
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2004

Automated Exploration of the ASIC Design Space
for Minimum Power-Delay-Area Product at the
Register Transfer Level
Fuat Karakaya
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Karakaya, Fuat, "Automated Exploration of the ASIC Design Space for Minimum Power-Delay-Area Product at the Register Transfer
Level. " PhD diss., University of Tennessee, 2004.
https://trace.tennessee.edu/utk_graddiss/2274

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Fuat Karakaya entitled "Automated Exploration of the
ASIC Design Space for Minimum Power-Delay-Area Product at the Register Transfer Level." I have
examined the final electronic copy of this dissertation for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this dissertation and recommend its acceptance:

Gregory D. Peterson, Chandra Tan, Michael A. Langston

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Fuat Karakaya entitled “ Automated
Exploration of the ASIC Design Space for Minimum Power-Delay-Area Product at the
Register Transfer Level.” I have examined the final electronic copy of this dissertation
for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Electrical Engi-
neering.

Dr. Donald W. Bouldin

Major Professor

We have read this dissertation
and recommend its acceptance:

Dr. Gregory Peterson

Dr. Chandra Tan

Dr. Michael A. Langston

Accepted for the Council:

Dr. Anne Mayhew

Vice Provost and
Dean of The Graduate Studies

(Original signatures are on file with official student records.)

AUTOMATED EXPLORATION OF THE ASIC DESIGN SPACE

FOR MINIMUM POWER-DELAY-AREA PRODUCT AT THE

REGISTER TRANSFER LEVEL

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Fuat Karakaya

May, 2004

DEDICATION

Dedicated to

my wife Selda, my daughters Hatice Nur, and Zeynep Hannan for their love and support

ii

ACKNOWLEDGEMENT

First of all, I would like to thank Professor Donald W. Bouldin, my advisor, for his

guidance, encouragement, support and valuable criticism during this research. I also

thank my other committee members, Dr. Michael A. Langston, Dr. Gregory Peterson

and Dr. Chandra Tan for their guidance and valuable feedback. I would also like to

acknowledge the Defense Advanced Research Projects Agency for providing partial

financial support for this research under grant F30602-01-2-0562.

iii

ABSTRACT

Exploring the integrated circuit design space for minimum power-delay-area

(PDA) product can be time-consuming and tedious, especially when the target

standard-cell library has hundreds of options. In this dissertation, heuristic algorithms

that automate this process have been developed, implemented and validated at the reg-

ister transfer level. In some cases, the PDA product was 1.9 times better than the initial

baseline solution. The parallel search algorithm exhibited 9x speed up when executed

on 10 machines simultaneously. These two new methods also characterize the design

space for the given RTL code by generating power-delay-area points in addition to

the minimum PDA point in case the designer wishes to select a different solution that

is a tradeoff among these metrics. As a final step, these two search algorithms are

integrated into a fully automated ASIC design flow.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction ��� 1

1.1 Motivation . 3

1.2 Goals and Expected Contributions 9

1.3 Thesis Overview . 11

2. Background ��� 12

2.1 Power Consumption in CMOS . 12

2.1.1 Dynamic Power . 14

2.1.2 Static Power . 16

2.2 Delay in CMOS . 17

2.3 Optimization in CMOS Circuits . 20

2.3.1 Power Optimization . 20

2.3.2 Delay Optimization . 24

2.4 ASIC Design Flow . 31

2.5 Related Work . 33

3. Design Space Search Algorithm: DSSA ����������������������������������� 38

3.1 Implementation of DSSA . 38

3.2 Integrating DSSA into an ASIC Flow 44

3.3 Experimental Results for DSSA . 46

v

CHAPTER PAGE

3.4 Parallel Design Space Search Algorithm: PDSSA 54

3.4.1 Implementation of PDSSA 54

3.4.2 Experimental Results for PDSSA 56

3.5 Pareto Points . 57

3.6 Chapter Conclusion . 59

4. Searching the Design Space Using Simulated Annealing ����������������� 66

4.1 Simulated Annealing . 66

4.2 Implementation . 68

4.3 Experimental Results . 70

4.4 Chapter Conclusion . 75

5. Graphical User Interface (GUI) Design ����������������������������������� 76

5.1 MacroGen . 76

5.2 Initiating Design Space Search . 80

5.3 Reporting and Analyzing Run Results 85

5.4 Initiating Layout . 91

6. Summary and Future Work ��� 96

BIBLIOGRAPHY ��� 99

VITA ��� 102

vi

LIST OF TABLES

TABLE PAGE

1.1 The effect of parameter optimization on GOPS/W and GOPS/ ��� . . . 9

3.1 Characteristics of the macros . 46

3.2 Default values of delay and PDAP for the macros 47

3.3 Optimum values of delay and PDAP for the macros 47

3.4 Number of generated points and run times 54

3.5 Run times for DSSA and PDSSA . 57

3.6 Effect of step-size on PDAP (for multiplier) 59

4.1 A general SA algorithm in pseudo code 67

4.2 Characteristics of the macros . 70

4.3 Constraints of the macros . 71

4.4 PDA products . 71

4.5 PDAP improvement ratios . 71

4.6 Run times . 75

vii

LIST OF FIGURES

FIGURE PAGE

1.1 Design level, estimation accuracy and estimation speed. 2

1.2 3D design-space . 4

1.3 Delay vs. area trade-off curve. 5

1.4 Power vs. area trade-off curve. 6

1.5 Power vs. delay trade-off curve . 7

1.6 GOPS/W-PDA/1000 vs. delay curve 10

2.1 Current flow in a CMOS inverter. 13

2.2 CMOS inverter while charging and discharging a load. 14

2.3 Two-stage inverter and its equivalent circuit for delay calculations. . . 18

2.4 Power optimization methods. 21

2.5 Before and after clock gating. 23

2.6 Before and after operand isolation. 25

2.7 Sample switching activity file. 26

2.8 Inserting buffer chain. 28

2.9 Before and after pipelining . 30

2.10 ASIC design flow. 32

2.11 Monte-Carlo design space exploration flow 34

3.1 DSSA in pseudo code - Part I . 39

3.2 DSSA in pseudo code - Part II . 40

viii

FIGURE PAGE

3.3 Default ASIC design flow . 41

3.4 ASIC design flow with optimization 43

3.5 DSSA integrated into an ASIC flow. 45

3.6 Searched space for 16-bit adder . 48

3.7 Searched space for 16-bit multiplier 49

3.8 Searched space for 16-bit complex-multiplier 50

3.9 Searched space for 12-bit 32 tab FIR 51

3.10 Searched space for 12-bit 4 pole 32 tab poly FIR 52

3.11 Searched space for 12-bit 64-point FFT 53

3.12 PDSSA in pseudo code . 55

3.13 A sample shell script generated by PDSSA for parallel search 56

3.14 Perl code to determine the Pareto points. 58

3.15 Pareto curve for 16-bit adder. 60

3.16 Pareto curve for 16-bit multiplier. 61

3.17 Pareto curve for 16-bit complex-multiplier. 62

3.18 Pareto curve for FIR. 63

3.19 Pareto curve for poly-FIR. 64

3.20 Pareto curve for 64 point FFT. 65

4.1 Searched space for adder . 72

4.2 Searched space for multiplier . 73

4.3 Searched space for complex-multiplier 74

5.1 Main window of the GUI. 77

ix

FIGURE PAGE

5.2 Initiating MacroGen from the main window. 78

5.3 Selecting a macro from MacroGen. 79

5.4 Viewing specifications for the selected macro. 81

5.5 Entering values for the generic parameters of the selected macro. . . . 82

5.6 Viewing VHDL file of the selected macro. 83

5.7 Initiating a design space search. 84

5.8 Design space search in progress. 86

5.9 Tabulated design space search results for the selected macro. 87

5.10 Plotting search results for the selected parameters. 88

5.11 Generating Pareto curve. 89

5.12 Viewing the statistics of the standard-cells, number of transistors for

the selected design point. 90

5.13 Selecting a design point to send for layout. 92

5.14 Initiating place and route procedure. 93

5.15 Selected design point after placement and routing. 94

5.16 Final layout for the selected design point. 95

x

CHAPTER 1

Introduction

The need for integrated circuits that consume less power and area yet are faster than

unoptimized circuits has accelerated the development of new and powerful synthesis

tools. Synthesis tools and the state-of-the-art standard-cell libraries are some of the

crucial parts of successful application-specific integrated circuit (ASIC) design. ASIC

design can be summarized in 3 major phases [1]:

1. Description of the design in a process-independent hardware description lan-

guage (HDL) such as VHDL or Verilog at either the behavioral level or at the

register transfer level (RTL).

2. Mapping the HDL to a specific process to generate a process-dependent net-list.

3. Physical placement and routing of the design.

It is possible to optimize the design during each of these phases to meet the de-

lay, power, and area specifications. In the first phase, the HDL code can be optimized

with the help of HDL power estimation tools [19] (however, the estimates may not be

very accurate; see Figure 1.1). A statistical design space exploration at the behavioral

level can also be conducted [10]. A successful optimization during the second phase

depends on how well the targeted standard-cell library has been characterized, the ca-

1

RTL

GATE Level

POST Layout (GATE Level)

POST Layout (Transistor)

Speed of Estimator
Accuracy

Figure 1.1: Design level, estimation accuracy and estimation speed.

2

pabilities of the synthesis tool and the optimization procedure used. Today’s standard-

cell libraries contain several versions of the same cell with different drive strengths [5],

which makes it easy to target the same design with different sets of constraints and

find a solution. Because of this fact, there are several different power-delay-area so-

lutions for the design. Design space exploration using RTL involves generating a set

of power-delay-area combinations between the lower and the upper boundaries of the

design space (an example 3-D design space is illustrated in Figure 1.2 which was gen-

erated for a 16-bit multiplier). As a result, it is almost impossible or very difficult to

explore the design space manually. Even by using semi-automated search techniques,

thorough design space exploration can be very time-consuming (taking hours or even

days). The main contribution of this work is a fully automated search technique which

explores the design space. This technique does not require any initial target values

for power, delay, and area. It automatically determines the upper and lower bounds of

the design-space for the targeted process and explores the design space to minimize a

given cost function.

1.1 Motivation

Designing efficient chips in terms of power, speed, and silicon area is the principal

goal of an ASIC designer. But as seen from Figure 1.3, Figure 1.4 and Figure 1.5

(these figures were generated experimentally using a 16 bit multiplier), designing a

higher speed circuit means making sacrifices in power consumption and in silicon

area, or designing a low-power circuit means making a sacrifice in speed. As a result,

3

Figure 1.2: 3D design-space

4

Figure 1.3: Delay vs. area trade-off curve.

5

Figure 1.4: Power vs. area trade-off curve.

6

Figure 1.5: Power vs. delay trade-off curve

7

the designer must constantly make trade-offs between conflicting requirements while

looking for a solution that satisfies the design constraints. The designer will make the

trade-offs depending on the purpose of the design. If it is designed for wireless appli-

cations, power and the portability will be the main focus. On the other hand if it is de-

signed for real-time applications speed may be the main focus. But some cases require

attention for power, speed and portability, such as in tactical missile applications. The

ASIC must be compact enough to fit into a confined space with limited capability to

remove the heat generated during high-speed processing. Thus, low power consump-

tion is of equal concern with processing speed and area so that optimizing the design

for minimum PDA will be the best choice. Two important parameters to measure in-

tegrated circuit efficiency are operations per second per watt (OPS/W) and operations

per second per square micron (OPS/ � �). The first parameter is an indication of energy

efficiency of the chip and the second parameter is an indication of the area efficiency

of the chip. Both parameters are closely related to the power, delay and area values of

the design. OPS/W is inversely proportional to the product of delay and power (DPP),

and OPS/ � � is inversely proportional to the product of area and delay. To increase

operations per second per watt, DPP has to be minimized but at the same time silicon

area also has to be kept in mind. Thus, minimization of the product of power times

delay times area (PDA) can be a more efficient means of increasing OPS/W without

hurting OPS/ � � efficiency.

Table 1.1, generated experimentally using a 16 bit multiplier, shows that optimizing

the design for PDAP gives the best GOPS/W with an insignificant effect on GOPS/ � � .

8

Table 1.1: The effect of parameter optimization on GOPS/W and GOPS/ � �

Optimized parameter GOPS/W GOPS/ � �

D 200 14.5

P 190 9.05

A 187 12.5

PDA 240 12.7

Figure 1.6, generated experimentally using a 16 bit multiplier, indicates that maximum

GOPS/W occurs when the PDA is minimum.

To implement an efficient chip, the design space has to be searched for minimum

PDAP. However, this process is not an easy task and today’s very sophisticated com-

mercial tools do not provide an automated technique to meet this need. Hence, there

is a need for a technique which can work with commercial tools and guide them to

search the design space for minimum PDAP. Not only should the technique provide

the means to achieve this goal, it should also be integrated into an automated ASIC

design flow to reduce design time.

1.2 Goals and Expected Contributions

The main objective of this dissertation is to develop techniques which make design

space search easier or possible for certain parameters of the design. The emphasized

parameter in this thesis will be the product of power-delay-area or PDAP. Moreover,

9

Figure 1.6: GOPS/W-PDA/1000 vs. delay curve

10

the tools will be capable of handling other parameters like PAP, PDP, DAP etc.. Thus,

the goals of this research can be itemized as follows:

1. Develop a technique to assist or to guide a commercial tool to do a design-space

search.

2. Perform the design-space search with user guidance in terms of:

(a) search time,

(b) number of iterations, and/or

(c) improvement ratio.

3. Integrate the search technique into an automated ASIC design flow.

4. Design a graphical user interface (GUI) for the automated flow.

1.3 Thesis Overview

In Chapter 2, background about ASIC flow, CMOS circuits (power consumption,

delay, etc.), power optimization techniques, delay optimization techniques is given.

The related work section is also given in this chapter. Implementation of the proposed

design space search algorithms (DSSA, PDSSA) and experimental results are given in

Chapter 3. Chapter 4 presents the application of simulated annealing to design space

search and some experimental results of the application. Designing a graphical user

interface (GUI) for the developed algorithms is given in Chapter 5. Finally Chapter 6

contains the conclusions and future work.

11

CHAPTER 2

Background

2.1 Power Consumption in CMOS

When the inverter in Figure 2.1 is functioning, it consumes two types of power:

1. Dynamic power

(a) Power due to charging/discharging of capacitive load and parasitic capaci-

tances (which is also known as switching power).

(b) Short-circuit power

2. Static power

(a) Leakage power

(b) Sub-threshold conductance

Total power consumption can be formulated as following [11]:

�����������
	���������������� ���� ������� ��!"�#� ��� ��� �%$&�(')�(*($ �#� ��� (2.1)

The following subsections explain each of these classes of power consumption.

12

OUTIN

Ip

In

C

Isc

Vdd

Figure 2.1: Current flow in a CMOS inverter.

13

2.1.1 Dynamic Power

Switching Power

Dynamic dissipation due to capacitive switching often consumes 80-90% of the total

power [17]. Dynamic dissipation is the result of charging and discharging parasitic

capacitances in the circuit. Figure 2.2 represents the equivalent circuit of a CMOS

inverter while charging and discharging a load capacitance in which the load capaci-

tance represents the total lumped parasitic capacitances. When the input to the inverter

goes from 1 to 0 the output will go from 0 to 1. For that phase (Figure 2.2) Equa-

tion 2.2 to Equation 2.6 show the calculations to determine the stored energy in the

load capacitance [25].

Ip

Vdd

OUTIN

Rp

C L

Vdd

OUTIN

C L

Rn

In

Figure 2.2: CMOS inverter while charging and discharging a load.

14

� � ����� 	 � ���� ���
	�� �� �� � ���
�

(2.2)

����� ����� 	 � ��� � � �
	�� � �� � ���
���

(2.3)

� ��� 	����� � � ����� ����� ��������� (2.4)

� ��� 	 ��� � ���� � �
	�� �� �� � ���
� � �
	�� ��

 �� � ���
����� �� (2.5)

� ��� 	 � ��� � ���� (2.6)

The total stored energy is given by Equation 2.6. The same amount of energy

is dissipated in the PMOS transistor (due to
� � resistor). If the input goes from 0

to 1 then the output will go from 1 to 0 (Figure 2.2). In this case there is a direct

path to ground for �#� to discharge. The energy stored (Equation 2.6) in � � will be

dissipated by the NMOS transistor (due to
�!

). Fortunately, switching power is only

dissipated if a parasitic capacitor is charged or discharged. Thus, the total switching

power consumption can be written as:

15

� � � 	 � �#���������#� ���� �#� (2.7)

where � is the number of capacitors switched (1 - � 0 or 0 - � 1, switching activity)

per clock period, and f is the clock frequency. Equation 2.7 illustrates that the switch-

ing power is proportional to switching activity, total lumped parasitic capacitance, and

the square of the supply voltage. Note that dynamic switching power consumption is

independent of the effective resistances of the transistors.

Short-Circuit Power

At some point during the switching transient, both the NMOS and PMOS transistors

are turned on at the same time. This occurs for gate voltages between � � and ����� + � � � .
During this time, there is a short circuit between ����� and ground and a short-circuit

current flows through that path (� � !). Short-circuit power (Equation 2.8) generally

accounts for 10%-20% of the total power dissipated in CMOS circuits [11].

� � ! 	 � � ! �#� ��� (2.8)

2.1.2 Static Power

Since CMOS transistors are not ideal switches, there is always a leakage current from

����� to ground through the channel of an off transistor.

16

2.2 Delay in CMOS

Prior to the advent of sub-micron processes, chip delay was dominated by the rise

and fall delays of the CMOS transistors. But in a sub-micron process, interconnect

delays become a more significant part of the total delay. Figure 2.3 shows an inverter

driving a second inverter as a load. If we know the the effective resistance of the

transistor, the delay calculation will be very simple. To calculate a resistor value to

represent the transistor over its entire operating range, the transistor’s resistance is

measured at two operating points (saturation and linear) and averaged [14] as shown

in Equation 2.9.

� � 	 � � � � �
� � �(� � � � �

� � �
���

(2.9)

� � �(��	 ��� ��� � � � ��� � � � � (2.10)

� � � ��	 � ��� (2.11)

� � � �	 � � ��� � � ��� (2.12)

17

IN OUT

Vdd Vdd

Ip

Vdd

OUT

C LC wire

RIN

Rp

wire

Figure 2.3: Two-stage inverter and its equivalent circuit for delay calculations.

18

� � � 	 �
� � � � � � � ��� � � � � (2.13)

After inserting Equation 2.10, Equation 2.11, Equation 2.12, and Equation 2.13,

into Equation 2.9 approximately we get;

� ��� �
� �

�

�
� ���� � ��� � � � � (2.14)

� ��� � ����� 	 � ��� �
	�� � �� � � � �
� ��� $ �
� � � ��� $ � ��� �

�
(2.15)

for a rise time corresponding to a change in output voltage from � � � � ��� to � �
	 � ���

� � � � $ 	
�

 � � � � ������ � � � � � ��� $ � ��� � (2.16)

� � � � $ �
�

 � �
� �

�

�
� ���� � ��� � � � � � ���&���(� � �

� ��� $ � ���&���(� �
(2.17)

As seen from Equation 2.16, delay is inversely proportional to both � ��� and tran-

sistor size. Increasing the supply voltage or increasing the transistor size results in a

faster circuit.

19

2.3 Optimization in CMOS Circuits

2.3.1 Power Optimization

As the popularity of portable and wireless devices has increased, power consumed by

these devices has become a critical issue. They have to be designed to consume low

power because of battery life time and reliability issues [18]. As the circuits get hot,

their failure rate gets higher. Proper cooling mechanisms have to be installed in the

system to prevent failures. But the best way of increasing the battery life and decreas-

ing the failure rate is designing low-power devices. At each design level, a designer

can use strategies to lower the power consumption. Figure 2.4 shows the power saving

strategies at each design level and possible percentages of power savings by utilizing

these strategies. Only the ones applicable at the RTL level will be mentioned in this

section, and they are:

1. Clock gating

2. Operand isolation

3. Switching activity back annotation.

Clock Gating

As mentioned earlier, most power consumption occurs when there is switching. If

unnecessary switching is prevented, power consumption can be lowered dramatically.

20

Behavioural Level
Scheduling, Allocation, Resource

 Sharing & Retiming

Gate Lavel
Technology Mapping, Rewiring,

Phase Assignment, Lowering Glitching

Device Level Buffering, Transistor Sizing

Physical Level
P&R Interconnect Capacity Reduction

Clock-Tree Synthesis, Floorplaning

System level
Algorithms, Process, Library

Supply Voltage

LEVEL OPTIMIZATION METHODS POWER REDUCTION

20-30%

10-20%

5-10%

50-90%

40-70%

 Precomputation, FSM Encoding
 RTL Level Clock-Gating, Operand-Isolation

30-50%

Figure 2.4: Power optimization methods [2]

21

For that purpose, clock-gating [9], [26], [4] can be the answer. The circuit in Fig-

ure 2.5(a) will consume switching power even if there is no state or output transition.

But after inserting clock-gating circuitry (Figure 2.5(b)), unnecessary switching will

be prevented. Clock-gating circuitry consists of a clock enable circuit, a latch, and

an AND-gate. The state and input signals are fed into the clock enable circuit which

determines whether to enable the clock. After latching the clock enable signal, the

system clock and the clock enable signal are passed through an AND-gate. The output

of the AND-gate is the GATED-CLOCK signal. Clock gating can reduce the dynamic

power up to 40% depending on the design. The latch is in the clock-gating circuitry to

prevent glitches in the clock.

Operand Isolation

In a design, data-path operators (multipliers, adders, etc.) are implemented in a way

that they are always operational. Even when the output of the operation is not used,

these circuits continue to experience switching activity which results in power dissipa-

tion. A data-path operator is mainly a combinational circuit. A combinational circuit

continues to switch whenever its inputs change value, even if its output is not used. If

the data-path operator output is an input to an unselected multiplexer or if it is an input

to a register that is currently disabled, its output is not used, even though it contin-

ues to switch. This useless switching increases the wasted power consumption. This

waste of power can be prevented if the data-path operators are stopped from switching

when their output is ignored. This can be done by using the operand-isolation tech-

22

FF
IN OUT

CLK

 Logic
Combinational

State

Latch

GCLK
Clock
Enable
Circuit

IN

State

 Logic
CombinationalFF

OUT

CLK

Figure 2.5: Before and after clock gating.

23

nique [4], [21]. Figure 2.6 shows a design before and after operand-isolation. With

the operand-isolation technique, additional logic (AND or OR gates) is inserted along

with an activation signal to hold the inputs of the data-path operators stable whenever

their output is not used.

Switching Activity Backannotation

It is clear from Equation 2.1 that switching activity has an effect on dynamic power.

More switching increases the dynamic power. Switching activity is used by the syn-

thesis tools, and power estimation tools for accurate power optimization and accurate

power estimation. A switching activity file can be generated either at the RTL or at the

gate-level abstraction. This file contains a list of 0- � 1 or 1- � 0 transitions of the inter-

nal nodes and the input and output ports for a given time. The switching activity file

is utilized by the optimization tools to pinpoint the hot-spots (more power consuming

regions) of the design [4]. Power optimization tools put more effort on these hot-spots

in order to reduce the power consumption. The switching activity file (Figure 2.7) can

be captured using simulation tools. The input vector set, which is used to generate the

switching activity file, should characterize a typical operation of the design.

2.3.2 Delay Optimization

Buffer Insertion

Delay through a stage increases as the capacitance driven by that stage increases. Usu-

ally each stage drives a load which matches its drive capability. However, there are

24

X

X

1

0

SEL

IN1

IN2

IN3

IN4

CLK

FF

X

X

&

&

&

&

1

0

CLK

IN4

IN3

IN2

IN1

SEL

FF

Figure 2.6: Before and after operand isolation.

25

Figure 2.7: Sample switching activity file.

26

several cases in which the load can be much larger [3]:

1. Capacitive load due to long wires.

2. Driving an off-chip component.

3. Driving a global signal (clock, reset, etc.).

The simple answer to this problem is to increase the transistor size of the driver,

which will increase the current available for the load. However, this does not solve the

problem completely since it just pushes the problem one logic level back. Increasing

the transistor size of the driver also increased its gate capacitance. Now it has become

a large load for the stage which drives it. It is obvious that eventually we have to

use stages with large transistor sizes, but we can minimize delay by using a chain of

drivers. Figure 2.8 shows a chain of buffers to drive a large capacitive load. Calcula-

tions to find an optimum number of buffers to drive a large capacitive load are given

below [25], [23]:

� ���������
	
�

 � � � � �
� �
� � � �
�

 �
�
� �
� �
� � �
� � � � � � � � � � � � �

�

 �
�
� �

�

��� �
��� (2.18)

� ���&���(�
	
�

 � � � � ��� � � � � � � � � � � � � � � � � �
�

��� � ���

� � �
�

(2.19)

At each stage, the ratio of the output capacitance to the input capacitance is � . It

should be also the same for last stage:

27

α
n-1

C
min

α
2

α
n-1

C
min

R
min

C
min

R
min

R
min

C
min

R
min

α
2

α
n-1

α
2

W/L W/L W/L W/Lα

α

α

C
L

Figure 2.8: Inserting buffer chain.

� 	 �
�

��� � ���

� � �
�

(2.20)

�
 	 � ���

� � �
�

(2.21)

After inserting Equation 2.21 into equation Equation 2.19;

� ���&�����
	
� �#��� � � � (2.22)

�
� � �	

�

 � � � � ��� � � (2.23)

28

� ���&����� 	
� � � ���

� � �
� �� � � � � (2.24)

�
� � is the delay for a minimum size driver (

�
� �) which drives a minimum size

load (� � �). To find the optimum number of stages which minimizes
� ���&���(�

, we have to

solve the following equation:

��� ���&������
�

	 � (2.25)

which gives:

�
� � � � � � � 	��

�
� ���
� � �

�
(2.26)

Pipelining

The clock period in a design is determined by the delay of the largest conbinational

block. The large combinational block in Figure 2.9 has a delay of � � . This indicates

that the clock period for this design has to be at least � � (if we ignore set-up and hold

times of the flip-flops for the sake of simplicity). If the designer wants to run at faster

clock, he/she has to reduce the delay of that large combinational block if possible. If it

is not possible, pipelining is a technique which offers a solution. Pipelining partitions

blocks of combinational logic into stages of equal delays, with the stages separated by

banks of pipeline registers. Figure 2.9 also shows the design after pipelining registers

29

T d

Combinational
 Logic

IN OUT

CLK

FF FF

Combinational
 Logic

Combinational
 Logic

IN OUT

T d
T d

FF FF

/2 /2

FF

CLK

Pipelining Register

Figure 2.9: Before and after pipelining

30

have been inserted which has reduced the delay by half. If this reduction is not enough,

new pipelining registers can be inserted to partition the combinational blocks further.

This process can be carried on until a desired delay obtained.

Pipelining increases the throughput of the design but it introduces latency between

the input data and the resulting output. Also pipelining increases the gate count be-

cause of the inserted pipelining registers. This technique is most useful for systems

with a very high sampling rate.

2.4 ASIC Design Flow

An ASIC design flow is shown in Figure 2.10. The first step in the design flow is

the development of a hardware description of the design. This can be done by using

any of the hardware description languages (VHDL or Verilog) or by schematic entry.

The second step is the functional verification of the HDL. This can be done by using

RTL level simulators. A well defined testbench can be very helpful for verification

purposes. The third step is the synthesis of the HDL. Synthesis is the process of gener-

ating logic-level representation from the HDL. Output of the synthesis step is a net-list

of standard cells and interconnects. Standard cells are obtained from the vendors tech-

nology library. Technology libraries contains precharacterized standard cells for the

target technology. The fourth step is the verification of the gate-level net-list. This

step is also called gate-level simulation. The same testbench used for RTL verifica-

tion can be used at this step. The fifth step is the placement and routing of the standard

cells. Standard cells in the gate-level net-list are placed together to generate the layout.

31

HDL

RTL Simulation

Synthesis

Gate-Level Netlist

Gate-Level Simulation

Gate-Level Netlist

Place&Route

Layout

Extraction

Transistor-Level Netlist

Transistor-Level
Simulation

HDL Code

Standard-Cell Lib.

Tech. Lib.

011101101
010110111
010101011
111001010

Vector Set

Figure 2.10: ASIC design flow.

32

Physical characteristics of the standard cells (height, width, I/O locations, power and

ground rails, layers, vias, etc.) are already defined in the standard-cell libraries. Then,

placed standard cells are routed. Routing can be timing driven, to give the first priority

to the timing constraints, or power driven, to give the first priority to power constraints.

If there is no violation, a transistor-level net-list is extracted from the layout for final

verification of the functionality, timing and power. If the functionality and constraints

are met, the design is placed in an I/O frame and sent for fabrication.

2.5 Related Work

In a paper closely related to the research, Bruni [10] developed a flow which starts

by synthesizing the behavioral representation of the design with randomly selected

constraints. The resulting RTL net-list is then evaluated for area, delay and power. The

flow (Figure 2.11) utilizes a Monte-Carlo sampling of design space which is repeated

automatically in an unsupervised mode to produce a statistical characterization of the

design space. Extreme value theory is applied to extrapolate achievable bounds from

the sampling points. Thus, this flow is intended as an off-line precursor to collect

statistical information before actually starting a detailed search for an optimal solution.

In contrast, the proposed design space search techniques are intended to identify the

best solution possible given the user constraints.

In [15], RTL design space search is done through projected AT-curves (Area-Time

curves). First the RTL module is synthesized for minimum area (
� �

, �
�
) and minimum

delay (
� �

, �
�
), and these two delay values are treated as upper and lower bound tim-

33

Loop

Design
Metrics

RTL

Sh
or

tc
ut

Synthesis Script

Gate-lavel netlist

Signal Activity

RTL simulator

R

Sp
ec

if
ic

at
io

n
R

T
L

 L
ib

ra
ry

T
ec

hn
ol

og
y

L
ib

ra
ry

Bounds

Synopsys

Verilog XL

Synopsys’ DC

Mentor Graphics’
Monet

Constraint Generator

Figure 2.11: Monte-Carlo design space exploration flow

34

ing for the module. Then, the module is synthesized again for (�
�
+ �

�
)/2 to generate

third design point (
�
� � � , � � � �). Then, (

� �
, �
�
),(

� �
, �
�
) points are used to generate a

two-point AT projection. For three-point AT projection, points (
� �

, �
�
), (

�
� � � , � � � �),

(
� �

, �
�
) are used. Then, a linear function is used to derive the AT-curves. Optimum

module selection is done using projected AT-curves. This approach has two main dif-

ferences from our approach: (1) Optimum point selection is done from a projected

AT-curve, in our case optimum design is selected among real data points generated

through synthesis. (2) design space is considered 2 dimensional (Area-Time), in our

case design space is considered 3 dimensional (Area-Time-Power).

In [8], a tool called GALOPS [7], a transformational based tool that uses a Ge-

netic Algorithm (GA), has been used for design space search. GALOPS utilizes a GA

to apply high level transformations to DSP algorithms at the behavioral level. Each

high level transformation changes the area, speed, and power characteristics of the de-

sign. GA is used to generate a set of designs with the lowest power value for every

generated area value. After each generation is created, Pareto-optimal points are se-

lected from the generated set of designs. These steps are repeated and selected Pareto

points at each generation are combined to create a global set of Pareto-optimal points.

By using those Pareto-optimal points, Pareto-optimal surfaces are generated to illus-

trate the trade-offs between the conflicting parameters. Our approach combines three

conflicting parameters (area, delay, power) in to a single cost function, and also our

search technique is at the logic synthesis level.

In [13], authors presented a module selection procedure which uses both a com-

35

plex operators library and the voltage scaling in order to optimize the design. The

procedures goal is to determine the optimal supply voltage and the optimal operators

set from a given module library according to a DSP application for design optimiza-

tion. The module selection procedure uses two entries; the application, and the com-

plex module library. The module library contains several parameters for each operator

(module): area, latency time, pipeline stages number, functionality (adder, multiplier,

etc.) and the effective capacitance. To explore the area-power space the module selec-

tion algorithm explores all the different solutions dealing with different operators with

different area-power-time characteristic and different supply voltages. At each supply

voltage value, the complex module library is searched through to identify the modules

which minimize the given cost function (Cost �
����� 	 � � � ��� Area(s)+ � Power(S)) For

the selected set of operators and the supply voltage the cost function is re-evaluated us-

ing area and power estimates for the selected operators at the selected supply voltage.

This method requires a pre-characterized module library. Whereas our method uses a

standard-cell library which is available through a vendor. Also the cost function used

in this method only accounts for area and power whereas in our approach the cost

function accounts for area, power, and delay.

In [24], authors proposed a method to obtain area and delay estimates from RTL

description. They observed that technology-dependent area and delay optimization

consumes 85% of the total design time. Therefore, they proposed a method to estimate

area and delay on technology- independent design. The estimates are obtained through

fast compiler-type optimizations on the RTL description followed by application of

36

best-fit polynomial area and delay models (models are previously generated from a

technology library) on the resulting technology-independent code. Surely, this will

help the designer to do a design space search at RTL code before mapping it into a

technology. However, this approach does not provide any estimate about power.

37

CHAPTER 3

Design Space Search Algorithm: DSSA

A Design Space Search Algorithm (DSSA) has been developed to explore the de-

sign space for the minimum power-delay-area product (PDAP). Since the design-space

is discrete, DSSA is implemented as heuristic. This algorithm is integrated into an

ASIC design flow to guide the synthesis tool. DSSA has been tested on several macros

and results are presented in section 3.3.

3.1 Implementation of DSSA

Pseudo code for the Design Space Search Algorithm (DSSA) is given in Figure 3.1

and Figure 3.2. DSSA is completely automated so that no human interaction is re-

quired once all the necessary initial parameters and files are provided. The initial

parameters and files required are:

� RTL level description (using either VHDL or Verilog).

� Testbench for RTL-level, gate-level simulations and for the generation of the

switching activity file.

� Initial synthesis script for the default run (Figure 3.3) which does not contain

any constraints. This run is to provide the initial values of power, delay and area

38

��� � � 	�� �
�
�

��� � ����� � � � �
�	�

� � 	 � � � ��
 � ��� �
�
� ��� � ��� � �

� � 	 �� ��� � � � � � � � ��
 � ��� �
���

� � 	 � �
� ��� � �

� � 	 ��� � ����� � � � �
� ��
 � ��� �

� � 	 � ��� � � � � � � � � �	��
�� � � � � � ��� � �
� � � �

� � 	 	 � �	�
� �

� � � �
 � � � ��� � � ��� � �����
� � � � �
� �

� � � � ��� ����
 � ���
� � ��� � � ��� � �����

� � 	 �
	 � ��
 � � � � � � � � � � � � �����
 � 	 �
	 � ��
 � � ��� ��� �

�
�
�

� � �����
� � 	 �
	 � ��
 � � � �
 � �
 � � � ������!
 �#" � 	 �
	 � ��
 � � ��
 	 �
 �#" ��� ��� �

�
�
�

� � �����
� � � 	 �
	 � ��
 � � � ��� ��
 � � � �
 �#" � � ��� ��
 � � � � � � ���	�
$!%'& �

�
� � � � 	 �
 � � ��
 � � � ��� � �)(� ((

� �����
� � � �

� � 	 	 � �	�
�
*� � � � � ��� � �
 ��
+� � � � � � � � (� ((

�
(
$!%'& � � �������

� � � � � 	 	 � �	�

Figure 3.1: DSSA in pseudo code - Part I

39

��� � � � 	 �
 � � ��
 � � ��� � � � $ % & � � � ($!%'& �
�
� � �����

�
+� � � � � ��� � �
 ��
+� � � � � � � �
� �
(
�
(

(

�
(
$ % & �

�
� � �

(
��� � � �	���

� �
�
�
� �

�
� � � 	�� � � � ��
 � � � � � � �

�
�
� ��
 �

�
� �!
 �#"

(

(
�
(

�
(
�����

 � �
 � � � � �
�#" � � � � ��� � � � � ��� � �

�
� �
�
� � �����

�
� � � � �

� � � ��� � � � ��� � � � �
� � � ��� � � � �

� � � �����	� � � ��� �
�

 � � ���

� � � ��� � � 	 � � ���
 � � � 	 � � � � � � �
*� � � � ���
� � ��� � � 	 � �	���
 � � � 	 � � � � � �
*� � � � ���
� � � �

� � 	
�
� ���
 � � � 	 � � � � � � �
*� � � � ���+�

� � � � �
� � �

�
� � �

�
� � � 	 � � � � ��
 � � � �

�
�
� ��
 �

� � � � � ��� ��
 � � � � � �
(
� �

�
� � �

�
� � �����

 � �
 � � � � �
�#" � � � � ��� � � � � � � � � �

� � �
�
� � �������

� � " � � � � �
� ���

�
���

�
*� � � � � � � � �
��� � �

�
� �

�� � � � �

�
� � � � � 	�� � � � � � � �

��� �

� � �
 �
� � � � � 	 � � � � � �	�

� � ���
 � � 	 	 � � � � � 	 � � � � ���
� � ���
 � � 	 	 � � � � 	 � � � � �
	 � ��
 � ���
� � ���
 � � 	 	 � � � � � 	 �

� � � �
	 � ��
 �
���

� � � � �
*� � � � ���
� � � � � � � ��� �

�

 � � ���

Figure 3.2: DSSA in pseudo code - Part II

40

Compile

Read Design

Define Design
Environment

Constraint
Set Design

Select

Strategy

Design
Synthesize

RTL CODE

Scan
Insertion

Check Design

 Design
Save Synthesized

Gate-Level
Verilog Netlist

P&R

Simulate

Cadence SE

ModelSim

Synopsys Design Compiler

Figure 3.3: Default ASIC design flow

41

for the DSSA.

� Optimization synthesis script for the optimization runs (Figure 3.4).

� Control parameters that are set by the user: the desired run time, number of

iterations and improvement ratio.

DSSA starts with the default run (which doesn’t have any kind of optimization) for

the given RTL. Then the initial values for delay, power, area and the path where the

maximum delay occurs are extracted from the report files generated by the synthesis

tool. The maximum delay path is constrained by the value of the maximum delay

minus the iteration step size (choosing an iteration step size very small will increase

the total run time but it will give a more complete picture of the design space.) and the

synthesis script is updated with this new constraint. The DSSA also checks the other

paths for any timing violations (which are then added as constraints).

At each iteration step, the CPU time, the number of iterations and the improvement

ratio of the figure of merit (e.g. PDAP, DPP, power, delay, area, etc.) are checked.

If the value of any of these parameters satisfies the user-defined control parameters

(run time, number of iterations, improvement ratio), the iteration stops and waits for a

response from the designer. Detailed sorted results are presented on the screen and in

a file so the designer can decide whether to continue or stop. If the designer decides to

continue, the DSSA will resume from the point where it stopped.

During the run, the improvement ratio of the figure of merit for the previous it-

eration and current iteration are checked. If the improvement is less than epsilon (a

42

Compile

Define Design
Environment

Constraint
Set Design

Select

Strategy

Design
Synthesize

Scan
Insertion

Check Design

 Design
Save Synthesized

Power Compiler

Register
Retiming

RTL CODE

Gate-Level
Verilog Netlist

Read Design

Operand
Isolation

Gating
Clock

Simulate

P&R

Simulate

Forward SAIF

Back-Annotation
SAIF

ModelSim

Cadence SE

Synopsys Design Compiler

Synopsys VSS

Figure 3.4: ASIC design flow with optimization

43

user-specified parameter), the iteration will stop even if the other user-defined speci-

fications are not met. No change or little change in the improvement ratio means the

iteration process has likely already reached the boundaries of the design space.

3.2 Integrating DSSA into an ASIC Flow

Figure 3.5 shows how DSSA is integrated into an ASIC flow. DSSA integrated

ASIC flow contains 7 commercial tools coordinated by set of Perl and Tcl/Tk scripts.

DSSA itself is written in Perl. RTL-level and gate-level simulations are performed by

ModelSim. ModelSim is also used to generate RTL-level and gate-level switching ac-

tivity files. Synopsys Design Compiler is used for synthesis. Synopsys PowerCompiler

is invoked within the Design Compiler for power optimization and power estimation.

DSSA performs design-space search (characterization) until one of the user defined

parameters is satisfied. The search process is shown as a loop in Figure 3.5. Once the

search is concluded, the design point with minimum FOM is sent for placement and

routing. Placement and routing is performed by Silicon Ensemble. After placement

and routing is completed a parasitic information file called DSPF (Detailed Specific

Parasitic Format) is generated and backannotated to Design Compiler for more ac-

curate power and delay values. Layout generation is performed by Cadence Design

Frame Work. After a successful LVS (Layout versus Schematic) check a transistor-

level net-list with parasitic RC values is extracted from the Layout. A transistor-level

simulation is performed to verify functionality and to obtain more accurate power and

delay values. Transistor-level simulation is performed by NanoSim and PathMill.

44

Synopsys DC

 Synopsys Power Compiler

 ModelSim

Forward Switching activity information fileBack switching activity file

*.v

RTL

Standard Cell Library

Synthesis script

Modify the Synthesis Script
with new constraints.

Power, area, delay

verilog netlist

RTL

Testbench

Loop

Cadence Design Frame Work

DSSA

Netlist with minimum F.O.M.

iteration step size

number of iterations

run time

improvement ratio

Figure of Merit
(PDA, PD, PA, DA)

Check CPU time

Check iteration number

Check improvement ratio

DSPF (Detailed Specific Parasitic Format) file
Silicon Ensemble

Figure 3.5: DSSA integrated into an ASIC flow.

45

Table 3.1: Characteristics of the macros

Design # of I/O’s # of standard cells # of Transistors

16-bit adder 49 19 492

16-bit multiplier 64 722 8552

16-bit complex-multiplier 130 2991 36218

12-bit 32-tap FIR 41 6445 92008

12-bit 4-pole 32-tap PFIR 111 9170 130036

12-bit 64-point FFT 101 8751 155084

3.3 Experimental Results for DSSA

We have tested the DSSA integrated flow on three combinational macros and three

sequential macros. Characteristics of the macros are listed in Table 3.1. Table 3.2

shows the default delay and PDAP for the macros. Default values are obtained by

using the default flow shown in Figure 3.3. Table 3.3 contains the optimum delay and

PDAP. These are the optimum values for the optimization flow (Figure 3.4). Table 3.3

also tabulates the improvement ratio on the FOM.

Figure 3.6, Figure 3.7, Figure 3.8 Figure 3.9, Figure 3.10, and Figure 3.11 are the

plots of data points generated during the design space search. Table 3.4 shows the

number of points generated during the design-space search and how long it took to

complete the search.

46

Table 3.2: Default values of delay and PDAP for the macros

Design
�
�
$

�
� � �%�

(nsec)
� � �

�
$

�
� � �%�

(nJx � �)

16-bit adder 3.35 225.5

16-bit multiplier 4.43 129123

16-bit complex-multiplier 8.67 4543481

12-bit 32-tap FIR 7.06 43659291.6

12-bit 4-pole 32-tap PFIR 6.14 65476076.8

12-bit 64-point FFT 23.29 60758193.4

Table 3.3: Optimum values of delay and PDAP for the macros

Design
� � � � (nsec)

� � � � � � (nJx � �)
� � �

�
$

�
� � � �

/
� � ��� � �

adder 3.43 183.2 1.23

multiplier 3.69 89120 1.45

complex-multiplier 5.07 2383333 1.91

FIR 5.16 35350768.4 1.24

PFIR 3.95 41202846.1 1.59

FFT 16.46 44239530.7 1.37

47

Figure 3.6: Searched space for 16-bit adder

48

Figure 3.7: Searched space for 16-bit multiplier

49

Figure 3.8: Searched space for 16-bit complex-multiplier

50

Figure 3.9: Searched space for 12-bit 32 tab FIR

51

Figure 3.10: Searched space for 12-bit 4 pole 32 tab poly FIR

52

Figure 3.11: Searched space for 12-bit 64-point FFT

53

Table 3.4: Number of generated points and run times

Design Number of points Run time

adder 30 0.8 hrs.

multiplier 32 1.67 hrs.

complex-multiplier 41 8.5 hrs.

FIR 24 41.8 hrs.

PFIR 25 25.6 hrs.

FFT 40 72.35 hrs.

3.4 Parallel Design Space Search Algorithm: PDSSA

As shown in Table 3.4 design-space search times are very long. One way to reduce

the search time is using parallel search algorithms. We have implemented parallel

DSSA, called PDSSA, for that purpose. This section exs implementation of PDSSA,

and presents the experimental results.

3.4.1 Implementation of PDSSA

Pseudo code for PDSSA is given in Figure 3.12. PDSSA starts with two runs to deter-

mine the lower and upper bound of the design-space. The upper limit for the design-

space is the point in which power constrain set to minimum (at this point delay is

not a constraint). The lower bound of the design-space is the point in which timing

54

� � 	 � � � ��
 � ��� �
� � ��� � ��� � �

� � 	 � ��� � � � � �
 ��
 � � � � � ��� � � � � � ���
� � 	 � ��� � � � � � � � � �	�
� � 	 ��
 � ���

�

+� � �

� �
� � �

� � � � � � � ��� � �	�
 � � � 	 �
	 � ��
 � � ��� ��� �

�
�
�

� � ������� ����� ���	� �
� � � � � � ��
 �

� �
� � �

�
� � ��
 � � ��� � �	�

� � � � 	 �
	 � ��
 � � ��� ��� �
�
�
�

� � ������� ��� � � ����� �
� � � � � � ��
 �

� ���
� � � ��
 � ���

(
� ���

� � � � ��
 � � �
 ��
 � � � � � �
��� � � � � ��
 � ���

(
�
(� � (� � � �	�

�
�
 � � �
 ��
 � � � � � �
�

Figure 3.12: PDSSA in pseudo code

55

Figure 3.13: A sample shell script generated by PDSSA for parallel search

constraint and the power constraint are set to minimum. After determining the lower

and upper bounds of the design-space, it is divided in to the number of the machines

available for the parallel run. Then, PDSSA generates a shell script for the parallel

run. A sample shell script, generated by PDSSA, is given in Figure 3.13. The sample

script was generated to run 10 machines in parallel. As seen from Figure 3.13, on each

machine a DSSA runs in its assigned range. For this purpose DSSA exed in section 1.1

is slightly modified to except lower and upper boundaries for the iteration. Since the

design space is discrete, there is no need for the communication of the parallel running

machines during the search.

3.4.2 Experimental Results for PDSSA

Design-space search for all macros are repeated using PDSSA and run times for DSSA

and PDSSA are tabulated in Table 3.5 for comparison. As seen from the results PDSSA

dramatically reduced the run times. For DSSA runs only one machine (Sun Enterprise

56

Table 3.5: Run times for DSSA and PDSSA

Run Time

Design DSSA PDSSA

adder 0.8 hrs. 4 min.

multiplier 1.67 hrs. 12 min.

complex-multiplier 8.5 hrs. 1.12 hrs.

FIR 41.8 hrs. 4.5 hrs.

PFIR 25.6 hrs. 3.75 hrs.

FFT 72.35 hrs. 7.4 hrs.

220R server, 450 MHz. dual CPU) is used. PDSSA runs used 10 similar machines in

parallel.

3.5 Pareto Points

It is possible to characterize the design-space by the set of optimal tradeoff design

points. For those points there is no design with a smaller PDAP and the same or

smaller delay, and no design with a smaller delay and the same or smaller PDAP. Such

points are called Pareto points. An algorithm (Figure 3.14) is attached to the DSSA and

PDSSA to identify the Pareto points. This algorithm is written in Perl. It goes through

the design-points generated during the design-space search and selects Pareto points

57

Figure 3.14: Perl code to determine the Pareto points.

58

to characterize the design-space. Figure 3.15, Figure 3.16, Figure 3.17, Figure 3.18,

Figure 3.19, Figure 3.20 shows the Pareto curves for the DSP macros.

3.6 Chapter Conclusion

Table 3.6 shows that as we increase the step size, the “optimum” PDAP found by

this technique gets worse. The reason is, because of the large step-size, what is prob-

ably the true optimum point is skipped. To prevent this, we have to use an algorithm

which is not using a fixed step-size.

Table 3.6: Effect of step-size on PDAP (for multiplier)

Step-size(nsec)
� � � � (nsec)

�! � � � � � (nJx � �)

0.1 3.18 86656

0.2 3.69 89120

0.3 3.61 90577

0.4 3.49 91483

59

Figure 3.15: Pareto curve for 16-bit adder.

60

Figure 3.16: Pareto curve for 16-bit multiplier.

61

Figure 3.17: Pareto curve for 16-bit complex-multiplier.

62

Figure 3.18: Pareto curve for FIR.

63

Figure 3.19: Pareto curve for poly-FIR.

64

Figure 3.20: Pareto curve for 64 point FFT.

65

CHAPTER 4

Searching the Design Space Using Simulated Annealing

Due to the step size dependence of the DSSA and PDSSA, it is possible to skip the

true optimum PDAP point during the design space search. As a result we decided to

investigate an alternate search technique to determine whether it could produce higher

quality results.

4.1 Simulated Annealing

Simulated Annealing (SA) is an iterative improvement algorithm (optimization

technique) based on the principles of thermodynamics. SA is based on an analogy

of the annealing process of solids. It was first introduced in a paper published by

Metropolis et al. in 1953 [20]. In [16] it was first used on a large combinatorial prob-

lem to find an approximate solution. SA accepts better moves (which reduces the cost

function) unconditionally, but unlike some other algorithms it also accepts inferior

moves as the new solution with a probability to provide a possibility of escaping a

local minimum. A general SA algorithm is given in Table 4.1.

� Initialize() is to set initial guess value for the parameter to be optimized.

� HeatUp() is to determine the starting temperature.

66

Table 4.1: A general SA algorithm in pseudo code

� ! � � � $ � � 	��������	�	
������� � �
T:=HeatUp()

Loop

Loop

� $�� � � 	��������	����� �����	�! � �"�#%$ �
& � � �
� � 	 � � �
� � � $�� � � � � �
� � � ! � � � $ � �
� � & � � �
� � � or ')(%(�*�+� �*,.-0/21 �

(43 �
� ! � � � $ � 	 � $	� �
until Equilibrium()

T:=CoolDown()

until Frozen()

� Perturb() is to disturb the system with the current input to determine the next

input.

� Accept() is to accept the inferior moves (which increases the cost function) with

the probability of � 5 �76 �
� � ��8�9;:

�

� Equilibrium() is to check whether the required number of iterations has been

made or not.

� CoolDown() is to reduce the temperature according to a given schedule.

67

� Frozen() is to evaluate the rate of change of the system response. If it is smaller

than a given epsilon, terminate the algorithm.

4.2 Implementation

Simulated Annealing has been implemented in a number of applications in elec-

tronic design automation including routing [6], circuit partitioning [22], schedul-

ing [12]. In our implementation we have used SA to search the design space for

minimum Power-Delay-Area product. The SA code is written in C. The interface

between the SA code and the synthesis tool is provided by a set of scripts written in

Perl. Synopsys Design Compiler [3] is used for logic synthesis and Synopsys Power

Compiler [4] is used for power optimization during the search. A switching activity

file is generated for better power optimization using a random set of input vectors. At

each run, Design Compiler writes out power, delay and area reports. Perl scripts are

used to extract the power, delay and area values from those report files and to update

the current value of the cost function. The SA algorithm makes its decision according

to this new value of the cost function. The cost function in our SA based optimization

is PDA product which is given in Equation 4.1. However, the cost function can easily

be changed to be Power-Delay product, Power-Area product or Area-Delay product

depending on the user’s preference.

68

� � �
� 	 � � � �

�
� � � D

�
d �

���
�

(4.1)

As seen from Equation 4.1, it is a cost function with constraints.
�
� � is the mini-

mum delay for the design.
�
�
���

is the delay where power consumption of the design

is minimum. Before starting the main design space search, an automated procedure

finds
�
� � and

�
�
���

.
�
� � is found simply by setting the timing constraint to zero, and

�
�
� �

is found by setting the power constraint to zero during synthesis. Using a con-

straint cost function reduces the search time. We have used Cauchy training as given

in Equation 4.2 and Equation 4.3 (T is the temperature and � is a constant).

& 	 ��� � � �
 �
��� �

(4.2)

� 	�� � � � ��

�
��� � � � (4.3)

Equation 4.4 shows how the next delay point is generated. After each new delay

point is generated, the timing constraint in the synthesis script is updated to reflect the

new delay target. At each point power, delay, and area values are recorded and the

technology-dependent net-list is written out.

 $	� ��	� ! � � � $ � � &
(4.4)

69

Table 4.2: Characteristics of the macros

Design # of Transistors # of I/O’s

16-bit adder 492 49

16-bit multiplier 8552 64

16-bit complex-multiplier 36218 130

The schedule used for cooling is given by Equation 4.5. Where � � is the starting

temperature,
�

is a constant, and k is the current iteration step number.

�
� � � 	 � �

� � � � � (4.5)

4.3 Experimental Results

We have tested the SA implementation using three combinational macros. The

characteristics of the macros are given in Table 4.2. The adder and multiplier were

taken directly from Synopsys Design Ware library. The complex-multiplier was cre-

ated using components from the Synopsys Design Ware library.

Table 4.3 shows the upper (
�
�
� �

) and lower (
�
� �) limits of the search space for the

combinational macros used.
� � � � is the delay point where the minimum PDA product

was found. PDA products at
�
� � , � � ��� , � � $ � , and

� � � � are listed in Table 4.4. Table 4.5

tabulates improvement ratio on PDAP for the three search techniques. Figure 4.1,

Figure 4.2 and Figure 4.3 are the plots of data points generated during the search.

70

Table 4.3: Constraints of the macros

Design
�
�
���

(nsec)
�
� � (nsec)

� � � � (nsec)

adder 4.05 0.77 3.30

multiplier 5.11 2.20 3.17

complex-multiplier 8.67 2.99 4.69

Table 4.4: PDA products

PDA (nJx � �)

Design
�
�
��� �

� � �
�
$

�
� � � �

adder 210 1161.3 225.5 179.5

multiplier 115925.5 163371.7 129123 87470.7

comp-mult. 2969216 4186043.6 4543481 2314768.7

Table 4.5: PDAP improvement ratios

PDAP Improvement Ratio

Design DSSA PDSSA SA

adder 1.23 1.23 1.26

multiplier 1.45 1.45 1.48

complex-multiplier 1.91 1.91 1.96

71

Figure 4.1: Searched space for adder

72

Figure 4.2: Searched space for multiplier

73

Figure 4.3: Searched space for complex-multiplier

74

4.4 Chapter Conclusion

Table 4.6 tabulates the number of points generated during each search technique

and also the total run time of each technique. It should be noted that run times for

the macros using the SA technique are from 2x-9x greater than those for the DSSA.

Of course, more design points are generated for the SA technique. As tabulated in

Table 4.5, the improvement ratio for the SA is only slightly better than those obtained

by DSSA and PDSSA. For example, for the case of the complex-multiplier, the SA

produced only a 3% better result than DSSA and PDSSA, but it took SA 9x more than

DSSA and 67x more than PDSSA to find it. As a result we have decided not to run the

design space search using the SA technique for FIR, PFIR, and FFT since the DSSA

and PDSSA achieved comparable results in far less time.

Table 4.6: Run times

Number of Points Generated Run Time

Design DSSA PDSSA SA DSSA PDSSA SA

adder 30 30 324 0.8 hrs. 4 min. 4.93 hrs.

multiplier 32 32 49 1.67 hrs. 12 min. 2.25 hrs.

comp.-mult. 41 41 389 8.5 hrs. 1.12 hrs. 75.62 hrs.

75

CHAPTER 5

Graphical User Interface (GUI) Design

Team Liberator1.0 (Figure 5.1) is a Graphical User Interface (GUI) which is de-

signed to combine the optimization techniques developed by three universities (Uni-

versity of Tennessee, University of Washington, and University of California at Santa

Cruz) for the Phase I of DARPA project. The GUI is written in Tk. Data transfer

between the tools and the GUI is provided by a set of Perl scripts.

5.1 MacroGen

MacroGen is a DSP macro generator tool. It can be initialized within the

Team Liberator1.0 (Figure 5.2) or it can be run as a stand-alone tool. MacroGen con-

tains templates of the generic DSP macros. It generates macros from those templates

according to the values for the generic parameters given by the user. MacroGen is

initialized within the Team Libeartor1.0 by simply clicking on the ”MACROLIST”

button located in the main window (Figure 5.2) The set of available DSP macros is

listed in the MacroGen window (for now the only macros available are adder, multi-

plier, complex-multiplier, FIR, poly-FIR, and FFT). The desired macro can be selected

from the MacroGen window simply by clicking on the macro name. A new window

will then pop-up automatically(Figure 5.3). Values for the generic parameters of the

76

Figure 5.1: Main window of the GUI.

77

Figure 5.2: Initiating MacroGen from the main window.

78

Figure 5.3: Selecting a macro from MacroGen.

79

DSP macro are entered through this window. Specification of the selected DSP macro

can be viewed simply by clicking on the ”Specs” button in the macro window (Fig-

ure 5.4). After entering values for the generic parameters, clicking on the ”Generate”

button (Figure 5.5) will generate the VHDL file for the macro according to the user

specifications. The VHDL file for the macro can be viewed by clicking on the ”VHDL”

icon in the main window (Figure 5.6).

5.2 Initiating Design Space Search

The Synopsys synthesis tools used during the technology mapping phase can gen-

erate, depending on the target technology library and user constraints, many design

points with different power, area, delay values. Finding the best combination of power,

area, delay may require several iterations. This iteration process can be very time-

consuming and tedious. Several algorithms (DSSA, PDSSA, SA) have been devel-

oped at University of Tennessee to assist the synthesis tool to perform an automated

design space search. This design space search can be performed according to user-

defined parameters and is initiated by clicking on the ”Synopsys Design Compiler

Power Compiler” icon. A new dialog window will pop-up (Figure 5.7) to let the user

enter user-defined parameters for the design space search. The target technology can

be selected from the radio button labeled ”Technology”. The desired run time (unit

for the desired run time has to be selected using the radio button labeled as ”Unit”

(Figure 5.7)), number of iterations, improvement ratio and step size can be entered

using this dialog window. The figure of merit for the search can be selected using the

80

Figure 5.4: Viewing specifications for the selected macro.

81

Figure 5.5: Entering values for the generic parameters of the selected macro.

82

Figure 5.6: Viewing VHDL file of the selected macro.

83

Figure 5.7: Initiating a design space search.

84

radio button labeled ”F.O.M” (Figure 5.7). The desired algorithm (DSSA, PDSSA,

SA) for the search is selected using radio button labeled ”Search Algorithm”. Then,

the automated design space search for the selected macro can be initiated by pressing

the ”OK” button in the dialog window. After a few seconds, the dialog window will

disappear and several splash windows will start popping up. The last splash window

(Figure 5.8) will stay there until the search is complete. Depending on the user-defined

parameters, this step may take several minutes or even hours. But since the process is

completely automated, it can be left to run by itself.

5.3 Reporting and Analyzing Run Results

As soon as the design space search is over, a new window will pop up with search

results (Figure 5.9). From this window one can sort the results with respect to the cho-

sen figure of merit (power, delay, area, power-delay product, power-delay-area prod-

uct). It is also possible to plot the results. To initiate a plot an option (D vs P, D vs A,

P vs A, or D vs PDA) has to be selected from the radio button (Figure 5.9) located on

the results window. After selecting the option, clicking on the ”PLOT” button will pop

up a new window with the desired plot (Figure 5.10). Plotting the search results will

help the designer to visualize the design space. A Pareto curve fitting algorithm has

been also integrated into the GUI. Fitting a Pareto curve to the desired plot can be done

simply by clicking on the ”Pareto Curve” (Figure 5.11) button in the plot window. A

statistic about each design point can be obtained using ”Statistic” button in the results

window. This button will pop up a text window with the report (Figure 5.12) which

85

Figure 5.8: Design space search in progress.

86

Figure 5.9: Tabulated design space search results for the selected macro.

87

Figure 5.10: Plotting search results for the selected parameters.

88

Figure 5.11: Generating Pareto curve.

89

Figure 5.12: Viewing the statistics of the standard-cells, number of transistors for the selected design point.

90

will include each standard-cell used in the design and its number of instances, the to-

tal number of standard-cells used, and the total number of transistors for the selected

design point. It is also possible to select a design point from the list and send it for

layout. The desired design point can be selected by clicking on its iteration number

(column ”n” (Figure 5.13)). After selecting the design point, it can be sent to layout

by clicking on the ”Send for Layout” button in the results window.

5.4 Initiating Layout

The layout process can be started by clicking on the ”Cadence PlaceRoute” icon.

This will pop up a layout dialog window (Figure 5.14). After all the necessary files are

entered, one can start Silicon Ensemble from the ”Start SE” button in the layout win-

dow (Figure 5.14). After starting SE, the designer may have to wait several seconds

because SE has to read in the LEF file, the library VERILOG file, and the selected

design point. All of these actions will be completed automatically. When all of the

files have been read, the designer can interact with Silicon Ensemble to complete the

rest of the place and route process. After the place and route is complete (Figure 5.15),

the design has to be exported as a DEF file. The name of the DEF should be the same

as the macro name. To finalize the layout process, the designer should click on the

”Start ICFB” button in the layout dialog window (Figure 5.14). This will initiate the

Cadence Design Framework and the DEF file for the macro will be read in automati-

cally. After importing the DEF file is complete, the final layout for the macro will pop

up (Figure 5.16).

91

Figure 5.13: Selecting a design point to send for layout.

92

Figure 5.14: Initiating place and route procedure.

93

Figure 5.15: Selected design point after placement and routing.

94

Figure 5.16: Final layout for the selected design point.

95

CHAPTER 6

Summary and Future Work

Two important parameters to measure integrated circuit efficiency are operations

per second per watt (OPS/W) and operations per second per square micron (OPS/ � �).

The first parameter is an indication of energy efficiency of the chip and the second pa-

rameter is an indication of the area efficiency of the chip. Both parameters are closely

related to the power, delay and area values of the design. OPS/W is inversely propor-

tional to the product of delay and power (DPP), and OPS/ � � is inversely proportional

to the product of area and delay. To increase operations per second per watt, DPP has

to be minimized but at the same time silicon area also has to be kept in mind. Thus,

minimization of the product of power times delay times area (PDA) can be a more ef-

ficient means of increasing OPS/W without hurting OPS/ � � efficiency. Experimental

results presented in this dissertation show that optimizing the design for PDA gives

the best GOPS/W with an insignificant effect on GOPS/ � � . Experimental results also

indicate that maximum GOPS/W occurs when the PDAP is minimum. As a result

for an efficient chip design, designer has to find the design point on the design space

where PDAP is minimum. To do that the designer may have to search the entire de-

sign space. Searching the design space manually can be a very time-consuming and

tedious process. An automated design space search can be a life saver for the designer.

96

Unfortunately today’s sophisticated synthesis tools do not provide any solution for this

problem.

To overcome this obstacle, several algorithms have been developed and imple-

mented at the University of Tennessee at Knoxville and presented in this thesis. The

main contributions of this dissertation include:

� Developed an algorithm (DSSA) to assist or to guide a commercial tool to do a

fully automated design space search.

� The developed algorithm searches the design space with user guidance in terms

of:

1. search time,

2. number of iterations, and/or

3. improvement ratio.

� A parallel version of DSSA (PDSSA) has been implemented to reduce the search

time.

� Several optimization methods at the RTL level have been investigated and three

of them have been applied to the selected designs to conduct design space

searches.

� To minimize the design space which characterizes the design, a Pareto point

selection algorithm has been added to the DSSA and PDSSA.

97

� The developed search techniques are integrated into an automated ASIC design

flow.

� A search technique which utilizes Simulated Annealing has been investigated.

� A graphical user interface (GUI) has been developed for the automated flow.

� All developed algorithms, the automated ASIC flow and the GUI have been

tested and verified using several DSP macros.

In general, the design space search algorithms, the automated ASIC flow, and GUI

introduced in this thesis have created a faster and automated way of searching the de-

sign space for hardware implementation. In some cases, the found PDA product was

1.9 times better than the initial baseline solution as a result of the optimization tech-

niques applied during the design space search. The parallel search algorithm exhibited

9x speed up when executed on 10 machines simultaneously.

One possibility of extending this dissertation is to include the design space search

at the behavioral level and transistor level.

98

BIBLIOGRAPHY

99

BIBLIOGRAPHY

[1] ASIC Design Methology Primer. IBM, 1998.

[2] Low Power Training Course Material. Synopsys, Inc., 1998.

[3] Synopsys Design Compiler Reference Manual: v2001.08. Synopsys, Inc., 2001.

[4] Synopsys Power Compiler User Guide v2001.08. Synopsys, Inc., 2001.

[5] TSMC 0.18 � m Process Standard Cell Library Databook. Artisan Components,
2001.

[6] P. Banerjee, M. Jones, and J. Sarjent. Parallel Simulated Annealing Algorithms
for Cell Placement. In IEEE Transaction on Parallel and Distributed Systems,
volume 1, pages 91–105, January 1990.

[7] M. S. Bright and T. Arslan. Multi-Objective Design Strategy for High-Level
Synthesis DSP Systems for Low Power. In ISCAS 99, volume 1, pages 80–83,
1999.

[8] M. S. Bright and T. Arslan. A Genetic Algorithm for the High-Level Low Power
Design of DSP Systems. In Proc. IEE/IEEE Conf. on Genetic Algorithms in
Engineering Systems, pages pages 174–179, Sept. 1997.

[9] D. Brooks and M. Martonosi. Value-Based Clock Gating and Operation Packing:
Dynamic Strategies for Improving Processor Power and Performance. In ACM
Transactions on Computer Systems, volume 18, pages 89–126, May 2000.

[10] D. Bruni, A. Bogliolo, and L. Benini. Statistical Design Space Exploration for
Application-Specific Unit Synthesis. In Design Automation Conference, 2001.

[11] A. P. Chandrakasan and R. Brodersen. Minimizing Power Consumption in
CMOS Circuits. In Proceedings of IEEE, volume 83, pages 498–523, 1995.

[12] S. Devadas and A. R. Newton. Algorithms for allocation in datapath synthesis.
In IEEE Transaction on CAD of Integrated Circuit and Systems, volume 8, pages
210–215, 1991.

[13] S. Gailhard, O. Sentieys, N. Julien, and E. Martin. Area/Time/Power Space Ex-
ploration in Module Selection for DSP High Level Synthesis. In Int. Workshop,
PATMOS’97, pages 35–44, September 1997.

[14] D. A. Hodges and H. G. Jackson. Analysis and Design of Digital Integrated
Circuits. -Hill, 1983.

100

[15] P. C. Kao, C. K. Hsieh, C. F. Su, and C. H. Wu. An RTL Design-Space Ex-
ploration Method for High-Level Applications. In IEICE Trans. Fundamentals,
volume E84-A, pages 2648–2654, Novomber 2001.

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated An-
nealing. In Science, volume 220, pages 671–680, 1983.

[17] P. E. Landman. Low-Power Archhitectural Design Methodologies. PhD thesis,
University of California at Berkeley, Berkeley, CA, August 1994.

[18] A. Maheswari, W. Burleson, and R. Tessier. Trading off Reliability and Power-
Consumption in Ultra-Low Power Systems. In International Symposium on
Quality Electronic Design, May 18-21, 2001.

[19] R. Martin and J. Knight. Power-profiler: Optimizing ASICs power consumption
at the behavioral level. In Design Automation Conference, 1995.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of State Calculations by Fast Computing Machines. In Journal of
Chem. Phys., volume 21No, pages 1087–1092, 1953.

[21] M. Munch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn. Automating RT-
Level Operand Isolation to Minimize Power Consumption in Datapaths. In IEEE
Design Automation and Test in Europe, pages 624–631, March 2000.

[22] C. P. Ravikumar. Parallel Algorithms for VLSI Physical Design. Ablex Publish-
ing Corporation, 1996.

[23] P. Rezvani, A. H. Ajami, M. Pedram, and H. Savoj. LEOPARD: A Logical
Effort-Based Fanout Optimizer for Area and Delay. In ICCAD, 1999.

[24] A. Sirinivasan, G. D. Huber, and D. P. LaPotin. Accurate Area and Delay Estima-
tion from RTL Descriptions. In IEEE Transactions on VLSI Systems, volume 6,
pages 168–172, March 1998.

[25] W. Wolf. Modern VLSI Design: A systems Approach. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1994.

[26] Q. Wu, M. Pedram, and X. Wu. Clock-Gating and Its Application to Low Power
Design of Sequential Circuits. In IEEE Transactions on Circuit and Systems,
volume 47, pages 415–420, March 2000.

101

VITA

Fuat Karakaya was born on January 1st, 1970 in Aksaray, Turkey. He received his

primary and secondary education in Ankara. He studied at Hacettepe University, in

Ankara-Turkey, where he received his Bachelor of Science degree in Electrical Engi-

neering in May 1993. He received his Master of Science degree in Electrical Engi-

neering from Illinois Institute of Technology, Chicago-USA, in May 1998. He then

began working toward his Doctor of Philosophy degree at University of Tennessee,

Knoxville-USA. While pursuing his doctarate degree, he was a research assistant for

the Industrial Plasma Laboratory and the Microelectronic Systems Research Labora-

tory. He received his Doctor of Philosophy degree in Electrical Engineering in May

2004.

102

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2004

	Automated Exploration of the ASIC Design Space for Minimum Power-Delay-Area Product at the Register Transfer Level
	Fuat Karakaya
	Recommended Citation

	tmp.1381861665.pdf.AemTm

