or incompletely tested) is

represented in Figure 1.1 in yellow.

1.1.2 Memory Write Through During Scan-based Testing

Most of the available industry standard ATPG tools [2] are capable of

reading in the full functional model of memories (RAM/ROM) - either verilog

or tool specific formats. This capability can help design to achieve complete

test coverage around the memories. Using the functional model of memory

helps to observe the values driven by input interface logic by actually doing a

WRITE action onto the memory. At the same time, the output interface logic

can be controlled by doing a READ action onto the memory. This “observ-

ability” and “controllability” of the interface logic allows the complete testing

(both “stuck-at” and “delay” faults) of this logic. Also, the delay fault testing

makes more sense here, because real functional paths which is from memory

input to interface logic are used. Compared with memory bypass method, as

can be seen from Figure 1.2, the yellow area is complectly tested.

4

MEM

D Q

RE

WE

clk
Clock Control

scan_in scan_out BIST_MODE

0

1

0

1

0

1

Completely tested with MBIST

Completely tested during scan

Figure 1.2: Scan-based Testing with Memory Write Through Feature

1.2 Scan-based At-Speed Testing for Memory Interface
Logic

At-speed testing applies a test at the CUT (Circuit Under Testing) with

functional speed to detect defects and slow paths due to process variation.

If the CUT is run at high speed, it is possible to have many timing-related

defects. It is mainly due to manufacturing problems which prevents the device

to operate at-speed.

Figure 1.3 shows a breakdown of failed parts based on logic tests only.

there were no unique stuck-at failures or slow functional failure. At-speed

scan test can detect the majority of defective parts. At-speed functional test

[3] also can screen out many defects but the cost of development and test

5

190

4 6

2

8
0

0

0
24

22

0

0 5

At-speed scan

At-speed functionalSlow
functional

Stuck-at
scan

Figure 1.3: At-speed Scan Testing

time is high. At-speed scan and at-speed Build-In-Self-Test (BIST)[4] can

solve these problems. At-speed scan can cover enough critical paths which

BIST can not sensitize. There are major problems which make at-speed test

difficult. First, the gate model netlist of custom circuit are often simplified

with a behavior model like a black box model into memories. The paths of

custom circuits are critical paths and these paths must be tested with delay

testing. If the gate model does not have these paths then ATPG is unable to

generate the patterns. Using an extracted gate model netlist from a schematic

is the solution which can be replaced with the behavior model. However, an

extracted model is an improper model that ATPG cannot understand. Manual

jobs are required and often this injects human error. Second, current ATPG

simulations are based on a zero delay simulation and require another timing

simulation. Detecting timing related errors is difficult in zero delay simulation,

6

for example it is hard to detect race conditions in zero delay simulation.

1.3 Custom Design Modeling For Test Pattern Gener-
ation

Memories are good candidates for custom design. Custom memory

design is an important part of embedded processor design to get high perfor-

mance. The custom design flow is different from standard design and requires

a separate design hierarchy. The RTL and transistor level models are devel-

oped separately. The critical thing is tht the transistor level model needs to

have same functionality which is described in RTL. ATPG tools use the gate-

level netlist for test generation vector simulation [2]. As can seen from 1.1.2,

the memories need to be modeled with a full functional model to be enable

at-speed testing. Translating the transistor-level netlist into the ATPG tool’s

model is an important step to get the expected output from silicon debug.

Ensuring the equivalency checking between the ATPG tool’s model and the

schematic of the actual design is critical.

1.4 Test Time and Data Volume

Minimizing the number of patterns is important for scan-based at-speed

test. Traditionally only stuck-at test patterns were used. However, the increase

in the number of vectors required for Scan-Based At-Speed Test to get com-

plete coverage is about 2.5X or more [5]. Popular methods to reduce test time

are using multiple scan chains and scan compression logic.

7

1.5 Contributions and Organization of the Dissertation

The focus of this dissertation is a detailed study of testability consid-

erations in the design of embedded memory subsystems. This study includes

scan-based testing, new DFT logic, ATPG modeling, verification of models,

and a new Bit Mapping Methodology for custom embedded memories. The

main reason to tackle the design of embedded memories is the industry trend

to at-speed scan test which is able to reduce cost compared to functional test-

ing. Due to the increase in the number of patterns from scan-based at-speed

test, reducing test data volume is important. A new scan reordering method

is introduced to reduce test data with an optimal routing solution. With in

depth understanding of embedded memories and the methodology developed

during the study of custom memory DFT, a custom embedded memory Bit

Mapping method using symbolic simulation is presented in the last chapter.

The main contributions are the following.

1. A register based testing method with X masking logic is proposed

to prevent Xs from memories, increase compressor mode test coverage, and

reduce the ATPG pattern count. The benefit of doing read and write at the

same cycle in memories is addressed. 6T-cell based memories are modified to

be able to do this behavior during test mode.

2. A novel ATPG pattern generation scheme is proposed to prevent

Xs from memories. The behavior of reading before writing into memories is

prevented using virtual memories information during ATPG run-time.

8

3. The detailed design flow to verify the validity of all the generated

vectors make it ensure that a custom macro design’s ATPG model are built to

correctly emulate the actual design. Using an RC verilog switch level simulator

reduces simulation times dramatically.

4. To prove the practicality of the approach, the design and methodol-

ogy were implemented during Qualcomm DSP(Digital Signal Processor) core

design project.

5. A Novel scan chain partitioning scheme is proposed which test set

and test time reduction along with the optimal routing inside each partition.

With the increased demand for delay testing, reducing test data is needed to

save the test costs.

6. Within a limited design time, delivering accurate logical to physical

Bit Mapping information is an essential process to get high yield from an

embedded memory. A novel Bit Mapping method using symbolic simulation

is introduced in capture 5. This method can be applied to reduce simulation

time for large memories. The overall automated flow is also presented to

handle custom embedded memory design.

9

Chapter 2

Write-through Method for Embedded Memory

with Compression Scan-based Testing

Demands for low defects per million (DPM) rates are increasing as

process technology scaling is able to increase transistor density and add more

functionality to the integrated circuits. For stuck at fault and delay testing,

Scan-based testing in conjunction with ATPG is the preferred approach to

reduces DPM compared to functional testing. However embedded memories

have been a challenge to ATPG gate level simulation due to limitation of gate

level generation method and the additional logic needed to prevent unknowns

(X’s) to be propagated from memory during ATPG testing, this X-propagation

becomes more of an issue when the design has a test compressor. This chapter

examines the challenges of ATPG memory write through method on the design

with chip test compression logic and proposes new design strategy and ATPG

pattern generation method. The proposed design will make the memory look

like a one dimensional set of registers and ATPG pattern generation method

will support write through mode without Xs propagation.

10

Memory

Shadow

Logic

Shadow

Logic

Scanable

FF

Scanable

FF

Scanable

FF

Scanable

FF

Scanable

FF

Scanable

FF

Figure 2.1: Shadow logic around memory

2.1 Introduction

One of the most common design-for-test strategies for SOCs is scan

design which structures a general design to behave as combinational logic

gates. These gates models have been understood by state-of the art ATPG

tool and successfully detected faults with patterns which are generated from

ATPG. However most processors and SOCs have a mixture of large and small

memories which are based on SRAMs, CAMs, ROMs, register-files, FIFOS,

and many other regular structures Even though the memory structure itself

may be covered using other testing techniques like Built In Self Test (BIST),

there is a lot of logic between the regular structure and the rest of the design

(shadow logic) as shown in Figure 2.1.

Several ATPG vendors have provided the capability to model memory

structures with a behavioral model [6]. In [7], Sitram and Sanjay presented

impact and cost of handling memory models for ATPG in which they showed

improvement of the stuck-at and transition fault test coverage with memory

11

modeling methodology.

Another major trend for SOC is to use on chip test compression [8].

A design with a compression methodology can reduce test data volume and

testing time. However one of the major problems with an on-chip test com-

pressor is that, if there is feedback logic like memory in the scan chain whose

contents cannot be uniquely determined to be known values during simulation

(also called X’s or unknown logic values), then the entire signature will get

corrupted and will be of no use. This will result in masking many test patterns

that will affect coverage. Sources of X’s include uninitialized and uncontrol-

lable memory blocks, bus contention, floating buses, multiple clock domains,

and inaccurate simulation models [9].

To remove unknown logic values, a significant amount of engineering

effort is required through each design stage. There is a possibility that an

ATPG memory model generates Xs, because it is difficult for the ATPG tool

to comprehend all the memory operation and control signals for the memory.

Moreover, if an SOC has in addition to compiler memory a lot of custom

memories, making the commercial ATPG understand these memories may be

difficult. This chapter proposes a new design and testing methodology to

apply a write through method which will improve test coverage and reduce

scan overhead for hard macros. The effect of using memory model with on-

chip test compression will be described. It provides a solution to prevent Xs

which are generated from memory when ATPG does not have controllability of

read and write operation of the memory. This chapter is organized as follows:

12

Section 2.2 will introduce the method of modeling memory for ATPG in the

custom design flow and how the memory model fits into the flow, Section 2.3

addresses current memory scan testing methods, Section 2.4 details the register

based testing strategy and Section 2.5 proposes virtual Xs prevention logic for

ATPG. Section 2.6 report the experimental results from an industry embedded

processor with mixed memory and this chapters conclude with Section 2.7.

2.2 Memory Modeling for ATPG

A memory model is for describing generic memory to represent array

behavior. A typical gate netlist can be generated from a Synthesis flow (Fig-

ure 2.2-(1)) and most of the logic in a custom design also can be translated

into gate level netlist(Figure 2.2-(2)). However structures like memory which

has bi-stable logic cannot be automatically translated and even if generated,

a memory netlist can not be understood by ATPG tools [10]. From a test

perspective, memory has been often modeled as a black-box and the logic

surrounding the memory has not been covered due to propagation of X val-

ues from the output of black boxed memory. Figure 2.1 shows the uncovered

logic by ATPG if a memory model was not used. Fault coverage between the

scan-frontier and the memory boundary will be lost due to unknown status.

A method called write through memory, which uses a memory model,

can increase the test coverage. In other words, the surrounding shadow logic

can be tested by the write through method. The write through method is

also important to do delay testing because the many paths through memory

13

RTL Development

White Box Macro Model

Custom Macro Design

Schematic Design

Generate Gate Level Netlist

ATPG Macro level

simulation
ATPG memory model

Gate level model Validation

Memory model Validation

Syntesis

Place & Route

Gate Level Netlist

Top level Design StartMacro level Design Start

Final macro gate level

model

ATPG Top level

initial simulation

ATPG Top level

Final simulation

(1)(2)

Figure 2.2: High Level Overview of Design Flow with Custom Embedded
Memory Showing The ATPG Flow and The Memory Model

14

do essential roles of justification on many delay paths. It is good to know

that the memory model is not for testing memory itself. Instead, embedded

memory can be tested by BIST, functional test or memory scan.

2.3 Current Memory Scan Testing Methods

In this section, two design approaches to test the shadow logic through

scan will be addressed. The first is the bypass method. It is most common

and simple method. It uses wires to bypass memory from the data input to

data output and locates the MUXs to output of the memory. It has a MUX

delay at output of the memory. Due to this MUX delay this design is often

improper for a critical path. This method has issues with at-speed testing

coverage because the memory is modeled as a black-box.

The second method for memory during ATPG is to use a write through

mode, it uses a memory model and requires the control of read and write enable

signals and the memory clock. This method needs sequential ATPG to test the

shadow logic. Sequential ATPG patterns have more than two pulses during

capturing time. This allows input values to propagate to the output of the

memory like one cycle for writing and another cycle for reading into memory.

This technique is attractive because it can provide at-speed testing coverage.

It can cover up macro to macro paths which are often timing critical paths.

However, Currently the write through method has the following drawbacks:

1) Xs propagation; the ATPG memory model can generate Xs if the

memory accesses a location that was not written to. It is difficult for the ATPG

15

tool to understand all the combinations of read, write, data and address. This

may result in reading memory contents that have not been written to already

through previous patterns. Due to the limitation in tool capability for write

through mode, the number of patterns is increased to cover up to desired test

coverage and if the design has a scan compressor, the generated Xs give more

impact to pattern count. Table 2.1 shows how Xs from memories can impact

to static ATPG test coverage. The test coverage came from the same design

with different setup mode, uncompress and compress mode. If there is no

Xs propagation, test coverage of compress mode is equal to or greater than

uncompress mode, but due to Xs from memories, it suffered with Xs in scan

chains. Because the outputs of the scan chains must correspond exactly to the

expected simulated states, any don’t-care bits will corrupt other scan chains.

Don’t-care states from memories need to be eliminated if XOR compression is

used. By doing Xs source analysis the percentage of Xs due to memory is found

to be about 34 percent of the total Xs. Unfortunately, even some Xs can be

eliminated from the design, uncontrolled memories affect the contents of scan

chains during write-through mode due to improper control of write and read

enable signal. To avoid further testability transgressions during automated

Table 2.1: The Effect of X Propagation in Test Compression

Test Mode Test Coverage Pattern Count

Uncompress mode 98.57% 1247

Compress mode 93.24% 1743

16

test pattern generation, the ATPG tool requires paying special attention to the

support needed for memories. However, it is difficult for an ATPG algorithm

to understand each custom macro design and have proper control of the read

and write enable signal control. In order for the ATPG algorithm to create

patterns which pass data through memory, one of the requirements is that the

write control lines need to be available from the top level module, but it is

impossible to add an additional top level pin just for ATPG.

2) Improper memory model and verification time; Many custom mem-

ories can not be described as simple behavior codes. For example, memory

can have multi-port read/write access. Even after these modeling, it requires

a lot of time to verify ATPG model vs. real circuit behavior.

2.4 The Register Based Test Strategy for Embedded
Memory

The basic philosophy behind the register based test strategy is to make

the memory look like a single register during testing mode and force writing

to occur before any read operation in this single register. This modification

is done during the design phase itself. The only requirement is to use a small

number of gates to constrain the address and X masking logic. The next

two sections will show the proposed methodology for two types of memories:

multi-port single cycle, and traditional SRAM 6T cell based memory.

17

2.4.1 Memory that can Write and Read at the Same Cycle

Like high performance multi-port register files, some memories can

write the data at the rising edge and read the data at the falling edge. The

benefit from this behavior with constrained address values is that scan pat-

terns require only two capture pulses for stuck-at-fault detection during write

through, The first pulse is for write and read into the memory. The second one

is for capture from scanable flip-flops. The register file is handling high tim-

ing critical path which is not allowed to use the bypass method (Section 2.3)

which requires MUXs in the memory output path. Usually accessing memory

data through a read operation is a timing critical. It is important not to insert

additional delay into this path. Figure 2.3 shows a multi-ported register file

which has 4 write and 8 read ports. During ATPG mode, all write and read

address ports are constrained and allow to write and read into memory at the

same cycle. To allow accessing memory locations per wordline simultaneously,

different write addresses (wAddr0, wAddr1, wAddr2, wAddr3) and read ad-

dresses (rAddr0, rAddr1, rAddr2, rAddr3, rAddr4, rAddr5, rAddr6, rAddr7)

are applied to each memory during ATPG mode. 32 bit data memory cells

are modeled as 32 flip flops. It is worth to mention that the address paths are

tested by MBIST and the primary concern is the data path.

The modeling og memory as flip-flops has the following advantages:

1. For transition delay testing, it requires only three cycles for capturing.

For example, Write “0”, Read“0” and capture (W0R0, W1R1, Capture)

18

Memory model - 1

32bit data set

 rAddr0

(5'b00000)

rAddr1

(5'b00000)

wAddr0

(5'b00000)

Write Data

port 0
RdData0

RdData1

Memory model - 2

 32bit data set

 rAddr2

(5'b00010)

rAddr3

 (5'b00010)

wAddr1

 (5'b00010)

Write Data

port 1
RdData2

RdData3

Memory model - 3

32bit data set rAddr5

(5'b00100)

wAddr2

(5'b00100)

Write Data

port 2

RdData5

Memory model - 4

32bit data set

 rAddr6

 (5'b01000)

rAddr7

(5'b01000)

wAddr3

 (5'b01000)

RdData6

RdData7

Write Data

port 3

RdData4

rAddr4

 (5'b00100)

Figure 2.3: The Register Based Testing for a Multi-ported Register File

19

are needed rather than five cycles for capturing (W0A1, W1A2, R0A1,

R1A2, Capture). this reduces the sequential depth for ATPG.

2. It does not need complicated memory modeling and RAM-sequential

ATPG.

3. It does not need time-consuming fault coverage management to know

which paths are not covered by MBIST because the proposed method is

the scan-based single solution.

2.4.2 Register Based-ATPG for 6T Cell Based Memory Testing

Typical 6T cell based memory array don’t support read and write oper-

ation at the same cycle during functional mode, but with minimal modification,

a register based test strategy can be applied with changing of sensing data on

the sense amplifier during ATPG test mode.

Figure 2.4(a) and 2.4(b) show a typical memory cell and waveform for

major signals on a 6T-cell based memory. The access starts by asserting the

word line based on the row address and then the read or write signals assert

write enable or read enable. In the case of a write operation one side of the

column will be pulled low and the other side stays high (logic 1) based on the

write data. During normal read operation when the cell word line asserted a

current flows from BL or BLB based on the stored data and a voltage difference

get developed between BL and BLB.

The sense amplifier signal (sense en) is asserted to evaluate the read

20

(a)

cllk

precharge

WL

wren

rden

Sense_en

dataout

Write cycle Read cycle

BL/BLB

Bitline

development

Ta

Td

(b)

Figure 2.4: (a) 6T Based Memory Array (b) Major Signal Waveforms

21

data. It is desirable to do read and write in the same cycle so there will be no

issue in doing so if the read and write uses the same address as the bitlines are

shared and the write operation already is pulling one side of the bitline low so

the sense amplifier will be able to detect the data to be written. Even though

the cell is not used to read, for testing purposes there is full controllability and

observability of all the signals (output data bus) coming out of the array.

2.4.3 X Masking Logic for Scanable Flip-Flops to Output Data
Paths

As pointed out in Section 2.3, Xs from memory can propagate to the

test compressor. Even with a register based test strategy, Xs can be gener-

ated from the register which is a non-scanable cell. This happens when the

first writing occurrs. To prevent the Xs during the first capture cycle (C1),

Figure 2.5 shows how proposed X masking logic can prevent Xs. The final

output (clock) will be input clock of scanable the flip-flops which are located

on output data paths. Note that only the first cycle of capture is masked and

other capture cycles are allowed to observe data from memory. ATPG mode is

asserted during ATPG. Expected clock behavior (clock) is shown in the wave-

form. Because scan able FFs are controlled through this conditional clock and

does not require any gate in the data path, timing impact to critical path is

minimal. Note that this approach is compatible with any commercial ATPG

tool.

22

Phi2

Latch

D Q

Si

CLK

So

Shift

Functional enable

CLK

Shift

ATPG_mode

Clk

Clock

Shift

Clk

Xmask

Xmask

Clock

C1 C2 C3

D Q

Figure 2.5: X Masking Logic

2.5 X Prevention ATPG Method for Custom Embed-
ded Memory

In this section, an ATPG method is introduced to avoid generating Xs

from the memory. This method can be applied when the memory is customized

and the ATPG tool has difficulty to understand the write and read enable of

memory. This method may be used when the memory can do write and read

in the same cycle.

2.5.1 Virtual X Prevention Logic for ATPG

Figure 2.6 provides an overview of how X prevention logic will produce

non-X patterns using ATPG.

The virtual memory is used to keep the status of each memory cell.

23

Memory Address

initalization

Check addressRead enable

write enableUpdate address

valid pattern

invalid pattern

1

0

Dummy_bus

contention

Dummy_bus

Non-contention

ATPG Capture clock Bus

contention checking

Rejected patterns

ATPG Capture clock Bus

contention checking

Accpeted patterns

Figure 2.6: Block Diagram of X Prevention Logic Behavior

Figure 2.7 shows how virtual memory addresses are initialized and updated.

The virtual memory has same address size as the actual memory. During the

ATPG pattern generation step, if a real memory address location is written in

first the matched virtual address is updated as “1”. If the memory address was

read without being written, initialized bit value “0” on the virtual memory

address indicates that the address has not been written and it is expected

to generate Xs from the memory. Dummy bus contention logic generates

the contention based on checked address. ATPG BUS contention detection

algorithm will reject the pattern and regenerate the new pattern.

Bus contention checking can be done through clock-on cycle, which

occurs at the instant the clock is asserted, but prior to the changes which

would occur from propagating sequential gate inputs to their outputs. Figure

24

0

0

0

0

check_addr[0:255]

00000000

00000001

00000010

00000011

11111111 0

.

.

.

.

.

.

.

.

0

0

1

0

check_addr[0:255]

0

.

.

.

.

Write address

00000010

Read address

00000010

Read address

00000000

Dummy_bus non-

contention

Dummy_bus

contention

Update addressAddress initalization

Figure 2.7: Address Initialization and Updated Address

shift_n

rclk

vaild_pattern_1

Clock on

Pre-clock Post-clock

Clock on

Figure 2.8: Contention Checking Method

25

2.8 shows the different portions of a typical capture clock cycle and where

bus contention checking occurs. Clock-on contention checking identifies in-

valid read enable signals. If any pattern has this type of contention, it is

discarded and other patterns are attempted. Bus contention checking can be

done through two ways which are contention checking after pattern generation

and contention checking before pattern generation (ATPG methods). Use of

ATPG methods is more CPU intensive [2]. Figure 2.8 shows valid pattern 1

which is deasserted when an invalid read enable signal is detected. The equa-

tions for valid pattern 1 is described below. WE is a writing event and RE is

a reading event into the memory location.

valid pattern 1 = valid1 [addr] & RE

valid1 [addr] = ∼ reset & WE

A bus with three-state buffers is used to generate dummy bus con-

tention. The Verilog code to implement this logic is shown in Figure 2.9.

2.5.2 Two-Step ATPG Pattern Generation

To reduce the pattern generation complexity two modes (regular ATPG

mode and write through mode) were applied one by one. The regular mode

usually means scan-based memory bypass mode. It is noted that the bypass

method is still useful in cases where the memory surrounding logic is well

covered by the bypass. If the path through memories has room to put Bypass

MUXs on data path this mode can be still be applied, but the write through

mode needs to be applied if the design has uncovered faults in the surrounding

26

module check_pattern_valid (wclk, rclk, a, scan_n);

 input wclk;

 input rclk;

 input [7:0] a;

 input scan_n;

 reg valid_pattern_1;

 wire [1:0] dummy_bus;

 reg check_addr [0:255] ;

 event WRITE_OP;

always @(wclk or a) if (wclk) begin

 check_addr [a] = wclk;

 #0; ->WRITE_OP;

 end

always @(rclk or a or WRITE_OP)

 if (rclk) begin

 valid_pattern_1 = check_addr[a];

 end

 wire iclk, iwclk, wi_clk, i_clk;

 wire [1:0] drv;

 wire [1:0] hitor;

 and scan_rclk (iclk, rclk, scan_n);

 and ud0(drv[0], iclk, 1'b1);

 and ud1(drv[1], iclk, iwclk);

 and ud2(iwclk, ~valid_pattern, ~wclk);

 or uor_0(hitor[0], drv[1], drv[0]);

 or uor_1(hitor[1], drv[0], drv[1]);

 bufif1 ub0_0(dummy_bus[0], 1'b1, hitor[0]);

 bufif1 ub0_1(dummy_bus[0], 1'b1, drv[0]);

 bufif1 ub1_0(dummy_bus[1], 1'b1, hitor[1]);

 bufif1 ub1_1(dummy_bus[1], 1'b0, drv[1]);

 initial $readmemh ("./ram1.data",check_addr);

endmodule

Figure 2.9: Verilog Code for 256X8 Memory of X Prevention Logic

27

logics. Below is a sample of the steps of generating ATPG patterns with

embedded memory:

1. Set to regular mode (Bypass mode)

2. Run regular ATPG - Patterns set 1

3. Write fault list

4. Remove regular mode constraints and apply write through mode con-

straints

5. Read fault list which comes from step 3

6. Run sequential ATPG - Patterns set 2

2.5.3 Verification of X Prevention Logic

X prevention logic is no-faulted during ATPG pattern generation and

does not affect functional and other test mode. ATPG models with X preven-

tion logic must be robustly and effectively verified that the patterns generated

by the ATPG tools based on the gate level models do indeed represent the

schematic therefore the silicon. The scan equivalency between these gate and

transistor level models were verified using industry standard RC Verilog switch

level simulator [11].

28

Table 2.2: The Effect of Register Based Testing and X Prevention ATPG
Method

(A)

Design Regular Regular Mode + Write through Mode (2 steps)
Mode Coverage % of Xs Pattern Count - Basic(Seq)

A 49.63% 91.59% 34.71% 17(316)
B 67.57% 93.11% 36.83% 10(173)
C 97.80% 97.85% 34% 1091(345)

(B)

Design Register Based Testing
Coverage % of Xs Pattern Count - Basic(Seq)

A 97.21% 0% 16(299)
B 98.02% 0% 9(156)
C 98.51% 0% 1063(142)

2.6 Experimental Result

The proposed methods were implemented in a 28nm Qualcomm DSP

core design project. Table 2.2-(A) shows the coverage, percentage of Xs from

scan chain and pattern count of design before applying proposed schemes.

Table 2.2-(B) shows effectiveness of proposed schemes. The test coverage is

increased compared to regular mode and write through mode. The number of

patterns is reduced compared to write through mode. Design A is a register

file which has multi-port read and write ports. Design B is L2 data which

uses 6T Cells. Design C contains designs A, B and more custom embedded

memories. The regular mode means bypass mode (Design B) or non-bypass

mode (Design A). The reason with non-bypass mode of design A is due to

29

a timing critical path through the memory. So it has constrained memory

data outputs for regular test mode. Original designs A and B are modified to

apply register based testing. Bypass MUXs (2 gate delays) are removed from

Design B, and AND/OR gates (1 gate delay) are applied to constrain the

address ports for register based on testing. X masking logic is also introduced

to design A and B for each data output scan cell’s clock. For other memories

(except design A and B) X prevention ATPG method is used to eliminate Xs

when memory address locations are read in first before being written. Design

C is simulated with the test compressor. Non-X values on the scan chains

make the compressor more effective.

2.7 Conclusion

This chapter addressed the issue of Xs propagating to the test compres-

sor. When an SOC design uses custom embedded memories, the ATPG tool

could not control write and enable ports properly during the write through

mode. A register based test strategy and X prevention memory model is

presented for ATPG, which increases the overall test coverage. The test com-

pressor logic was efficiently utilized by preventing Xs from memory. Experi-

ments with industry applications were performed for performance evaluation

and verification of the proposed logic.

30

Chapter 3

Verification of Gate Level Model for Custom

Design in Scan Mode

In this chapter, a flow to validate scan equivalency between the gate

level netlist of a custom circuit design and the schematic using delay aware

industry standard tools will be described. General ATPG tools have not been

tested with delay and results predicted based on 0-delay netlist environment.

Industry has struggled with this 0-delay environments and required thorough

verification. Custom designs are designed using transistor level models and

tools. The transistor level model needs to be translated to the gate level to be

used by the DFT tools. It is essential to have a robust and accurate flow to

verify the gate level netlist with delay. To consider the delay effect, the flow

uses an industry standard RC Verilog switch level simulator to effectively and

thoroughly verify the scan equivalency between these gate and transistor level

models. This is the first time that RC Verilog switch level simulator has been

used to verify the scan equivalency.

31

3.1 Introduction

One important view of the custom macro is a gate level model to be

used for the Automatic Test Pattern Generation (ATPG) tools like TetraMax

[2]. These ATPG patterns are used to screen for manufacture stuck at fault and

transition tests for these custom circuit designs used on the chip. The patterns

generated by the ATPG tools which take in gate level model are used to verify

the silicon. If the gate level model and schematic are not equivalent then the

patterns that been generated by ATPG models do not represent the actual

silicon. This adds more challenges to the silicon debug because when patterns

fail one has to determine whether it is pattern issue or real failure. Debugging

failing ATPG patterns can be extremely difficult and time consuming. It is

essential to verify that the gate level model and the schematic of the actual

design are equivalent [12]. Figure 3.1 shows where the gate level model view

fits in the design flow of the custom macro. The Register Transfer Language

(RTL) used to describe the custom macro often doesn’t include scan in it and

if it does, the scan is added through a manual process that needs to be checked

against the schematic for equivalency. The equivalency checking between the

RTL model and the SPICE model which is done on box 4 of Figure 3.1 is often

targeted only for functional mode and does not cover scan mode because the

full details of the scan mode behavior may not be included in the RTL model.

The two models (RTL and schematic) could be equivalent during functional

mode but different during scan. The flow to generate gate level model (box 6

of Figure 3.1) from schematic differs from one project to another but due to

32

Start Custom Circuit Design

Behavioral RTL

Functional Equivelance

Scan is disable

CDL?=RTL

Spice netlist

Timing, Noise, Layout, Masks

Schematic Entry using Cadence

No

Fabrication

ATPG tools/Tmx

Generate Gate Level Netlist

Silicon

ATPG patterns

Silicon Testing

Pass/Fail

2 3

4

5

Yes

Manual processStructural RTL

7

8

10

Spice netlist

NO

1

1

6

6

Yes

Scan Equivalence

SCH?=vgate

Gate level

netlist

9

Figure 3.1: Custom Design Flow

33

tool limitations and design complexity, the process in many instances requires

manual edits of the netlist or additional constraints/assertions to guide the

tool, this makes the model creation process very error-prone.

This chapter presents a flow to robustly and effectively verify that the

patterns generated by the ATPG tools based on the gate level models do indeed

represent the schematic and therefore the silicon. This chapter is organized

as follows: Section 3.2 introduces a high level view of custom design flow and

how the gate level netlist fits into the flow, Section 3.3 details how the gate

level model is validated and its equivalency with schematic is verified, Section

3.4 shows the experimental results and the chapter concludes with Section 3.5.

3.2 Design Flow

High performance and low power SOC design requires a comprehensive

strategy and multi-level optimization from software to hardware. For the hard-

ware design, all different design styles need to be exploited. One of the critical

decisions that must be made when designing a chip is what portions of the logic

is going to be implemented using a design and what part is synthesized. The

decision whether to select custom design versus synthesis is based on complex

trade off between achieving high density, better timing, lower power versus

added complexity, resources and schedule. Memories (SRAM/CAM), TLB’s,

and register files are good candidate for custom design. Once it is decided to

real a part of the logic using custom design, that logic will be separated out

and put into a new design hierarchy. For custom semiconductor chip designs,

34

the RTL and transistor-level models are developed and verified using separate

CAD tool suites, for most of the design, but are intended to model the same

function. Once complete, the RTL level and transistor-level models must then

checked to ensure that they represent the same Boolean function [13]. One

way to do that is by translating the transistor-level netlist into a gate-level

model through model abstraction and then using Verilog equivalency checking

tools like Verplex [14] to verify functionality. Another way to verify equiva-

lency between the RTL and the schematic SPICE netlist is by utilizing the

switch level simulator like ESPCV [15]. Both approaches have advantages and

typically a flow will use multiple approaches to verifying correctness.

An illustrative custom design flow is shown in Figure 3.1 where it starts

with high level description of the intended functionality and the different spec

such as timing, area, and power. The next step is to generate a schematic

for the logic using schematic capture CAD tools like Cadence Virtues custom

design platform. The schematic can be a mix of standard library cells and

custom cells that are built up from the transistor level typically with a com-

plex hierarchical structure in the design. After generating completion of the

optimize design that implements the required functionality described in the

RTL, functionality of the custom design can be verified against the behavioral

RTL using the ESPCV tool from Synopsys. ESPCV is switch level simulator

that can read in a design in both a behavioral RTL format and a transistor

level netlist format and attempts to perform a symbolic, formal verification of

their equivalency. Since quite often the RTL does not fully model the details

35

of the DFT features built into the design, these features must be disabled and

no verification is done on them. Many tools in the design flow do not deal

well with transistor-level designs so once the design is complete the transistor

level netlist can be translated into a gate level netlist for these tools. Most

of the logic in a typical custom design can be automatically translated into

logic gate logic abstraction tools like the Verplex tools from Cadence. How-

ever structures with more complex behaviors, like SRAM cells, sense amps,

and complex latch structures can not be automatically translated and must

be manually modeled by the designer. There is the potential for errors to

be introduced due to the manual modeling steps - and even the abstraction

tools are not error free - so it is desirable to have an efficient gate level model

validation flow.

3.3 Gate Level Model and Schematics Validation for
ATPG

The gate level model and schematics validation process consists of three

steps: 1) Run through the ATPG tool to generate patterns 2) Use HDL Verilog

simulation to validate the patterns against the gate level model 3) Validate

through ESPCV with the RC Switch level model generated from the SPICE

netlist. Figure 3.2 is an overview for gate level model validation flow. This

flow is described from the standpoint of verifying ATPG patterns and DFT

functionality but the same principles can also be applied to functional mode

verification as well.

36

Run ATPG

Debug

Command file or ATPG

netlist

Test Patterns

Test Bench

HDL simulation

No

ATPG gate level

model Validation

espcv

done

Fsdb dump file

Y
e
s

No

Fsdb dump file

Debug &

comparision

Y
e
s

Gate level netlist

Step 2

Step 1

Step 3

Figure 3.2: Gate Level Model Validation Framework

37

3.3.1 Step 1. Run Through ATPG Tool

Before attempting to generate ATPG patterns, the ATPG Tool first

does a thorough validation of the gate level model from a DFT-compatibility

standpoint. The main goal of this step is to insure the gate level model passes

a series of scan design rule checks. After the DFT DRC stage ATPG patterns

are generated with the goal of achieving 100% fault coverage. In a custom

macro there are often circuits that are difficult to control and/or observe so

the coverage is likely to be well below 100%. To achieve accurate fault coverage

there are times when non-standard gates need to be changed to APTG friendly

standard gates - for example bit line keepers must be modeled in a way that

the tool understands they just preserve a node’s state but don’t actively drive

it. Many of the clocking and control strategies used in custom designs may

confuse the tools so that during the DRC checks and pattern generation the

ATPG tool may believe there are errors causing broken scan chains and invalid

input control. These false errors can prevent successful pattern generation

until the offending circuits are re-modeled in a tool friendly manner. Finally,

the actual memory cell array can be modeled using built-in memory primitive

models which have advantages over using a detailed cell-level model in terms of

simulation time and complexity. This memory model enables the tool to test

shadow logic outside the memory model. Once patterns have been successfully

created the tool can create a test generation pattern output file and Verilog

test bench that will be used in last 2 steps.

38

3.3.2 Step 2. Validation Through HDL Simulation

The second step in the verification flow is to use an HDL simulator like

VCS or Modelsim to validate that the ATPG tool was correctly interpreting

the gate level model by simulating the application of the ATPG patterns to

the design. Problems in the gate level model, invalid ATPG input constraints

and other problems can result in ATPG patterns fail to produce the expected

output results. Failures in the ATPG pattern validation can be debugged using

standard RTL simulation debug tools by creating VCD or FSDB waveform files

for viewing by Novas nWave. The FSDB dump file will also be used in step 3

if the ESPCV find mismatches in the transistor level verification.

3.3.3 Step 3. Validation with a Golden Model

Even with verification of the ATPG patterns against the gate level

model RTL simulation there may be failures on actual silicon tests due to:

1. ATPG results predicted based on 0-delay RTL environment

2. Imperfect gate level model creation flow.

In this flow, ESPCV is applied to the problem of verifying that the gate

level model correctly reflects the transistor level design.

ESPCV is a symbolic simulator that has been tailored to perform cus-

tom circuit equivalence checking. It is designed to provide functional verifica-

tion coverage of a Verilog reference design against a SPICE netlist or Verilog

switch-level design [15].

39

ESPCV provides two modes which are binary and symbolic mode. The

tool is actually primarily intended to be used as a symbolic simulator to verify

the very complex functional modes of the block under all possible input stim-

ulus. For ATPG pattern verification the flow uses the binary mode of ESPCV

to quickly simulate the application of the ATPG patterns to the design. ES-

PCV binary mode is much faster than transistor level simulators like HSIM

and NanoSim which have also been used for this sort of verification. The

flow to generate the golden model is shown in Figure 3.3. First the ESPS2V

[15] utility translates the SPICE netlist to a golden RC verilog switch-level

netlist using a configuration file which has port information. This netlist is

annotated with transistor widths and lengths and process information. This

simple step makes it possible to run ESPCV’s RC mode algorithm that dy-

namically resolves strength issues and automatically calculates net delays to

correctly resolve the behavior of things like SRAM cell write operations and

timing delay chains. Compared to traditional transistor simulators ESPCV

can provide both functional accuracy and simulation speed. This makes it

possible simulate many more patterns and gain much higher confidence in the

equivalence of the two models. For most design EPSCV can get close to 100%

confident by running all patterns. By using the same Verilog test bench for

the VCS gate level verification and the ESPCV simulations debugging failures

is also simplified.

40

RC verilog Switch-level

netlist

Macro.gv

Schematics
Reference design

Behavioral model

Generate golden RC verilog switch-level netlist

esps2v

Configuration file

Testbench file of gate

level netlist

Macro.ver

Run ESPCV

Figure 3.3: The Flow to Generate the Golden Model

Table 3.1: Simulation Time

Number Transistor RC verilog switch
Circuit of Patterns Level Simulator Level Simulator

Simulation Time (mins) Simulation Time (mins)
Circuit A 7 1442 1.83
Circuit B 167 40324 271
Circuit C 411 Not testable 762

41

... Starting ESP simulation:

// 0.00 ns : Begin test_setup

esp Info: DC initialization complete.

// 30.00 ns : Begin patterns, first pattern = 0

// 30.00 ns : ...begin scan load for pattern 0

// *** ERROR during scan pattern 1 (detected during load of

pattern 2)

1 87 6 (exp=0, got=1) // pin

IU_S_sout[64], scan cell 6, T= 6204.00 ns

1 87 10 (exp=1, got=0) // pin

IU_S_sout[64], scan cell 10, T= 6244.00 ns

Figure 3.4: Test Result

3.4 Experimental Result

This section provides details of experimental result on custom designed

circuits taken from QualcommQDSP6. Table 3.1 shows the run time compared

to transistor level simulation. Even for large design ESPCV can verify gate

model with many patterns. It also can simulate with normal verilog file which

has delay parameter. It is fast enough to verify the custom macro gate model.

These were several simulation runs where the gate model was not identical

to the expected values. Figure 3.4 is the snapshot of one of the test results.

It shows the pattern number, expected output, output pin name and time of

failure. From this result and internal dump values, users can easily find the

location of incorrect model.

42

3.5 Conclusion

Gate level model generation for test has traditionally been a complex,

manual process subject to the test engineer’s skill and the designer’s intelli-

gence. This chapter describes a validation method between gate level models

and schematics for custom macro designs. The gate level model does not

contain delay information. Often this results in patterns mismatches. The

proposed framework undergoes a three-step validation process to ensure its

correct functionality. The flow accepts a SPICE netlist from schematics to

generate golden RC Verilog switched level netlists. The test patterns gener-

ated using the ATPG tools are simulated with the delay aware netlists. With

simple set up environment the flow effectively verifies the scan equivalency

between these two models, gate level netlist and schematic.

43

Chapter 4

An Efficient Scan Chain Partitioning Scheme

with Reduction of Test Data under Routing

Constraint

The drawback of adding a delay test is that the test pattern volume

required to keep quality high is expanding many-fold [5]. This is compounded

by the fact that the designs themselves keep getting larger and hence there is

more circuitry to test. Over the last few years, a number of test compression

solutions have been developed. It is important when evaluating compression

techniques to consider the compression in both test time and in test data

volume. Test time is the amount of time the test takes to run on the tester,

while the test data volume refers to the amount of memory needed on those

testers to hold the test pattern information. In this chapter, a proposed scan

chain partitioning scheme considers reduction of test set and test time, and

the optimal routing inside each partitioned scan chain. First, two compatible

scan cells are searched in a input test set. One group of compatible scan

cells is included in one partitioned scan chain, while the other group is in

the other scan chain. In finding these compatible scan cells, the group-based

approach is employed since it provides a more optimal routing solution among

the compatible scan cells in each of these two scan chains. After these two scan

44

chains are filled with compatible scan cells, they will be able to share one of

two compatible columns in the input test set only during the shift-in process.

Therefore, one of two compatible columns can be omitted from the input test

set and the scan operation. Results with ISCAS’89 benchmark circuits show

that the proposed method could reduce test data volume by 25-33% compared

with a normal multiple scan design.

4.1 Introduction

Test time increases dramatically since a larger test pattern is required

to maintain the desired fault coverage as an integrated chip (IC) becomes more

complicated. In order to reduce the test time, the multiple scan chain archi-

tecture is popularly adopted in industry. The multiple scan chain architecture

partitions a long scan chain into multiple shorter scan chains so that each

partitioned scan chain has the almost same length as each other to maximize

reduction of test time. However, the multiple scan architecture demands a

higher number of I/O pins and still has to deal with a very large test data

set. An IC with a large test data set can only be tested with expensive test

equipment having large pin memories to store the test data set. For this rea-

son, reducing the test data volume is very important in reducing the cost of

testing.

Several methods have been proposed for the above test volume issue

in scan testing. Test compression schemes are typically used to reduce the

test volume [16][17][18]. In these methods, the test data can be reduced by a

45

encoding method. An on-chip decompressor changes the encoded test data to

the original test data. However, multiple scan chains require either a separate

decompressor or a serialization circuit. Thus, decreases in test data volume

are achieved through higher DFT area.

As other test volume reduction methods, K. Lee, et al. in [19] argued

that the volume of the test set can be reduced by generating common test

patterns applicable to all CUTs by using the compatibility of test patterns. I.

Hamzaoglu, et al. [20] proposed the Illinois scan architecture, which has two

scan modes, a serial scan mode and a broadcast scan mode. This may alleviate

correlation problems. A further enhancement used in [21] is combining the

Illinois scan architecture and the dynamic scan architecture for reducing test

data. As an alternative approach, K. Miyase, et al. [22] [23] described a scan

tree architecture, where some of the scan cells can take in the same test data

when the trees are mutually compatible.

This chapter proposes a scan chain data reduction method using a scan

chain reordering. Actually scan chain reordering solutions [24] [25] [26] [27] are

optimization technique to minimize the routing area overhead of scan chains.

This technique was combined with the window based grouping method to

reduce congestion.

The technique for designing reducing data volume provides such advan-

tages. It does not require additional DFT logic like the encoding method. It

is applicable to any scan design. Initially, ATPG generates a test set and the

proposed method works on a given test set. Fault coverage does not change

46

from the original test set.

The rest of the chapter is organized as follows, In Section 4.2 the prelim-

inary definitions are introduced. Section 4.3 describes a proposed algorithm to

determine compatible columns and assign these columns to scan chains. Sec-

tion 4.4 presents experimental results on benchmark circuits. Finally Section

4.5 concludes the chapter.

4.2 Preliminaries

This section introduces some definitions that are frequently used in this

chapter. The first step is to find as many compatible columns as possible from

an input test set. A column is compatible with another column in an input

test set when the bit value at each position in the column is the same as the

bit value in the corresponding positions of the other column. Generally, there

can be more than one column compatible with another column in the input

test set.

Definition 1: A compatible column of a column in the input

test set is a column each bit of which in any given position is the

same as the bit in the same position in the other column, where

don’t-care bits can be interpreted as either 0 or 1.

Figure 4.1 shows an example of columns that are and are not compatible

with a particular column in an input test set. As already mentioned, there

usually exist more than one compatible column with respect to a particular

47

1
X
1
0
0
1
1

X
0
1
X
0
1
X

1
1
X
0
0
1
X

0
0
1
1
X
1
X

B C D

Not Compatible

Not Compatible

Compatible

Column A

Figure 4.1: Compatible and Not Compatible Column of a Column in Input
Test Set

column in the input test sets. In Figure 4.1, Columns B and C are compatible

with Column A, because the bits in the rows of Column A are compatible

with those in the corresponding rows of Column B or of Column C, where

don’t-cares are converted as 0 or 1. Column D, however, is not compatible to

Column A, because the first and fourth rows have different bits. Note that

even though Columns B and C are compatible with Column A, they are not

necessarily compatible with each other. In this case, Columns B and C have

different bits in their second rows.

Definition 2: A compatible scan cell of a particular scan cell

is defined as a scan cell whose corresponding column in an input

test set is compatible with the column that is equivalent to the

particular scan cell.

These two definitions will be used throughout the chapter. The next

section discusses the algorithm for finding the compatible columns of each

48

column in the input test sets and then assigns them to it.

4.3 Scan Chain Partitioning Algorithm

The proposed algorithm starts with the physical information about the

placement of the scan cells. The scan synthesis provides the optimal order

of stitched scan cells to create a short length of scan routing with the aim

of having less congestion. The proposed algorithm uses only the placement

information of the scan cells in partitioning a scan chain into multiple ones,

and then the optimal re-routing process is performed within each partitioned

scan chain.

0
X
1

1
0
X

0
X
0

1
0
X

0
1
1

0
X
0

X
1
0

0
X
0

1
X
X

X
1
1

1
X
1

1
1
1

0 1 11

0

1

2

3

11

Placement and
Optimal Stitching

Input Test Set

Figure 4.2: An Input Test Set and its Placement and its Optimal Scan Stitch-
ing

Given the optimal order of the scan cells in Figure 4.2, their optimal

order is ignored, and only their placement information is kept and employed.

Based on the physical information about the scan cells, the division is per-

formed to separate the scan cells into two groups. The scan cells in one group

come from one half of the placements, whereas those in the other group come

49

from the other half. Figure 4.3 shows only a vertical division; however, it could

have been divided into two in a different way, for example, horizontally. The

way that scan cells are divided into two groups is basically the user’s decision,

but the two groups must have almost the same number of scan cells. After the

division, the scan reordering of a test set is conducted. First, the scan cells in

one half of the placement are placed, and then those in the other half follow in

the remaining order of the test set. During this reordering process, the scan

1
0
X

0
X
0

0
1
1

1
0
X

0
X
0

0
X
1

1
X
X

X
1
0

0
X
0

1
X
1

X
1
0

1
1
1

0 1 11

1 2

3

11

Placement

Input Test Set

0

4
5

6

7

10

8 9

Figure 4.3: Reordering and Renumbering After the Division

cells that are physically close to each other in each half are placed together

in the test set. In order to accomplish this systematically, the cluster-based

approach and the near-neighbor approach are used to find the new order of

scan cells in each half of the placement. Now, the columns in the first half of

the input test set physically belong to one half of the placement. On the other

hand, the columns in the second half of the input test set belong to the other

half of the placement. Figure 4.3 illustrates this process.

With the newly reordered input test set, a list of compatible column(s)

(scan cell(s)) of every scan cell in the first half of input test set is created. A

50

1
0
X

0
X
0

0
1
1

1
0
X

0
X
0

0
X
1

1
X
X

X
1
0

0
X
0

1
X
1

X
1
0

1
1
1

0 1 11

Reordered Input Test Set

5 6
SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

List of Compatible Scan Cell

first half second half

6, 9

7, 8, 10

7, 8, 10

6, 9

Figure 4.4: List of the Scan Cells Compatible with the Scan Cells in the First
Half

column(s) (scan cell(s)) compatible to a column in the first half of input test

set is (are) found by checking the column’s compatibility to every column in

the second half. This creates a list of columns compatible with the columns

in the first half, as shown in Figure 4.4. For example, Column 1 in the first

half has three compatible columns (Columns 7, 8, and 10, in the second half,

as shaded in Figure 4.4), because all rows of Column 1 and those of the com-

patible columns are compatible in value. After the list of compatible columns

is generated, the next move is to select one eligible compatible column among

the many compatible columns of each column in the first half of input test

sets. The chosen compatible columns will surely give the optimal routing so-

lution because the selection of the compatible scan cells in the second half is

performed while considering the physical proximity among the scan cells in

the second half. For instance, when the compatible scan cell for scan cell 0 in

the first half shown in Figure 4.4 is found, scan cell 6 is assumed to be picked

as its compatible scan cell. Next, if the compatible scan cell for scan cell 1 in

the first half is found, scan cell 7 would be a good candidate because it has

51

a smaller distance to scan cell 6 than any other scan cells in the second half.

The scan cells 6 and 7 are consecutively numbered because of their closeness.

This selection and connection obviously provides a shorter length.

SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

6, 9

7, 8, 10

7, 8, 10

List of Compatible Scan Cell

6, 9

Window
of Size 2

Figure 4.5: The Definition of a Window

To accommodate this selection process, the term window is introduced

in Figure 4.5. A window is a group of columns in the first half of the input

test sets that is selected and tested to determine its corresponding compatible

columns in the second half. With the input test set in Figure 4.4, the size of

the window is initially set as two scan cells, which means the two columns in

the first half are to be selected and tested together. A window size of 1 means

that selection and testing are no longer performed on a group basis. Thus, the

size of the window must be equal to or greater than 2. The window procedure

is applied to the selection process of the compatible scan cells. The window

for selecting the compatible columns should be the same size as the window

in the first half. Figure 4.5 depicts the concept of the window.

The size of the window depends basically on the user’s decision. A

reasonable size of the window can be found by a thorough investigation of the

52

list of compatible scan cells and the computational complexity. In addition, it

is not difficult to determine a reasonable size for the window. If the selected

size of the window fails to find a sufficient number of compatible scan cells,

reducing the size will be an alternative solution, because a reduced size is more

likely to find a sufficient number of compatible scan cells. Before the details of

the procedure for choosing a group of compatible scan cells are explained, note

that the scan architecture that will have a group of two compatible scan cells is

two scan chains with a shared scan-in, as shown in Figure 4.6. If a three-scan-

chain architecture is adopted with an input test set and a list of compatible

scan cells, two of the scan chains share the same scan-in input, because their

input test data has the same compatibility. Basically, the number of scan-ins

in a multiple-scan-chain architecture is determined by the available number

of input pins and other factors. The current study, however, assumes that

there is no restriction on the available number of input pins. Figure 4.6(a)

depicts one long scan chain with one scan-in and one scan-out, and Figure

4.6(b) shows a proposed scan architecture that has three scan chains with two

scan-ins. Generally, in partitioning a scan chain, the difference in the number

of scan cells in each scan chain should be minimized to make test time shorter

and to make the control circuit simpler.

Now, the detailed procedure for selecting a group of chosen compatible

columns is explained step by step with the help of the following example.

Step 1 (Figure 4.7(a)): A window of size 2 is applied to the first two

scan cells, that is, scan cells 0 and 1 in the first half of the input test set. The

53

Scan-in Scan-out

Scan-in 1

Scan-in 2

SA

0 321 10 11

(a)OneLong ScanChain

(b)Proposed Scan ChainArchitecture

Figure 4.6: Proposed Scan Chain Architecture

SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

6, 9

7, 8, 10

7, 8, 10

List of Compatible Scan Cell

6, 9

Window

:Selected

SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

6*, 9

7*, 8, 10

7*, 8, 10

List of Compatible Scan Cell

6*, 9

Window

:Selected

(a) Step 1 (b) Step 2

Figure 4.7: Process of Selecting Compatible Scan Cells

54

goal in this step is to find two compatible scan cells in the list of compatible

scan cells for scan cells 0 and 1. First, set scan cell 6 in the list of compatible

scan cells as the compatible scan cell for scan cell 0 in the window. Next,

scan cell 7 or 8 in the list of compatible cells is a candidate as a compatible

scan cell for Scan Cell 1 in the window. A scan cell 7 is a better choice than

scan cell 8 because the former is physically closer to scan cell 6. While a

group of two compatible scan cells for two scan cells in the window are being

found, no more processing is necessary in this stage. Now, the two scan cells

in the window and their two corresponding compatible scan cells should not

be selected in further processing because they have already been chosen for

each other. Thus, they are marked with a ”star” symbol, which means they

are no longer available. When the window finds all compatible scan cells for

every scan cell in the window, it shifts by the size of the window.

Step 2 (Figure 4.7(b)): The window moves to the next two available

scan cells in the first half, that is, to scan cells 2 and 3. However, there are no

compatible scan cells for scan cell 2 in the window, so Step 2 fails to select. If

the window fails, it shifts down by 1 scan cell.

Step 3 (Figure 4.8): The window shifts by one scan cell if the

window fails to find a compatible scan cell. Now, the window includes scan

cells 3 and 4. Scan cell 9 in the list of compatible scan cells is selected for the

scan cell 3 in the window because scan cell 6 was already selected in Step 1.

The selecting step moves to the scan cell 4 in the window. Because scan cell 7

was already selected in Step 1, it is excluded for scan cell 4. Now, scan cells 8

55

SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

6*, 9

7*, 8, 10

7*, 8, 10

List of Compatible Scan Cell

6*, 9
Window

: Selected

Figure 4.8: Step 3 - Process of selecting compatible scan cells

and 10 compete for the compatible scan cell. Scan cell 8 is picked here because

it comes first and is closer to the two previously selected scan cells, that is,

Scan cells 6 and 7. Scan cell 10, however, would also be a good pick. Because

this step finds all compatible scan cells to fill the scan chain that shares the

same scan-in with the other, no more processing is required. In this example,

four compatible scan cells and their corresponding scan cells total eight, where

eight is the number of scan cells in the two scan chains that share the same

scan-in. Consequently, the process of selection stops here.

Figure 4.9 shows the last state of the list of compatible scan cells, where

the selected compatible scan cells are marked with the star symbol. The four

chosen scan cells and their partner scan cells in the first half will be assigned

to two scan chains that have the same scan-in, whereas the rest of the scan

cells will be assigned to the other scan chain, as shown in Figure 4.10.

Note that a scan cell in the window and its chosen compatible scan cell

should go to the same position of two scan chains, because they must always

56

SC 0

SC 5

SC 4

SC 3
SC 2

SC 1

SC: Scan Cell

:
:

:
:
:
:

6*, 9*

7*, 8*, 10

7*, 8*, 10

List of Compatible Scan Cell

6*, 9*

Figure 4.9: The Last state of the List of Compatible Scan Cells

Scan-in 1

Scan-in 2

SA

0 1 3 4

6 7

510112

89

Compatible

Figure 4.10: Optimal Assignment of Scan Cells to Three Scan Chains

have the compatible bit. For instance, if scan cell 0 goes to the first position

of one of the two scan chains, its corresponding compatible scan cell 6 has to

go to the first position of the other scan chain. Figure 4.10 depicts the optimal

assignment of all scan cells to two scan chains and to the last scan chain. Based

on this assignment, the routing among scan cells in each scan chain can be

made. To observe the efficiency of the proposed scan chain partitioning scheme,

it can be compared with the conventional three-scan-chain architecture in the

next section. The conventional three-scan-chain architecture is assumed to

assign its scan cells into scan chains based on physical proximity.

57

(a) (b)

Figure 4.11: (a) Routing of s15850 Obtained Without a Routing Constraint
and (b) Routing of s13207 Obtained by the Scan Chain Partitioning Scheme
with Three Scan Chains

4.4 Experimental Results

The proposed scan chain partitioning was performed with ISCAS’89

benchmark circuits with a 0.16um digital CMOS standard cell library used

to produce the placement and scan routing. To compare the resultant scan

length of the proposed partitioning scheme with that of Silicon Ensemble [28],

Figure 4.11(a) depicts the scan length of the three-scan-chain scheme of IS-

CAS’89 s15850 by Silicon Ensemble [28]. For convenience, three scan chains

are connected into one scan chain, because one global connection is basically

similar to three individual connections. On the other hand, Figure 4.11(b)

illustrates the length of the scan chain of the proposed scan chain partitioning

scheme. The depiction shows the scan routing with few cross-overs and little

congestion. The scan routing in Figure 4.11(b) provides a 33% reduction in

test data. If this much cross-over and congestion are allowed in routing the

58

scan path, it is acceptable. If not allowed, compromises should be considered.

One compromise is between the length or congestion of the scan routing and

the reduction rate of the test data. Because most of the cross-over and con-

gestion come from one of two scan chains sharing the same scan-in, the degree

of congestion can be relieved by reducing the reduction rate of the test data.

The approach to controlling the reduction rate is to increase or decrease the

number of partitioned scan chains. Increasing the number of scan chains may

reduce the degree of congestion because there is a possibility of avoiding the

connection of any two scan cells that might create congestion.

Another compromise is between congestion and the size of the window.

As the size of the window increases, it relieves the congestion of scan routing,

because a large window size can provide shorter scan lengths between two

scan cells without congestion than a small window size can. This approach

can provide a short total scan routing; however, if the size of the window

increases, it is highly likely to achieve a smaller reduction rate of test data,

because it is difficult to find all the compatible scan cells that satisfy the scan

cells in the window. This compromise should be taken into account also.

Table 4.1 shows the results of the proposed scan chain partitioning

scheme in terms of the scan length and the reduction of test data. The third

column indicates the scan routing that is optimally obtained by Silicon Ensem-

ble. The fourth column is the number of partitioned scan chains that might

give the best possible result for a benchmark circuit.

When the number of partitioned scan chains is three, two of the three

59

Table 4.1: Results of the Proposed Scan Chain Partitioning Scheme

Circuit # scan Optimized wire # chains Resulting wire Reduction rate
flip-flops length length of test data

s13207 669 1.15879e6 3 2.8650e6 33.3%
4 2.3790e6 25 %

s15850 597 1.14044e6 3 2.9095e6 33.3%
4 2.5147e6 25 %

s38417 1636 2.9967e6 4 5.9448e6 25%
s38584 1452 2.79421e6 4 8.43766e6 25%

scan chains share the same scan-in, and 33.3% of the columns in test sets are

not needed. That reduction is indicated in the last column of Table 4.1. With

the reduction, the length of scan routing is increased by the proposed scan

partitioning scheme; however, the increase in the length of the scan routing

is not significant in that it maintains the same order of magnitude. The one

largest benchmark has an increase of one order of magnitude greater than that

of Silicon Ensemble. That increase, however, ranges from threefold to fivefold,

as with other benchmarks. That increase is not remarkable in routing the scan

path. Thus the results here are considerable and significant.

As for computational complexity, the proposed scheme is not time-

consuming. First, the identification of compatible scan cells for the scan cells

in the first half of input test set requires a computational complexity of O(n2),

where n is the number of scan cells. Because n is not large, the computational

complexity is not large. In fact, actual complexity is less than O(n2), because

only half of the scan cells find their compatible scan cells. The computational

60

complexity of picking one eligible compatible scan cell is O(n2 ∗m), where n

is the number of scan cells and m is the number of iterations in seeking the

number of partitioned scan chains. The number of scan cells is actually large

compared with the number of iterations; therefore, the number of scan cells is

the dominant factor in determining computational complexity. The number

of scan cells, however, is small, and for that reason the total complexity in

finding the compatible scan cells is not great. Other computational factors,

like numbering the scan cells based on their physical proximity, employ the

idea of the near-neighbor algorithm [25]. Their computation does need a little

time to number scan cells when finding the compatible scan cells. Overall,

however, computational complexity is small.

4.5 Conclusion

This chapter presented a method for finding compatible scan cells which

are physically close to each other. With the compatible scan cells, designers

can provide a reduction of test data and optimal routing solution. in addition,

the reduction in pin counts and test data volume enables utilization of low cost

testers. Experimental results for the ISCAS’89 benchmark circuits showed

that this test method is indeed very simple and useful to achieve test data

reductions.

61

Chapter 5

Automated Bit Mapping Generation

Methodology for Custom Embedded Memory

One of the important steps in custom memory design for silicon vali-

dation is the generating the logical to physical bit mapping information. This

bit mapping information is an essential factor to get zero defects and therefore

high yield. Test engineers used this information to debug failures in the mem-

ory blocks on the tester. Historically generating the bit mapping information

required the designer to manually figure out this mapping and either create

a diagram by hand or write a custom script to describe the mapping. This

manual process is error prone and hard to validate. This chapter will show a

novel bit mapping flow using symbolic simulation. By simulating a memory

symbolically, simulation time can be dramatically reduced. Also an automated

flow is presented for generating the final mapping information.

5.1 Introduction

CMOS memory blocks are generally arranged in an array structure

comprised of rows and columns. The data can be written and read from one

(or more) row at a time. An address is supplied to select which row to read or

62

write to. The address is usually encoded and a row decoder is used to select

the desired row.

Figure 5.1 shows a simple memory block comprised of three parts :

1. Memory Array: This is the actual memory storage component of the

design containing m columns (bitlines) by n rows (wordlines) of memory

cells.

2. Row Decoder: This is used to decode an x bit wide encoded address

into an n bit wide decoded address which in turn is used to select the

corresponding wordline to enable for read/write.

3. Data Path: This contains read and write circuitry for each bitline. Typ-

ically this would be a bit line driver for write operations and a sense

amp/output driver for read operations.

For the simple memory case, the lookup table can be written as shown

in Table 5.1. This maps data+address combinations to exact x,y memory

locations. It is assumed that the origin of the array is at (0µ,0µ) and the

width and height of each memory cell is 1µ .

In its simplest implementation the physical array structure can be made

to match the logical intent. However often this is not the case. In some cases

the logical aspect ratio of the memory can not be implemented physically

because of electrical or physical limitations, in which case the array can be

folded to accommodate a different physical aspect ratio. A tall and skinny

63

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R
o
w
D
e
c
o
d
e
r

Encoded Address

(raddr/waddr<0:x>)

Data Path (read / write circuitry)

Primary IO bus

(din/dout<0:y>)

Single wordline

Single bitline

0 1 2 3 m-3 m-2 m-1 m

3

2

1

0

n

n-1

n-2

n-3

Memory array

Data bit index

Decoded address

Figure 5.1: Simple Memory Array Structure

64

Table 5.1: Simple Bitmapping Table

Data Address X Y

1000.. 0000 0 0

0100.. 0000 1 0

0010.. 0000 2 0

. . . .

. . . .

1000.. 0001 0 1

0100.. 0001 1 1

0010.. 0001 2 1

array may cause the read operation to take longer since the bitlines are too

long. To fix this the array can be folded into a more desirable aspect ratio. For

example a logical array of 8 entries with 4 bits in each entry can be built as a

physical array of 4 rows with 8 bits in each row (see Figures 5.2 and 5.3). This

is accomplished by multiplexing the data where a single physical row holds two

logical entries. A column multiplexer is then used to select which half of the

physical row the desired data is read or written to. One or more address bits

(Addr⟨2⟩ in this example) can be used to select between the different physical

bitlines holding the logical column data.

Furthermore, in addition to column multiplexing, the data columns and

rows can be interleaved, flipped or scrambled for various reasons. This does

not pose any functional problems for the design since the data is always read

and written to the same physical memory cell. However this poses additional

complexity in generating the bit mapping information. In addition to the

65

One logical memory

column stored in one

bitline

R
o
w
D
e
c
o
d
e
r

A
d
d
r<
0
:2
>

Addr<0:2>

Data path

Data<0:3>

0 1 2 3

7

6

5

4

3

2

1

0

Figure 5.2: 8 entry x 4 bit Array Implemented Without Folding

R
o
w
D
e
c
o
d
e
r

Addr<0:2>

Data path

Data<0:3>

0 1 2 3

3

2

1

0

A
d
d
r<
0
:1
>

Ad
dr
<2
>

One logical memory

column is stored in two

bitline

Logical rows 3 & 7 are

interleaved in physical

wordline 3

Figure 5.3: 8 entry x 4 bit Array Implemented with Folding

66

above complexities, the spacing between memory cells can vary because of

banking and gaps for read or compare circuitry in the case of CAMs. This

makes it harder to predict the exact coordinates of the memory cells with a

simple script.

With the System on Chip (SoC) trend, there is an increasing demand to

use embedded memories. Diagnosing these built-in memories has become more

important to get high yield [29] [30] [31]. MFAT (Memory Failure Analysis

Tool) is a combination effort with online ATE (Automated Test Equipment)

code which logs memory failure information and offline scripts which map that

failure information to physical bitcell coordinates. The failure information

captured during ATE testing and then the offline processing script converts

the captured logical BIST information to the corresponding physical memory

instance and bitcell coordinates.

In order to perform the mapping, three sources of information are re-

quired:

1. The chip layout files to know the type, origin, orientation and size of

each memory instance.

2. The mapping between the BIST partitioning (memory collars, address

range and data bit range) and each memory instance.

3. The location and size of the bitcells corresponding to the macro address

and data bits.

67

The layout files in #1 above are generated in the process of chip tape

out. The mapping in #2 above is known for most memories during BIST in-

sertion: the majority of arrays are compiled memories where a single memory

instance is tested by a single BIST collar and there is 1:1 mapping between the

BIST and memory address and data busses. For custom macros this mapping

can be fairly complicated: due to performance considerations the BIST inser-

tion might be done several hierarchal levels above the actual memory. This

introduces the potential for address and data bus scrambling and results in

cases of multiple BIST collars testing a single macro instance, a single BIST

collar testing multiple macro instances, or a combination of the two where sub-

sets of a memory’s address range are tested by several BIST collars. The bitcell

location in #3 is delivered as an “FA (Failure Analysis) file” for each memory

type. The FA file is in the format of a lookup table with a single line per

combination of memory address and data bit. The bit mapping information

is available from this FA file.

5.1.1 Objective of This Work

The objective of this work is to create an automated bit mapping flow

and reduce the simulation time. More specifically, the flow can handle custom

macro designs. Historically generating the bit mapping document for custom

macro design required the designer to do manual creation of bit mapping. This

creates two layers of potential user error as shown below. It is desirable to

prevent those errors:

68

5.1.1.1 First Order Errors

First order errors occur when the designer doesn’t really know the ac-

tual mapping, this can happen because the circuit designer in charge of the

memory block is different from the mask designer building the actual layout.

The mask designer will often build the memory using hierarchical sub blocks

that get flipped and mirrored several times through out the hierarchy. At the

end, the design passes logical to physical checks and can be extracted and

simulated, so the circuit designer is none the wiser.

5.1.1.2 Second Order Errors

In this case the designer does know the correct mapping pattern. There

is possibility that the designer makes mistakes in the custom script created to

generate the bit mapping file. Or in the case of the diagram, the details are

not conveyed in a comprehensive enough way and the mapping information

is misinterpreted by the test engineer. These errors are hard to detect by

existing methods. The size of the bit mapping file (which can be hundreds

of thousands of lines) makes it impossible for the designer to comprehensively

debug it without a visual representation of the data.

5.2 Bit Mapping Flow Overview

This section presents overall flow of bit mapping that can automatically

generate the bit mapping information directly from the physical memory layout

and transistor level logic simulations. The flow uses several commercial tools

69

Layout

Generate x,y

coordinates for

mem cells

Schematic

Map data/address to

exact mem cells

Combine to generate data/

address to x,y mapping

Extract additional information

Generate debug layouts and files

Layout

Calibre / query

Schematic

Flat netlist with

device x,y

coordinates

Find all bitcells

prBoundary

(SKILL)

List of all betcell bBox:

<X1> <y1> <x2> <y1>

Grep for one

device in all

bitcells (Perl)

List of device and x,y:

<device_name> <x> <y>

Replace device x,y with bitcell bBox

& Add rest of fa file data (Perl)

Final FA file

with all fields

Logical Bit Mapping

simulation

Add data/address mapping:

<device_name> <data> <address> <X> <y>

Create Layout overlay cells with

data/address info (SKILL)

Layout overlay cell

for inspectionDebug files

for each field

Debug GUI to

highlight fa data in

layout

Create debug replay files

Xtro level

netlist

netlister

Figure 5.4: Bit Mapping Flow Overview (Left) Flow Details (Right)

with some custom code and user interface layers developed in-house. The flow

can be broken down into the following areas (see Figure 5.4)

70

1. Physical coordination information - Generate a mapping between all

memory cells in the design and their physical x,y coordinates

2. Logical Simulation for Bit Mapping - Simulate to exercise all data/address

combinations for each memory

3. Combine the two mapping tables to generate data/address to x,y map-

ping

4. Extract additional design information like banking and indexing needed

to generate the full FA format

5. Additional debug tools and GUI interface to visually debug the generated

bit mapping

5.3 Physical Coordination Information

To find memory cells’ x,y coordinates, the first step of the flow is to get a

full list of the memory cells in the design. To accomplish this, Mentor Graphics’

Calibre LVS (Layout vs. Schematic) [32] is used, which is normally used

to validate the final layout against the designer created schematics. Calibre

has a query utility that allows generating a flat transistor level netlist with

x,y coordinates for each transistor in the design. Next the netlist is parsed

and searched for a specific transistor naming pattern representing one of the

transistors in the memory cell. The user has to specify this pattern since it is

design specific. This gives a list of the occurrences of specific transistor in all

of the memory cells in the design.

71

5.4 Logical Simulation for Bit Mapping

The relationship between a memory data+address combination and an

actual bitcell location can be found by a simulation. The address and data

space are swept though all ranges and each memory cell location in the netlist

is probed to see where the data+address combination got written. an RC

switch-level simulator is used for this purpose [15]. This simulator has been

tailored to perform custom equivalence checking on transistor level netlists.

It is designed to provide functional verification coverage, Verilog vs. SPICE

netlist equivalency checking or Verilog switch-level design simulation, but this

simulator is used for a different purpose to find out the memory cell location.

It is effective due to its event-driven nature and efficiency of simplified switch-

level model, The binary mode of this simulator provides a good mechanism

to match between the physical location of memory cells and the logical cell

information. Figure 5.5(a) shows the list of inputs to run this simulation.

The RTL simulation with VERA [33] is used to generate a testbench for the

RC switch-level simulator. The SPICE netlist is translated into a switch-

level Verilog netlist using esps2v [15]. When the data is written to a specific

memory cell, the log file includes that memory cell instance name along with

the data/address and x,y information.

However, if such binary mode RC Verilog simulation is used there is

one drawback: the simulation time can be too long for large memory blocks.

For example, a 2KB x 16 sub array with 1 simulator license can take many

days to finish the simulation. The run time can be reduced by partitioning

72

Binary mode

RC switch-level simulation

RC switch

level

netlist

List of device and x,y:

<device_name> <x> <y>

data/address mapping:

<device_name> <data> <address> <X> <y>

VERA RTL simulation

Testbench SPICE netlist

(a)

Symbolic mode

RC switch-level simulation

RC switch

level

netlist

List of device and x,y:

<device_name> <x> <y>

Data/address mapping:

<device_name> <data> <address> <X> <y>

Constraint file

Testbench setup

from functional

equivalency

checking
Display

system tasks
SPICE netlist

(b)

Figure 5.5: RC switch-level simulation flow (a) binary bit mapping (b) sym-
bolic bit mapping

the testbench or matching the single sub array to different locations, but these

options require a lot of manual work. To address this issue more efficiently

the logical bitmap flow using symbolic simulation was developed. It uses fact

73

that when the simulator encounters a symbolic input, it propagates a Boolean

expression. These symbolic expressions can be searched for when probing the

memory nodes instead of looking for a simple 0 or 1 value. Using just 1

symbolic cycle, all memory cells are inspected which gives the same results as

binary mode simulations in a fraction of the time. Figure 5.5(b) shows this

flow. An initial simulation setup comes out from the functional equivalency

checking and additional constraints were used to propagate only address and

data symbolic input to memory cells. Based on the cell type of memory,

display system tasks are added into RC switch level netlist to print out the

hierarchical names of memory cell. The simulation run time in this case is a

few minutes instead of hundreds of days. Table 5.2 shows the simulation time

to compare with the binary bit mapping method.

5.5 Generating Memcell Box Data

So far there are single x,y coordinates in our mapping tables corre-

sponding to the origin of a single transistor inside each memory cell. The

Table 5.2: Simulation Time of Binary and Symbolic Bit Mapping

Design Name # of bitcells Binary Bit Mapping Symbolic Bit Mapping

A 2176 12 sec 0.47 sec

B 11264 60 sec 0.87 sec

C 262144 Not testable 28 mins

74

complete Bit Mapping information however requires two sets of coordinates:

x1,y1 representing the lower left corner of the memory cell and x2,y2 repre-

senting the upper right corner of the cell. To get this information, a custom

Cadence SKILL [34] procedure is used that loops through all the cells in the

block hierarchy and locates all the memory cells. It then looks for a prBound-

ary shape in the layout which represents the extents of the cell. The result of

this step is a file containing a list of all x1,y1,x2,y2 bounding box coordinates

of all the cells in the design translated to top level memory coordinates. This

file will be parsed later in the flow and each x,y coordinate of the original

mapping will be matched with the corresponding x1,y1,x2,y2 coordinate from

this file.

5.6 Generating the Final FA File

Along with the single table which contains the x1,y1,x2,y2 coordinates

and data + address combinations from the previous step, additional infor-

mation is required. The values of those fields are extracted automatically as

follows:

1. Row & Column: After sorting the data by x,y coordinates the Row &

Column information is organized by the order of the data. Cells with

matching y and increasing x belong to a single row. Similarly cells with

matching x and increasing y belong to a single column. The rows and

columns are numbered by increasing order from the lower left corner of

the design.

75

2. Bank: Looking at the x,y sorted data cells with touching boundaries

are expected to belong to the same bank. When cells where x2 of the

first cells does not equal x1 of the second cells, there is a horizontal gap

between them. Similarly vertical gaps are found by looking at the y2

and y1 coordinates of neighboring cells. Since not all gaps correspond to

different banks (some gaps correspond to read or compare circuits within

the same bank) the designer can specify a gap threshold to filter those

out.

3. Index: This corresponds to the portion of the address used for column

muxing. The rest of the address bits are used for row decoding. Row

decoding and column muxing is distinguished by the direction the data

moves in. For example, if the address space is swept and certain bits

of the address correspond to cells arranged vertically then these bits

are used for row decoding. if other bits correspond to cells arranged

horizontally then they are used for column muxing.

4. Wordline: Now that index and row decode portions of the address space

are identified, the row decode bits can be swept to figure out the cor-

responding memory rows exercised by them. These rows are then num-

bered in increasing order matching the row decode address they corre-

spond to.

5. Bitline: Similarly to the wordlines, the bitlines are determined by sweep-

ing through the index portion of the address space in combination with

76

the data bus bits.

5.7 Debugging the FA File

Given the massive amount of data in a FA file (some blocks have 256,000

lines with 9 data fields in each line) it’s humanly impossible for a designer

to manually inspect the data in the file. To get around this, a couple of

visualization tools have been developed:

5.7.1 Layout Overlay Cells

Using a custom SKILL procedure, the data is read from the FA file to

generate static overlay cells that can be placed on top of the real layout. These

overlay cells have informational shapes and labels that mark the boundary of

each cell in the FA file and annotate the values of the different fields. This

allows the designer to visually inspect the data on top of the real layout (see

Figure 5.6(a))

5.7.2 Interactive Debug GUI

The layout overlay cells are great for making sure the x,y coordinates

in the FA file fit perfectly on top of the real layout cells. They are also

helpful in debugging smaller designs, but the static nature of the overlay cell

makes it hard to debug large designs. To address this issue, a Debug GUI

(Figure 5.6(b)) was created that allows the designer to sweep through any

combination of the FA fields and have the corresponding cells highlighted in

77

the layout. There is also a replay feature that allows the designer to create

files with specific data and or address sweeps and have the tool sweep through

them and play an animation of the corresponding cells in the layout.

Both the Layout overlay cells and the debug GUI are not restricted

to debugging FA data generated by this flow. Even if a designer has an FA

file generated by other means, these debug tools can be used to validate the

accuracy of their data.

5.8 Conclusion

The automatic flow for bit map generation described in this dissertation

has been successfully used in several Qualcomm DSP(Digital Signal Proces-

sor) core design projects across several technologies (65nm, 45nm and 28nm).

It has eliminated much of the inherent user error in the FA files delivered

to the silicon validation team and improved confidence in the testing results.

To deliver accurate information within a limited time through design tape-

out, the automated flow helped quickly to generate bit mapping information

for complicated custom macro design. Using the symbolic simulator dramat-

ically reduced simulation time and the developed GUI debug tool gave high

confidence that the data is correct.

78

(a)

(b)

Figure 5.6: (a) Layout Overlay for Debug (b) MFAT Debug GUI
79

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This dissertation addresses four testability considerations for design

with embedded memory namely,

Test coverage for memory interface logic

Gate model verification with delay aware netlist

Delay testing cost in terms of test time and data volume

Custom embedded memory bit mapping.

• The memory interface logic has been less of a consideration, but with

the demands of delay testing, the paths through memories are critical

ones and it is required that they be covered by scan based testing to

reduce cost. The issue of X generation from memories was addressed.

To resolve this issue, register based testing with X prevention logic and

an X prevention ATPG method were proposed. These methods showed

increased test coverage without an increase in the number of patterns.

• Gate model generation for test is an important task to do with scan-based

testing without any mismatches. There have been many challenges to

80

do this job correctly. The methodology developed in the dissertation ac-

cepts a SPICE netlist from a schematic to generate a golden RC verilog

switched level netlist. The test patterns generated using the ATPG are

simulated with a delay aware netlist. Because this delay aware netlist

comes from the schematic after the layout designer has finished the place-

ment, it represents the exact delay from the design point of view. Using

the new methodology, the designer can also improve the design to in-

crease the test coverage and avoid mismatches.

• The cost of delay test has been increased due to volume demand for ad-

ditional delay patterns which can require testing for more than stuck-at

fault patterns. The third method proposed a way for finding compatible

scan cells which are physically close to each other. Using this compatible

scan, test data, and test time can be reduced with optimal routing.

• A custom embedded memory often comes with address scrambling which

causes errors in the bit mapping information. Generating this mapping

table is an essential stage to find memory faults during post-silicon de-

bugging. The suggested methodology was the first time symbolic bit

mapping was used which saves simulation time. A newly developed au-

tomated flow were presented.

81

6.2 Future Work

For the future work, the goal is to establish a complete flow to do delay

testing which includes path delay fault testing.

Path delay fault testing is becoming a very important test method to

detect small delay defects, but without proper handing of embedded memories

scan-based at-speed testing often ignores critical paths in the design. There-

fore, the current work is an important step to do correct things for path delay

testing.

82

Bibliography

[1] E. J. Marinissen, B. Prince, D. Keltel-Schulz, and Y. Zorian, “Challenges

in Embedded Memory Design and Test,” in Proc. of Design, Automation

and Test in Europe, Mar 2005, pp. 722 – 727, Vol. 2.

[2] Synopsys Inc., “TetraMAX,” Version E-2010.12-SP2, 2010.

[3] J. Saxena, K. M. Butler, J. Gatt, R. Raghuraman, S. P. Kumar, D. J. Camp-

bell S. Basu, and J. Berech, “Scan-Based Transition Testing - Implemen-

tation and Low Cost Test Challenges,” in Proc. of International Test

Conference, Oct. 2002, pp. 1120–1129.

[4] M. P. Kusko, B. J. Robbins, T. J. Koprowski, and W. V. Huott, “99%

AC Test Coverage Using Only LBIST on the GHz IBM S/390 zseries 900

Microprocessor,” in Proc. of International Test Conference, Oct. 2001,

pp. 586–592.

[5] P. Gillis, K. McCauley, F. Woytowich, and A. Ferko, “Low Overhead

Delay Testing of ASICs,” in Proc. of International Test Conference,

2004, pp. 534–542.

[6] P. Wohl and J. Waicukauski, “Using Verilog Simulation Libraries for

ATPG,” in Proc. of International Test Conference, 1999, pp. 1011–1020.

83

[7] S. Yadavalli and S. Sengupta, “Impact and Cost of Modeling Memories

for ATPG for Partial Scan Designs,” in Proc. of International Test

Conference, 1997, pp. 274–278.

[8] N. A. Touba, “Survey of Test Vector Compression Techniques,” IEEE

Design Test of Computers, vol. 23, no. 4, pp. 294 –303, Apr 2006.

[9] S. Mitra, S.S. Lumetta, and M. Mitzenmacher, “X-tolerant Signature

Analysis,” in Proc. of International Test Conference, Oct. 2004, pp. 432

– 441.

[10] E. K. Vida-Torku and G. Joos, “Designing for Scan Test of High Perfor-

mance Embedded Memories,” in Proc. of International Test Conference,

Oct 1998, pp. 101 –108.

[11] G. Seok, B. Mohammad, H. Kim, and P. Bassett, “Verification of gate

level model for custom design in scan mode,” in Microprocessor Test and

Verification, 2007.

[12] S. Kundu, “Gate Maker: A Transistor to Gate Level Model Extractor

for Simulation, Automatic Test Pattern Generation and Verification,” in

Proc. of International Test Conference, 1998, pp. 372–381.

[13] K. Zarrineh, T. A. Ziaja, and A. Majumdar, “Automatic Generation and

Validation of Memory Test models for High Performance Microproces-

sors,” in International Conference on Computer Design: VLSI in Com-

puters & Processors, 2001, pp. 526–529.

84

[14] Cadence Inc., “Verple,” Version 6.1, 2006.

[15] Synopsys Inc., “ESPCV,” Version 2010.06-SP1, 2010.

[16] B. Koneman, “LFSR-Coded Test Patterns for Scan. Designs,” in Proc.

of European Test Conf, 1993, pp. 237–242.

[17] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan Vector Compres-

sion/Decompression Using Statistical Coding,” in Proc. of VLSI Test

Symposium, 1999, pp. 114–120.

[18] A. Chandra and K. Chakrabarty, “Frequency-Directed Run-Length (FDR)

Codes with Application to System-on-a-Chip Test Data Compression,” in

Proc. of VLSI Test Symposium, 2001, pp. 42–47.

[19] K. J. Lee, J. J. Chen, and C. H. Huang, “Using a Single Input to Sup-

port Multiple Scan Chains,” in Proc. of International Conference on

Computer Aided Design, 1998, pp. 74–78.

[20] I. Hamzaoglu and J. H. Patel, “Reducing Test Application Time for Full

Scan Embedded Cores,” in Proc. of International Symposium on Fault

Tolerant Computing, 1999, pp. 260–267.

[21] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur,

and T.W. Williams, “A Reconfigurable Shared Scan-in Architecture,” in

Proc. of VLSI Test Symposium, 2003, pp. 9–14.

85

[22] K. Miyase and S. Kajihara, “Optimal Scan Tree Construction with Test

Vector Modification for Test Compression,” in Proc. of Asian Test Sym-

posium, 2003, pp. 136–141.

[23] K. Miyase, S. Kajihara, and S. M. Reddy, “Multiple Scan Tree Design

with Test Vector Modification,” in Proc. of Asian Test Symposium, 2004,

pp. 76–81.

[24] M. Hirech, J. Beausang, and Xinli Gu, “A New Approach to Scan Chain

Reordering Using Physical Design Information,” in Proc. of International

Test Conference, 1998, pp. 348–355.

[25] S. Makar, “A Layout-Based Approach for Ordering Scan Chain Flip-

Flops,” in Proc. of International Test Conference, 1998, pp. 341–347.

[26] D. Berthelot, S. Chaudhuri, and H. Savoj, “An Efficient Linear Time

Algorithm for Scan Chain Optimization and Repartitioning,” in Proc. of

International Test Conference, 2002, pp. 781–787.

[27] L. Guiller, F. Neuveux, S. Duggirala, R. Chandramouli, and R. Kapur,

“Integrating DFT in the Physical Synthesis Flow,” in Proc. of Interna-

tional Test Conference, 2002, pp. 788–795.

[28] Cadence Inc., “Silicon Ensemble,” Version 4.5, 2005.

[29] C. H. Stapper, F.M. Armstrong, and K. Saji, “Integrated Circuit Yield

Statistics,” Proceedings of the IEEE, vol. 71, no. 4, pp. 453 – 470, Apr

1983.

86

[30] D. Y. Lepejian, J. M. Caywood, A. Kablanian, F. J. Ferguson, and A. Jee,

“An Automated Failure Analysis (AFA) Methodology for Repeated Struc-

tures,” in Proc. of VLSI Test Symposium, Apr 1994, pp. 319 –324.

[31] J. D. Segal, T. Ho, B. Hodgkins, P. Misic, J. Lin, and M. Yegnashankaran,

“Predicting failing bitmap signatures for memory arrays with critical area

analysis,” in Advanced Semiconductor Manufacturing Conference and

Workshop, 1999, pp. 178–182.

[32] Mentor Inc., “ESPCV,” Version 2010.03, 2010.

[33] Synopsys Inc., “VERA User Guide,” Version X-2005.12-7, 2005.

[34] T. J. Barnes, “SKILL: a CAD System Extension Language,” in Proc. of

Design Automation Conference, Jun 1990, pp. 266 –271.

[35] A. K. Majhi, G. Gronthoud, C. Hora, M. Lousberg, P. Valer, and S. Eichen-

berger, “Improving Diagnostic Resolution of Delay Faults using Path De-

lay Fault Model,” in Proc. of VLSI Test Symposium, 2003, pp. 345–350.

[36] M. A. Breuer and S. K Gupta, “New Validation and Test Problems for

High Performance Deep Sub-Micron VLSI Circuits,” in Proc. of VLSI

Test Symposium, 2000, p. 8.

[37] V. R. Devanathan, A. Hales, S. Kale, and D. Sonkar, “Towards Effective

and Compression-Friendly Test of Memory Interface Logic,” in Proc. of

International Test Conference, Nov. 2010, pp. 1 –10.

87

[38] S. R. Nassif, “Modeling and Analysis of Manufacturing Variations,” in

Proc. of Custom Intergranted Circuit Conference, May 2001, pp. 223–228.

[39] Z. Barzilai and B.K. Rosen, “Comparison of AC Self-Testing Procedures,”

in Proc. of International Test Conference, 1983, pp. 89–94.

[40] J. L. Carter, V.S. Iyengar, and B. K. Rosen, “Efficient Test Coverage De-

termination for Delay Faults,” in Proc. of International Test Conference,

Sept. 1987, pp. 418–427.

[41] G. L. Smith, “Model for Delay Faults Based Upon Paths,” in Proc. of

International Test Conference, Oct. 1985, pp. 342–349.

[42] K. Heragu, V. D. Agrawal, and M. L. Bushnell, “Statistical Methods for

Delay Fault Coverage Analysis,” in VLSI Design Conference, Jan. 1995,

pp. 166–170.

[43] J. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Transi-

tion Fault Simulation,” in IEEE Design & Test of Computers, Apr. 1987,

pp. 32–38.

[44] K. T. Cheng, S. Devadas, and K. Keutzer, “Delay-Fault Test Generation

and Synthesis for Testability Under a Standard Scan Design Methodol-

ogy,” IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 12, no. 8, pp. 1217 –1231, Aug 1993.

88

[45] K. T. Cheng, “Transition Fault Testing for Sequential Circuits,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 12, no. 12, pp. 1971 –1983, Dec 1993.

[46] K. T. Cheng, “Test Generation for Delay Faults in Non-Scan and Par-

tial Scan Sequential Circuits,” in Proc. of International Conference on

Computer-Aided Design, Nov. 1992, pp. 554–559.

[47] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and

D. Wheater, “A SmartBIST Variant with Guaranteed Encoding,” in

Proc. of Asian Test Symposium, Nov. 2001, pp. 325–330.

[48] S. Mitra and K. S. Kim, “X-Compact: An Efficient Response Compaction

Technique for Test Cost Reduction,” in Proc. of International Test Con-

ference, Oct. 2002, pp. 311–320.

[49] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K. H.

Tsai, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, and J. Qian,

“Embedded Deterministic Test for Low Cost Manufacturing Test,” in

Proc. of International Test Conference, Oct. 2002, pp. 301–310.

[50] W. Qiu, X. Lu, J. Wang, Z. Li, D. M. H. Walker, and W. Shi, “A

Statistical Fault Coverage Metric for Realistic Path Delay Faults,” in

Proc. of VLSI Test Symposium, April. 2004, pp. 37–42.

[51] A. Devgan and C. Kashyap, “Block-Based Static Timing Analysis with

Uncertainty,” in Proc. of International Conference on Computer-Aided

89

Design, Nov. 2003, pp. 607–614.

[52] W. Rao, I. Bayraktaroglu, and A. Orailoglu, “Test Application Time and

Volume Compression Through Seed Overlapping,” in in Proc. of Design

Automation Conference, 2003, pp. 732–737.

[53] A. R. Pandey and J. H. Patel, “Reconfiguration Technique for Reducing

Test Time and Test Data Volume in Illinois Scan Architecture Based

Designs ,” in Proc. of VLSI Test Symposium, 2002, pp. 9–15.

[54] I. Hamzaoglu and J. H. Patel, “Compact Two-Pattern Test Set Genera-

tion for Combinational and Full Scan Circuits,” in Proc. of International

Test Conference, 1998, pp. 944–953.

[55] A. Würtenberger, C. S Tautermann, and S. Hellebrand, “A Hybrid Cod-

ing Strategy For Optimized Test Data Compression,” in Proc. of Inter-

national Test Conference, 2003, pp. 451–459.

[56] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective

Generation of Minimal Test Sets for Stuck-at Faults in Combinational

Logic Circuits,” in Proc. of Design Automation Conference, 1993, pp.

102–106.

[57] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Com-

binational Circuits,” in Proc. of International Conference on Computer-

Aided Design, 1998, pp. 283–289.

90

[58] J. D. Segal, T. Ho, B. Hodgkins, P. Misic, J. Lin, and M. Yegnashankaran,

“Predicting Failing Bitmap Signatures for Memory Arrays with Critical

Area Analysis,” in Advanced Semiconductor Manufacturing Conference

and Workshop, 1999, pp. 178–182.

[59] Y. Kukimoto, M. Fujita, and M. Tanaka, “Symbolic Verification of CMOS

Synchronous Circuits Using Characteristic Functions,” in Proc. of Cus-

tom Integrated Circuits Conference, May 1991, pp. 11.5/1 –11.5/4.

[60] M. Merino, C. Mateos, and K. Terryll, “Achieving Good Correlation

Results between Bitmap and TENCOR Data,” in Proc. of Advanced

Semiconductor Manufacturing Conference, 2001, pp. 131 –134.

91

Index

Abstract, iv

Acknowledgments, iii

Bibliography, 80

Dedication, ii

Introduction, 1

92

Vita

Geewhun Seok was born in Suwon, Korea on September 7, 1974, the

son of Hobong Seok, and Jongrae Lee. He graduated from Daesung High

School, Daejon, Korea in 1993 and received the B.S. degree in electronic engi-

neering from Korea University, Seoul, Korea in 2002, M.S. degrees in electrical

engineering and computer science from KAIST, Daejon, Korea in 2003, and

is currently pursuing his Ph.D. degree in electrical and computer engineering

from the University of Texas at Austin.

He is currently with Qualcomm DSP core design team in Austin, TX.

His research interests are in the areas of testing and design automation with

emphasis on design for testability, delay fault testing, built-in self test.

Permanent address: 16803 Willow Oak Ln Round Rock, TX 78681

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

93

