17 research outputs found

    Functional Distributional Semantics

    Get PDF
    Vector space models have become popular in distributional semantics, despite the challenges they face in capturing various semantic phenomena. We propose a novel probabilistic framework which draws on both formal semantics and recent advances in machine learning. In particular, we separate predicates from the entities they refer to, allowing us to perform Bayesian inference based on logical forms. We describe an implementation of this framework using a combination of Restricted Boltzmann Machines and feedforward neural networks. Finally, we demonstrate the feasibility of this approach by training it on a parsed corpus and evaluating it on established similarity datasets

    Variational Inference for Logical Inference

    Get PDF
    Functional Distributional Semantics is a framework that aims to learn, from text, semantic representations which can be interpreted in terms of truth. Here we make two contributions to this framework. The first is to show how a type of logical inference can be performed by evaluating conditional probabilities. The second is to make these calculations tractable by means of a variational approximation. This approximation also enables faster convergence during training, allowing us to close the gap with state-of-the-art vector space models when evaluating on semantic similarity. We demonstrate promising performance on two tasks.Schiff Foundatio

    Semantic Composition via Probabilistic Model Theory

    Get PDF
    Semantic composition remains an open problem for vector space models of semantics. In this paper, we explain how the probabilistic graphical model used in the framework of Functional Distributional Semantics can be interpreted as a probabilistic version of model theory. Building on this, we explain how various semantic phenomena can be recast in terms of conditional probabilities in the graphical model. This connection between formal semantics and machine learning is helpful in both directions: it gives us an explicit mechanism for modelling context-dependent meanings (a challenge for formal semantics), and also gives us well-motivated techniques for composing distributed representations (a challenge for distributional semantics). We present results on two datasets that go beyond word similarity, showing how these semantically-motivated techniques improve on the performance of vector models.Schiff Foundatio

    Contextualized word senses: from attention to compositionality

    Full text link
    The neural architectures of language models are becoming increasingly complex, especially that of Transformers, based on the attention mechanism. Although their application to numerous natural language processing tasks has proven to be very fruitful, they continue to be models with little or no interpretability and explainability. One of the tasks for which they are best suited is the encoding of the contextual sense of words using contextualized embeddings. In this paper we propose a transparent, interpretable, and linguistically motivated strategy for encoding the contextual sense of words by modeling semantic compositionality. Particular attention is given to dependency relations and semantic notions such as selection preferences and paradigmatic classes. A partial implementation of the proposed model is carried out and compared with Transformer-based architectures for a given semantic task, namely the similarity calculation of word senses in context. The results obtained show that it is possible to be competitive with linguistically motivated models instead of using the black boxes underlying complex neural architectures

    Compositional Distributional Semantics with Syntactic Dependencies and Selectional Preferences

    Get PDF
    This article describes a compositional model based on syntactic dependencies which has been designed to build contextualized word vectors, by following linguistic principles related to the concept of selectional preferences. The compositional strategy proposed in the current work has been evaluated on a syntactically controlled and multilingual dataset, and compared with Transformer BERT-like models, such as Sentence BERT, the state-of-the-art in sentence similarity. For this purpose, we created two new test datasets for Portuguese and Spanish on the basis of that defined for the English language, containing expressions with noun-verb-noun transitive constructions. The results we have obtained show that the linguistic-based compositional approach turns out to be competitive with Transformer modelsThis work has received financial support from DOMINO project (PGC2018-102041-B-I00, MCIU/AEI/FEDER, UE), eRisk project (RTI2018-093336-B-C21), the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016-2019, ED431G/08, Groups of Reference: ED431C 2020/21, and ERDF 2014-2020: Call ED431G 2019/04) and the European Regional Development Fund (ERDF)S
    corecore