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Abstract

Functional Distributional Semantics is a
framework that aims to learn, from text,
semantic representations which can be in-
terpreted in terms of truth. Here we make
two contributions to this framework. The
first is to show how a type of logical
inference can be performed by evaluat-
ing conditional probabilities. The sec-
ond is to make these calculations tractable
by means of a variational approximation.
This approximation also enables faster
convergence during training, allowing us
to close the gap with state-of-the-art vector
space models when evaluating on seman-
tic similarity. We demonstrate promising
performance on two tasks.

1 Introduction and Background

Standard approaches to distributional semantics
represent meanings as vectors, whether this is
done using the more traditional count vectors (Tur-
ney and Pantel, 2010), or using embedding vec-
tors trained with a neural network (Mikolov et al.,
2013). While vector space models have advanced
the state of the art in many tasks, they raise ques-
tions when it comes to representing larger phrases.
Ideally, we would like to learn representations that
naturally have logical interpretations.

There have been several attempts to incorporate
vectors into logical representations, and while we
do not have space for a full literature review here,
we will mention two prominent lines of research.
Coecke et al. (2010) and Baroni et al. (2014) pro-
pose a tensor-based approach, where vectors are
combined according to argument structure. How-
ever, this leaves open the question of how to per-
form logical inference, as vector spaces do not
provide a natural notion of entailment. Indeed,

Grefenstette (2013) proved that quantifiers cannot
be expressed using tensor calculus. Garrette et al.
(2011) and Beltagy et al. (2016) incorporate a vec-
tor space model into a Markov Logic Network, in
the form of weighted inference rules (the truth of
one predicate implying the truth of another). This
approach requires existing vectors, and assumes
we can interpret similarity in terms of inference.

In contrast to the above, Emerson and Copes-
take (2016) (henceforth E&C) introduced the
framework of Functional Distributional Seman-
tics, which represents the meaning of a predicate
not as a vector, but as a function.

To define these functions, we assume a seman-
tic space X , each point representing the features
of a possible individual. We refer to points in X as
‘pixies’, intuitively ‘pixels’ of the space, to make
clear they are not individuals – two individuals
may be represented by the same pixie. Further dis-
cussion of model theory will be given in forthcom-
ing work (Emerson and Copestake, 2017) (hence-
forth E&C-forth). We take X to be a vector space,
each dimension intuitively representing a feature.

A semantic function maps from the space X to
the range [0, 1]. This can be interpreted both in the
machine-learning sense of a classifier, and in the
logical sense of a truth-conditional function.1 In
the machine learning view, a semantic function is
a probabilistic classifier for a binary classification
task – each input x ∈ X is either an instance of the
predicate’s class, or it is not. In the logical view,
a semantic function specifies what features a pixie
needs to have in order for the predicate to be true
of it – that is, the predicate’s truth conditions.

1We take a probabilistic approach, where a predicate has a
probability of truth for any pixie. We believe this is a strength
of the model, as it can model fuzzy boundaries of concepts.
However, we could also use semantic functions in a more tra-
ditional logic, by assigning truth when the function’s value
is above 0.5, and falsehood otherwise. This is equivalent to
turning the probabilistic classifier into a ‘hard’ classifier.
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This is related to probabilistic type judgements
in the framework of Probabilistic Type Theory
with Records (TTR) (Cooper, 2005; Cooper et al.,
2015). Working within TTR, Larsson (2013) ar-
gues in favour of representing perceptual concepts
as classifiers of perceptual input. While TTR rep-
resents situations in terms of situation types, a se-
mantic function model defines a semantic space
without reference to any types or predicates.

Schlangen et al. (2016) take a similar view, rep-
resenting meanings as image classifiers. Zarrieß
and Schlangen (2017) use a distributional model to
help train such classifiers, but do not directly learn
logical representations from distributional data.

Our approach to logical inference is related
to the work of Bergmair (2010) and Clarke and
Keller (2015), who use fuzzy truth values and
probabilistic truth values, respectively. However,
neither incorporate distributional data.

In contrast to the above, a semantic function
model can be trained on a parsed corpus. By defin-
ing a generative model, we can apply unsupervised
learning: optimising the model parameters to max-
imise the probability of generating the corpus data.

Our model can be trained on a corpus anno-
tated with Dependency Minimal Recursion Se-
mantics (DMRS) (Copestake et al., 2005; Copes-
take, 2009). This represents the meaning of a sen-
tence as a semantic dependency graph that has a
logical interpretation. An example DMRS graph
is shown in Fig. 1 (ignoring quantifiers, and ignor-
ing properties such number and tense). Note that,
as these are semantic dependencies, not syntactic
dependencies, active and passive voice sentences
can be represented with the same graph. This de-
pendency graph could be generated by the proba-
bilistic graphical model shown in Fig. 2. The gen-
erated predicates are at the bottom: q might corre-
spond to a verb, p its subject, and r its object. The
dependency links (ARG1 and ARG2) are at the top.

Rather than generating the predicates directly,
we assume that each predicate is true of a latent,
unobserved pixie. For example, the DMRS graph
for the dog chased the cat has three pixies, corre-
sponding to the dog, the chasing event, and the cat.
We can define a generative model for such sets of
pixies (the top row of Fig. 2), assuming each link
corresponds to a probabilistic dependence; intu-
itively, different kinds of events occur with dif-
ferent kinds of arguments. In machine learning
terms, this forms an undirected graphical model.

dog chase cat
ARG2ARG1

Figure 1: A simplified DMRS graph, illustrating
the type of data observed during training. This
graph would correspond to sentences like The dog
chased the cat, or Cats are chased by dogs.

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

p q r

∈ V

Figure 2: A probabilistic graphical model for
Functional Distributional Semantics (E&C Fig. 3).
Each node denotes a random variable, but only the
bottom row is observed. The plate (middle row)
denotes repeating variables across the vocabulary.
Top row: latent pixies x, y, and z, lying in a
semantic space X . Their joint distribution is de-
termined by the DMRS links ARG1 and ARG2.
Middle row: each predicate c in the vocabulary V
is probabilistically true or false for each pixie.
Bottom row: for each pixie, we observe exactly
one predicate, probabilistically chosen out of all
predicates that are true of the pixie.

We generate the predicates in three stages (from
top to bottom in Fig. 2). First, we generate a set of
pixies, with DMRS links specifying probabilistic
dependence. Second, we use the semantic func-
tions for all predicates to generate a truth value for
each predicate applied to each pixie. Third, for
each pixie, we generate a single predicate out of
all true predicates. The separation of pixies and
truth values gives us a connection with logical in-
ference, as we will see in §2.1.

For a DMRS graph with a different structure,
we can define a similar graphical model. For ex-
ample, for an intransitive sentence, with just a verb
and its subject, we can remove the right-hand col-
umn of Fig. 2. The model parameters are shared
across all such graphs, so we can train our model
on a heterogenous set of DMRS graphs.

We follow E&C, and implement this model as
shown in Fig. 3. The semantic space X consists of



∈ {0, 1}N

∈ {0, 1} |V |

p q r

∈ V

Figure 3: Implementation of the model in Fig. 2.
Top row: pixies are binary-valued vectors, form-
ing a CaRBM. For each link, connections be-
tween the dimensions of the two pixies determine
how likely they are to be active at the same time.
Middle row: each semantic function is a
one-layer feedforward network, with a single
output interpreted as the probability of truth.
Bottom row: for each pixie, we generate exactly
one predicate, as in Fig. 2.

sparse binary-valued vectors, where a small fixed
number of dimensions are 1, and the rest 0. In-
tuitively, each dimension is a ‘feature’ of a pixie,
and only a small number are present. The joint dis-
tribution over pixies is given by a Cardinality Re-
stricted Boltzmann Machine (CaRBM) (Swersky
et al., 2012). The semantic functions are one-layer
feedforward networks, with a sigmoid activation
so the output is in the range [0, 1]. The probability
of generating a predicate (bottom row) is weighted
by the observed frequency of the predicate.

2 Theoretical Contributions

2.1 Logical Inference

The model in Fig. 2 contains, in the middle row, a
node for the truth of each predicate for each pixie.
Using these nodes, we can convert certain logical
propositions into statements about probabilities.

For example, we might be interested in whether
one predicate implies another. For simplicity, con-
sider a single pixie x, as shown in Fig. 4. Then,
the logical proposition ∀x ∈ X , a(x)⇒ b(x)
is equivalent2 to the statement P (tb,x|ta,x) = 1.

2More precisely, the equivalence requires the logic to have
‘existential import’: Every A implies that some A exists.
This follows from the definition of conditional probability
P (B|A) = P (A ∧B)/P (A), only defined if P (A) 6= 0

Intuitively, conditioning on ta,x means restrict-
ing to those pixies x for which the predicate a
is true. If the probability of tb,x being true is 1,
then the predicate b is true for all of those x.
Similarly, ∃x ∈ X , a(x) ∧ b(x) is equivalent to
P (tb,x|ta,x) > 0. Furthermore, classical rules of
inference hold under this equivalence. For exam-
ple, from P (tb,x|ta,x) = 1 and P (tc,x|tb,x) = 1,
we can deduce that P (tc,x|ta,x) = 1. This is pre-
cisely the classical Barbara syllogism. A proof is
given in Appendix A.

In practice, when training on distributional data,
the conditional probability P (tb,x|ta,x) will never
be exactly 0 or 1, because the model only imple-
ments soft constraints. Nonetheless, this quantity
can be very informative: if it is 0.999, then we
know that if a(x) is true, it is almost always the
case that b(x) is also true. So, it represents the
degree to which a implies b, in an intuitive sense.

Separate from this notion of inference, we can
also consider the similarity of two latent pixies – if
a is true of x, and b is true of y, how many features
do x and y share? If a and b are antonyms, the
truth of one will not imply the truth of the other,
but the pixies may share many features.

As Copestake and Herbelot (2012) note, distin-
guishing synonyms and antonyms requires check-
ing whether expressions are mutually exclusive.
We do not have access to such information in our
training data, and such cases are inconsistently an-
notated in our test data (see §3.1). Nonetheless, the
model allows us to make such a distinction, which
is an advantage over vector space models. Exploit-
ing this distinction (perhaps by using coreference
information) would be a task for future work.

To calculate P (tb,x|ta,x), we must marginalise
out x, because the model actually defines the
joint probability P (x, tb,x, ta,x). This is analo-
gous to removing bound variables when calculat-
ing the truth of quantified expressions in classi-
cal logic. Quantifiers will be discussed further by
E&C-forth. However, marginalising out x requires
summing over the semantic space X , which is in-
tractable when X has a large number of dimen-
sions. In §2.2, we introduce a variational approxi-
mation to make this calculation tractable.

In the general case, there are multiple pixie vari-
ables. This opens up the possibility of inferring
what is true of one pixie, given what is true of an-
other. For example, we might be interested in what
is true of a verb’s arguments, which we could ex-



x

ta, x tb, x

Figure 4: Logical inference for a single pixie x,
and two predicates a and b. We have a joint distri-
bution between x and the truth values ta,x and tb,x,
which lets us consider logical inferences in terms
of conditional probabilities, such as P (tb,x|ta,x),
the probability of b being true, given that a is true.

y zx
ARG2ARG1

ta, x tb, y tc, z

td, x

Figure 5: Logical inference for three pixies and
four predicates of interest: we know whether
a, b, c are true of x, y, z, respectively, and we
would like to infer whether d is true of x. The
distribution for td,x depends on all the other truth
values, because it is indirectly connected to them
via the latent pixies.

plore with the three-pixie graph in Fig. 5. We can
ask questions such as: if the predicate paint is true
of an event, what predicates are true of its argu-
ments? A good model might answer that for the
ARG1 pixie, artist and person are likely true, while
democracy and aubergine are likely false.

Just as with the one-pixie case, there is an
equivalence between logical propositions and
statements about probabilities. For example,
∃x, y ∈ X , a(y) ∧ b(x) ∧ ARG1(y, x) is equiva-
lent to P (tb,x|ta,y) > 0. Note that ARG1 does not
correspond to a random variable – it is instead rep-
resented directly by the structure of the graphical
model (the edges in the top row of Fig. 2 and the
middle row of Fig. 5). As before, this conditional
probability is never going to be exactly 0 or 1, but
it is nonetheless a useful quantity when perform-
ing approximate inference, as we will see in §3.2.

x

Figure 6: Variational inference for Fig. 4. Exactly
calculating the distribution of x given ta,x is in-
tractable, but we can use a mean-field approxima-
tion. The dotted lines indicate approximate infer-
ence, and the solid lines indicate inference from
the mean-field pixie vector.

Figure 7: Variational inference for Fig. 5. The
ARG1 and ARG2 links are not explicitly repre-
sented, but the mean-field probabilities are op-
timised to approximate the joint distribution in-
duced by the links. Each dimension has an inde-
pendent probability, but they are jointly optimised,
so they depend on all truth values for all pixies.

2.2 Variational Inference

As explained in the previous section, we can ex-
press certain logical propositions as conditional
probabilities, but calculating these probabilities
exactly is intractable, as it involves summing over
the semantic space, which grows exponentially
with the number of dimensions. Furthermore, we
need to calculate similar conditional probabilities
when training the model in the first place.

Instead of summing over the entire space, E&C
proposed summing over a small number of care-
fully chosen pixies, using a Markov Chain Monte
Carlo method. However, this algorithm is slow
for two reasons. Firstly, many iterations of the
Markov chain are required before the samples are
useful. Secondly, even if we are not summing over
the entire space, many samples are still needed,
because the discrete values lead to high variance.



In this section, we introduce a variational infer-
ence algorithm, where we directly approximate the
distribution over pixies that we need to calculate,
and then optimise this approximation. This makes
the calculations in the previous section tractable,
and also makes training more efficient.

The distribution we need to approximate is
P (x|tc,x), the probability that a latent pixie x has
particular features, given the truth of some pred-
icate c. We use a mean-field approximation: we
assume that each dimension has an independent
probability qi of being active, as shown in (1). The
approximate probability Q(x) is simply the prod-
uct of the probabilities of each dimension. Fur-
thermore, we assume that each of these probabili-
ties depends on the average activation of all other
dimensions (i.e. the mean field activation).

P (x|tc,x) ≈ Q(x) =
∏

i|xi=1

qi
∏

i|xi=0

(1− qi) (1)

For Q to be a good approximation, it needs to
be close to P . We can measure this using the
Kullback-Leibler divergence from Q to P .3 Min-
imising this quantity is also done in the Expecta-
tion Propagation algorithm (Minka, 2001). How-
ever, a semantic function model is not in the expo-
nential family, making it difficult to apply Expec-
tation Propagation directly.

Given this mean-field approximation Q(x), we
have a a mean-field vector qi. This vector is not
in X , because each dimension is now a value in
the range [0, 1], rather than taking one of the val-
ues 0 or 1. It represents a ‘typical’ pixie for these
truth values. Furthermore, we have implemented
semantic functions as one-layer neural networks,
and each weight in the network can be multiplied

3Variational Bayes minimises the KL-divergence in the
opposite direction – that is, the KL-divergence from P to Q.
However, for the above approximation, this is infinite: if
the number of active units is not equal to the fixed cardi-
nality, then P (x|tc,x) = 0 but Q(x) 6= 0, giving infinite
Q(x) logP (x|tc,x). Furthermore, while Variational Bayes
prefers ‘high precision’ approximations (areas of high Q are
accurate), we will prefer ‘high recall’ approximations (areas
of high P are accurate). This is appropriate for two reasons.
Firstly, in areas where the number of active units is wrong,
Q is bound to be too high, but if we want to sample from Q,
we can avoid these areas by using belief propagation, as ex-
plained by Swersky et al. (2012). Secondly, in areas where
the number of active units is correct, Q will be much higher
than P only if there is a dependence between dimensions that
Q cannot capture, such as if P is a multi-modal distribution.
Because of the definition of an RBM, such a dependence is
impossible within one pixie, and combined with the simple
form of our semantic functions, such a dependence will be
rare between pixies.

by a value in the range [0, 1] just as easily as it can
be multiplied by 0 or 1. Since a mean-field vector
defines a distribution over pixies, applying a se-
mantic function to a mean-field vector lets us ap-
proximately calculate the probability that a predi-
cate is true of a pixie drawn from this distribution.

Differentiating the KL-divergence with respect
to qi, and using the above idea that we can ap-
ply semantic functions to mean-field vectors, we
can derive the update rule given in (2), with a full
derivation given in Appendix B. This updates the
value of qi, while holding the rest fixed. Here,
x(+i) is the mean-field vector where unit i is fixed
to be on, x(−i) is the mean-field vector where unit i
is fixed to be off, tc is the semantic function for the
predicate c, D is the number of dimensions of X ,
and C is the number of active units. Optimising Q
can then be done by repeatedly applying this up-
date rule across all dimensions.

qi =

(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

))−1

(2)

This update rule looks at how likely the predi-
cate c is to be true when the dimension xi is ac-
tive, and when it is not. If c is much more likely
to be true when xi is active, then qi will be close
to 1. If c is much more likely to be true when xi
is inactive, then qi will be close to 0. If there is no
difference at all, then qi will be C/D, the expected
probability if all dimensions are equally likely.

We can apply this to logical inference, to calcu-
late P (tb,x|ta,x), as shown in Fig. 6. We first find
the mean-field vector for x, conditioning on the
truth of a. This approximates P (x|ta,x). Then, we
evaluate the semantic function for b on this mean-
field vector. This approximates P (tb,x|ta,x).

For multiple pixies, the process is similar, as
shown in Fig. 7. We have one mean-field vec-
tor for each pixie, and we optimise these together.
The only difference to the update rule is that, as
well as considering how activating one dimension
changes the probability of a predicate being true,
we also have to consider how likely this dimension
is to be active, given the other pixies in the graph.
This leads to an extra term in the update rule, as
exemplified in (3), where there is a link from x
to y. The link has weights Wij which control how
likely it is that xi and yj are both active.

qi =

(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

)e−ΣjWijyj

)−1

(3)



Model SimLex Nouns SimLex Verbs WordSim Sim. WordSim Rel.
Word2Vec .40 .23 .69 .46
SVO Word2Vec .44 .18 .61 .24
Semantic Functions .46 .19 .60 .14

Table 1: Spearman rank correlation with average annotator judgements. Note that we would like
to have a low score on the final column (which measures relatedness, rather than similarity).

Model Development Test
Word2Vec, Addition .50 .47
Semantic Functions .20 .16
Word2Vec and Sem-Func Ensemble .53 .49

Table 2: Mean average precision on the RELPRON development and test sets. Note that this Word2Vec
model was trained on a more recent (and hence larger) version of Wikipedia, to match Rimell et al.

3 Experimental Results4

Finding a good evaluation task is difficult. Lexical
similarity tasks do not require logical inference,
while tasks like textual entailment require a level
of coverage beyond the scope of this paper. We
consider two tasks: lexical similarity, as a simple
benchmark, and the RELPRON dataset, which lets
us explore a controlled kind of inference.

We trained our model on subject-verb-object
(SVO) triples extracted from WikiWoods5, a
parsed version of the July 2008 dump of the En-
glish Wikipedia, distributed by DELPH-IN. This
resource was produced by Flickinger et al. (2010),
using the English Resource Grammar (Flickinger,
2000, 2011), and the PET parser (Callmeier, 2001;
Toutanova et al., 2005), with parse ranking trained
on the manually treebanked subcorpus WeScience
(Ytrestøl et al., 2009).

Our source code is available online.6 The Wiki-
Woods corpus was pre-processed using the Python
packages pydelphin7 (developed by Michael
Goodman), and pydmrs8 (Copestake et al., 2016).

To speed up training, we initialised our model
using random positive-only projections, a simple
method for producing reduced-dimension count
vectors (QasemiZadeh and Kallmeyer, 2016).
Rather than counting each context separately, ev-
ery context is randomly mapped to a dimension, so
each dimension corresponds to the total count of
several contexts. These counts can then be trans-

4A fuller set of results, with further discussion, will be
given by E&C-forth.

5http://moin.delph-in.net/WikiWoods
6http://github.com/guyemerson/sem-func
7http://github.com/delph-in/pydelphin
8http://github.com/delph-in/pydmrs

formed into PPMI scores. As with normal PPMI-
based count vectors, there are several hyperparam-
eters that can be tuned (Levy et al., 2015) – how-
ever, as we are using these vectors as parameters
for semantic functions, it should be noted that the
optimal hyperparameter settings are not the same.

We compare our model to two vector space
models, also trained on Wikipedia. Both use
Mikolov et al. (2013)’s skipgram algorithm with
negative sampling. “Word2Vec” was trained on
raw text, while “SVO Word2Vec” was trained on
the same SVO triples used to train our model. We
tested these models using cosine similarity.

3.1 Lexical Semantic Similarity

To measure the similarity of two predicates a
and b, we use the conditional probability described
in §2.1, and illustrated in Figs. 4 and 6. Since this
is an asymmetric measure, we multiply the condi-
tional probabilities in both directions, i.e. we cal-
culate P (ta,x|tb,x)P (tb,x|ta,x).

We evaluated on two datasets which aim to cap-
ture similarity, rather than relatedness: SimLex-
999 (Hill et al., 2015), and WordSim-353 (Finkel-
stein et al., 2001), which Agirre et al. (2009) split
into similarity and relatedness subsets. Results are
shown in Table 1.9 For each dataset, hyperparam-
eters were tuned on the remaining datasets. As
WordSim-353 is a noun-based dataset, it is possi-
ble that performance on SimLex-999 verbs could
be improved by optimising hyperparameters on a
more appropriate development set.

Note that we would like a low correlation on the

9Performance of Word2Vec on SimLex-999 is higher than
reported by Hill et al. (2015). Despite correspondence with
the authors, it is not clear why their figures are so low.

http://moin.delph-in.net/WikiWoods
http://github.com/guyemerson/sem-func
http://github.com/delph-in/pydelphin
http://github.com/delph-in/pydmrs


relatedness subset of WordSim-353. In the real
world, related predicates are unlikely to be true
of the same pixies (and the pixies they are true of
are unlikely to even share features). For predicates
which are true of similar but disjoint sets of pixies,
annotations in these datasets are inconsistent. For
example, SimLex-999 gives a low score to (aunt,
uncle), but a high score to (cat, dog). The seman-
tic function model achieves the lowest correlation
on the relatedness subset.

Compared to E&C, the gap between the seman-
tic function model and the vector space models has
essentially been closed. Which model performs
best is inconsistent across the evaluation datasets.
This shows that the previously reported lower per-
formance was not due to a problem with the model
itself, but rather with an inefficient training algo-
rithm and with poor choice of hyperparameters.

3.2 RELPRON

The RELPRON dataset was produced by Rimell
et al. (2016). It consists of ‘terms’ (all nouns),
each paired with up to ten ‘properties’. For exam-
ple, a telescope is a device that astronomers use,
and a saw is a device that cuts wood. All prop-
erties are of this form: a hypernym of the term,
modified by a relative clause with a transitive verb.
For each term, the task is to identify the properties
which apply to this term. Since every property fol-
lows one of only two patterns, this dataset lets us
focus on semantics, rather than parsing.

A model that captures relatedness can achieve
good performance on this dataset – Rimell et al.
found that the other argument of the verb was the
best predictor of the term (e.g. astronomer predicts
telescope). Logically speaking, these predicates
do not imply each other. However, Rimell et al.
included confounders for a model relying on re-
latedness – e.g. a document that has a balance is
an account, not the quality of balance. In all of
their models, this was the top-ranked property for
balance. By combining a vector model with our
model, we hoped to improve performance.

We tested our model using the method de-
scribed in §2 and illustrated in Figs. 5 and 7: for
each term and property, we find the probability of
the term being true, conditioned on all predicates
in the property. Results are given in Table 2. As
noted in §3.1, our model does not capture related-
ness, and it performs below vector addition. How-
ever, the ensemble outperforms the vector space

model alone. This improvement is not simply due
to increasing the capacity of the model – increas-
ing the dimensionality of the vector space did not
yield this improvement.

Furthermore, inspecting the differences in pre-
dictions between the vector space model and the
ensemble, it appears that there is particular im-
provement on the confounders included in the
dataset, which require some kind of logical infer-
ence. In our ensemble model, for the term bal-
ance, the top-ranked property is no longer the con-
founder document that has a balance, but instead
the correct property quality that an ear maintains.

4 Conclusion

We can define probabilistic logical inference in
Functional Distributional Semantics, and effi-
ciently calculate it using variational inference. We
can use this to improve performance on the REL-
PRON dataset, suggesting our model can learn
structure not captured by vector space models.
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A Logical equivalence

A.1 Proof of general case
Syllogisms are classically expressed in set-
theoretic terms. A quantified proposition of the
form Q A are B, where Q is some quantifier,
gives constraints on the sizes of the sets A ∩B
and A \B, and says nothing about the size of B.

For the quantifier ∃, we have:

|A ∩B| > 0

For the quantifier ∀, we have the following,
where the second constraint assumes existential
import:

|A \B| = 0

|A ∩B| > 0

From these definitions, we can use standard set
theory to prove all and only the valid syllogisms.
To show equivalence with our probabilistic frame-
work, we first note that sizes of sets form a mea-
sure (the ‘counting measure’), and probabilities
also form a measure. The above conditions are all

constraints on sizes of sets being zero or nonzero,
so it suffices to show that the sizes and probabili-
ties are equivalent in the measure-theoretic sense:
they agree on which sets have measure zero.

First, we note that P (B|A) = P (A∩B)
P (A) is de-

fined only when P (A) > 0, which will give us
existential import.

For ∃, we have:

P (B|A) = P (A ∩B)

P (A)
> 0

P (A ∩B) > 0

We can say nothing further about the probabil-
ity P (A \B) = P (A)− P (A ∩B), which may
be zero or nonzero, just as in the classical case.

For ∀, we have:

P (A ∩B)

P (A)
= 1

P (A ∩B) = P (A)

P (A ∩B) = P (A ∩B) + P (A \B)

P (A \B) = 0

And we also have:

P (A \B) + P (A ∩B) = P (A) > 0

P (A ∩B) > 0

This demonstrates the equivalence.

A.2 Example

We can prove the Barbara syllogism as follows:

P (B|A) = 1 =⇒ P (A \B) = 0,

P (A) > 0

P (C|B) = 1 =⇒ P (B \ C) = 0

P (A \ C) = P (A ∩B \ C) + P (A \B \ C)

≤ P (B \ C) + P (A \B)

= 0

P (A ∩ C) = P (A)− P (A \ C)

= P (A) > 0

=⇒ P (C|A) =
P (A ∩ C)

P (A)
= 1



B Derivation of update rule

We are trying to optimise Q to minimise the KL-
divergence from Q(x) to P (x|tc,x):

DKL(P ||Q) =
∑
x

P (x|tc,x) log
P (x|tc,x)
Q(x)

=
∑
x

P (x|tc,x)
(
logP (x|tc,x)− logQ(x)

)
Note that the first term is independent of Q. To

iteratively optimise one parameter qi at a time, we
take the derivative:

∂

∂qi
DKL(P ||Q) = − ∂

∂qi

∑
x

P (x|tc,x) logQ(x)

=
∑

x|xi=1

P (x|tc,x)
1

qi
−
∑

x|xi=0

P (x|tc,x)
1

1− qi

Now we can rewrite P (x|tc,x) as the following.
If there is just one pixie, then we can assume a
uniform prior over x. For D dimensions, of which
C are active, there are

(
D
C

)
different vectors.

P (x|tc,x) =
P (x)P (tc,x|x)

P (tc,x)

=
tc(x)(

D
C

)
P (tc,x)

Note that
(
D
C

)
P (tc,x) is constant in x. Setting

the derivative to 0, we have:∑
x|xi=1

tc(x)
1

qi
=
∑

x|xi=0

tc(x)
1

1− qi

Summing over all x is intractable, but we can
approximate this sum using mean-field vectors
for x. For most values of x, tc(x) will be close
to 0, and the regions of interest will be near the
mean-field vectors. Let x(+i) denote the mean-
field vector when xi = 1 and the total activation of
the remaining dimensions is C − 1, and let x(−i)

denote the mean-field vector when xi = 0 and the
total activation of the remaining dimensions is C.
Both of these vectors can be approximated using
the values of qj for j 6= i, scaled so that their sum
is correct. Then we have:(
D−1
C−1

)
tc(x

(+i))
1

qi
≈
(
D−1
C

)
tc(x

(−i))
1

1− qi

tc(x
(+i))

1

qi
≈ D−C

C
tc(x

(−i))
1

1− qi

Re-arranging for qi yields the following, which
is the optimal value for qi, given the other dimen-
sions qj , and given the above approximations:

qi ≈

(
1 +

D − C

C

tc
(
x(−i))

tc
(
x(+i)

))−1

In the above derivation, we assumed a uniform
prior over x, which meant that P (x|tc,x) ∝ tc(x).
If there are links between pixies, then this no
longer holds, and we instead have P (x) being de-
termined by the RBM weights, which gives the
following, where we sum over all links x

l−→ y,
from the pixie x to another pixie y with label l.
Each link type l has weights W (l)

jk (and for incom-
ing links, we simply take the transpose of this ma-
trix). For clarity, we do not write bias terms.

P (x|tc,x) ∝ tc(x) exp
∑
x

l−→ y

∑
j,k

W
(l)
jk xjyk

So to amend the update rule, we replace tc(x)
with the above expression, which gives:1 +

D − C

C

tc
(
x(−i)) exp∑W

(l)
jk x

(−i)
j yk

tc
(
x(+i)

)
exp

∑
W

(l)
jk x

(+i)
j yk

−1

Now note that this ratio of exponentials can be
rewritten as:

exp
∑

W
(l)
jk

(
x

(−i)
j − x

(+i)
j

)
yk

For dimensions j 6= i, the difference between
the two mean-field vectors will be small, so if∑

k W
(l)
jk yk is on average close to 0, the above ex-

pression will be dominated by the value at j = i.
So, we can approximate it as:

exp−
∑
x

l−→ y

∑
k

W
(l)
ik yk

This gives the following update rule, which re-
duces to (3) in the case of a single link:1 +

D−C
C

tc
(
x(−i))

tc
(
x(+i)

) exp−∑
x

l−→ y

∑
k

W
(l)
ik yk


−1


