
Proceedings of the 1st Workshop on Representation Learning for NLP, pages 40–52,
Berlin, Germany, August 11th, 2016. c©2016 Association for Computational Linguistics

Functional Distributional Semantics

Guy Emerson and Ann Copestake
Computer Laboratory

University of Cambridge
{gete2,aac10}@cam.ac.uk

Abstract

Vector space models have become popu-
lar in distributional semantics, despite the
challenges they face in capturing various
semantic phenomena. We propose a novel
probabilistic framework which draws on
both formal semantics and recent advances
in machine learning. In particular, we sep-
arate predicates from the entities they refer
to, allowing us to perform Bayesian infer-
ence based on logical forms. We describe
an implementation of this framework us-
ing a combination of Restricted Boltz-
mann Machines and feedforward neural
networks. Finally, we demonstrate the fea-
sibility of this approach by training it on a
parsed corpus and evaluating it on estab-
lished similarity datasets.

1 Introduction

Current approaches to distributional semantics
generally involve representing words as points in
a high-dimensional vector space. However, vec-
tors do not provide ‘natural’ composition oper-
ations that have clear analogues with operations
in formal semantics, which makes it challenging
to perform inference, or capture various aspects
of meaning studied by semanticists. This is true
whether the vectors are constructed using a count
approach (e.g. Turney and Pantel, 2010) or an em-
bedding approach (e.g. Mikolov et al., 2013), and
indeed Levy and Goldberg (2014b) showed that
there are close links between them. Even the ten-
sorial approach described by Coecke et al. (2010)
and Baroni et al. (2014), which naturally captures
argument structure, does not allow an obvious ac-
count of context dependence, or logical inference.

In this paper, we build on insights drawn from
formal semantics, and seek to learn representa-

tions which have a more natural logical structure,
and which can be more easily integrated with other
sources of information.

Our contributions in this paper are to introduce a
novel framework for distributional semantics, and
to describe an implementation and training regime
in this framework. We present some initial results
to demonstrate that training this model is feasible.

2 Formal Framework of Functional
Distributional Semantics

In this section, we describe our framework, ex-
plaining the connections to formal semantics, and
defining our probabilistic model. We first motivate
representing predicates with functions, and then
explain how these functions can be incorporated
into a representation for a full utterance.

2.1 Semantic Functions

We begin by assuming an extensional model struc-
ture, as standard in formal semantics (Kamp and
Reyle, 1993; Cann, 1993; Allan, 2001). In the
simplest case, a model contains a set of entities,
which predicates can be true or false of. Mod-
els can be endowed with additional structure, such
as for plurals (Link, 2002), although we will not
discuss such details here. For now, the important
point is that we should separate the representation
of a predicate from the representations of the enti-
ties it is true of.

We generalise this formalisation of predicates
by treating truth values as random variables,1

1The move to replace absolute truth values with probabil-
ities has parallels in much computational work based on for-
mal logic. For example, Garrette et al. (2011) incorporate dis-
tributional information in a Markov Logic Network (Richard-
son and Domingos, 2006). However, while their approach
allows probabilistic inference, they rely on existing distribu-
tional vectors, and convert similarity scores to weighted logi-
cal formulae. Instead, we aim to learn representations which
are directly interpretable within in a probabilistic logic.

40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77415938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

1

Figure 1: Comparison between a semantic function and a distribution over a space of entities. The veg-
etables depicted above (five differently coloured bell peppers, a carrot, and a cucumber) form a discrete
semantic space X . We are interested in the truth t of the predicate for bell pepper for an entity x ∈ X .
Solid bars: the semantic function P (t|x) represents how much each entity is considered to be a pepper,
and is bounded between 0 and 1; it is high for all the peppers, but slightly lower for atypical colours.
Shaded bars: the distribution P (x|t) represents our belief about an entity if all we know is that the pred-
icate for bell pepper applies to it; the probability mass must sum to 1, so it is split between the peppers,
skewed towards typical colours, and excluding colours believed to be impossible.

which enables us to apply Bayesian inference. For
any entity, we can ask which predicates are true of
it (or ‘applicable’ to it). More formally, if we take
entities to lie in some semantic spaceX (whose di-
mensions may denote different features), then we
can take the meaning of a predicate to be a func-
tion from X to values in the interval [0, 1], denot-
ing how likely a speaker is to judge the predicate
applicable to the entity. This judgement is variable
between speakers (Labov, 1973), and for border-
line cases, it is even variable for one speaker at dif-
ferent times (McCloskey and Glucksberg, 1978).

Representing predicates as functions allows us
to naturally capture vagueness (a predicate can be
equally applicable to multiple points), and using
values between 0 and 1 allows us to naturally cap-
ture gradedness (a predicate can be more applica-
ble to some points than to others). To use Labov’s
example, the predicate for cup is equally applica-
ble to vessels of different shapes and materials, but
becomes steadily less applicable to wider vessels.

We can also view such a function as a classifier
– for example, the semantic function for the pred-
icate for cat would be a classifier separating cats
from non-cats. This ties in with a view of concepts
as abilities, as proposed in both philosophy (Dum-
mett, 1978; Kenny, 2010), and cognitive science
(Murphy, 2002; Bennett and Hacker, 2008). A
similar approach is taken by Larsson (2013), who
argues in favour of representing perceptual con-
cepts as classifiers of perceptual input.

Note that these functions do not directly de-
fine probability distributions over entities. Rather,
they define binary-valued conditional distribu-

tions, given an entity. We can write this as P (t|x),
where x is an entity, and t is a stochastic truth
value. It is only possible to get a correspond-
ing distribution over entities given a truth value,
P (x|t), if we have some background distribution
P (x). If we do, we can apply Bayes’ Rule to get
P (x|t) ∝ P (t|x)P (x). In other words, the truth
of an expression depends crucially on our knowl-
edge of the situation. This fits neatly within a ver-
ificationist view of truth, as proposed by Dummett
(1976), who argues that to understand a sentence
is to know how we could verify or falsify it.

By using bothP (t|x) and P (x|t), we can distin-
guish between underspecification and uncertainty
as two kinds of ‘vagueness’. In the first case, we
want to state partial information about an entity,
but leave other features unspecified; P (t|x) rep-
resents which kinds of entity could be described
by the predicate, regardless of how likely we think
the entities are. In the second case, we have uncer-
tain knowledge about the entity; P (x|t) represents
which kinds of entity we think are likely for this
predicate, given all our world knowledge.

For example, bell peppers come in many
colours, most typically green, yellow, orange or
red. As all these colours are typical, the semantic
function for the predicate for bell pepper would
take a high value for each. In contrast, to define
a probability distribution over entities, we must
split probability mass between different colours,2

2In fact, colour would be most properly treated as a con-
tinuous feature. In this case, P (x) must be a probability den-
sity function, not a probability mass function, whose value
would further depend on the parametrisation of the space.

41

and for a large number of colours, we would only
have a small probability for each. As purple and
blue are atypical colours for a pepper, a speaker
might be less willing to label such a vegetable a
pepper, but not completely unwilling to do so –
this linguistic knowledge belongs to the semantic
function for the predicate. In contrast, after ob-
serving a large number of peppers, we might con-
clude that blue peppers do not exist, purple pep-
pers are rare, green peppers common, and red pep-
pers more common still – this world knowledge
belongs to the probability distribution over enti-
ties. The contrast between these two quantities is
depicted in figure 1, for a simple discrete space.

2.2 Incorporation with Dependency Minimal
Recursion Semantics

Semantic dependency graphs have become popu-
lar in NLP. We use Dependency Minimal Recur-
sion Semantics (DMRS) (Copestake et al., 2005;
Copestake, 2009), which represents meaning as
a directed acyclic graph: nodes represent predi-
cates/entities (relying on a one-to-one correspon-
dence between them) and links (edges) repre-
sent argument structure and scopal constraints.
Note that we assume a neo-Davidsonian approach
(Davidson, 1967; Parsons, 1990), where events are
also treated as entities, which allows a better ac-
count of adverbials, among other phenomena.

For example (simplifying a little), to represent
“the dog barked”, we have three nodes, for the
predicates the, dog, and bark, and two links: an
ARG1 link from bark to dog, and a RSTR link
from the to dog. Unlike syntactic dependencies,
DMRS abstracts over semantically equivalent ex-
pressions, such as “dogs chase cats” and “cats
are chased by dogs”. Furthermore, unlike other
types of semantic dependencies, including Ab-
stract Meaning Representations (Banarescu et al.,
2012), and Prague Dependencies (Böhmová et
al., 2003), DMRS is interconvertible with MRS,
which can be given a direct logical interpretation.

We deal here with the extensional fragment of
language, and while we can account for different
quantifiers in our framework, we do not have space
to discuss this here – for the rest of this paper,
we neglect quantifiers, and the reader may assume
that all variables are existentially quantified.

We can use the structure of a DMRS graph to
define a probabilistic graphical model. This gives
us a distribution over lexicalisations of the graph –

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

Figure 2: A situation composed of three entities.
Top row: the entities x, y, and z lie in a semantic
space X , jointly distributed according to DMRS
links. Bottom row: each predicate c in the vocab-
ulary V has a stochastic truth value for each entity.

given an abstract graph structure, where links are
labelled but nodes are not, we have a process to
generate a predicate for each node. Although this
process is different for each graph structure, we
can share parameters between them (e.g. accord-
ing to the labels on links). Furthermore, if we have
a distribution over graph structures, we can incor-
porate that in our generative process, to produce a
distribution over lexicalised graphs.

The entity nodes can be viewed as together rep-
resenting a situation, in the sense of Barwise and
Perry (1983). We want to be able to represent the
entities without reference to the predicates – intu-
itively, the world is the same however we choose
to describe it. To avoid postulating causal struc-
ture amongst the entities (which would be difficult
for a large graph), we can model the entity nodes
as an undirected graphical model, with edges ac-
cording to the DMRS links. The edges are undi-
rected in the sense that they don’t impose condi-
tional dependencies. However, this is still compat-
ible with having ‘directed’ semantic dependencies
– the probability distributions are not symmetric,
which maintains the asymmetry of DMRS links.

Each node takes values in the semantic spaceX ,
and the network defines a joint distribution over
entities, which represents our knowledge about
which situations are likely or unlikely. An exam-
ple is shown in the top row of figure 2, of an entity
y along with its two arguments x and z – these
might represent an event, along with the agent and
patient involved in the event. The structure of the
graph means that we can factorise the joint distri-
bution P (x, y, z) over the entities as being pro-
portional to the product P (x, y)P (y, z).

For any entity, we can ask which predicates
are true of it. We can therefore introduce a

42

y zx
ARG2ARG1

∈ X

tc, x tc, y tc, z

∈ {⊥,>} |V |

p q r

∈ V
Figure 3: The probabilistic model in figure 2, ex-
tended to generate utterances. Each predicate in
the bottom row is chosen out of all predicates
which are true for the corresponding entity.

node for every predicate in the vocabulary, where
the value of the node is either true (>) or false
(⊥). Each of these predicate nodes has a sin-
gle directed link from the entity node, with the
probability of the node being true being deter-
mined by the predicate’s semantic function, i.e.
P (tc, x = >|x) = tc(x). This is shown in the sec-
ond row of figure 2, where the plate denotes that
these nodes are repeated for each predicate c in the
vocabulary V . For example, if the situation repre-
sented a dog chasing a cat, then nodes like tdog, x,
tanimal, x, and tpursue, y would be true (with high
probability), while tdemocracy, x or tdog, z would be
false (with high probability).

The probabilistic model described above
closely matches traditional model-theoretic
semantics. However, while we could stop our
semantic description there, we do not generally
observe truth-value judgements for all predicates
at once;3 rather, we observe utterances, which
have specific predicates. We can therefore define
a final node for each entity, which takes values
over predicates in the vocabulary, and which is
conditionally dependent on the truth values of all
predicates. This is shown in the bottom row of
figure 3. Including these final nodes means that
we can train such a model on observed utterances.
The process of choosing a predicate from the true
ones may be complex, potentially depending on
speaker intention and other pragmatic factors –
but in section 3, we will simply choose a true
predicate at random (weighted by frequency).

3This corresponds to what Copestake and Herbelot (2012)
call an ideal distribution. If we have access to such informa-
tion, we only need the two rows given in figure 2.

The separation of entities and predicates allows
us to naturally capture context-dependent mean-
ings. Following the terminology of Quine (1960),
we can distinguish context-independent standing
meaning from context-dependent occasion mean-
ing. Each predicate type has a corresponding
semantic function – this represents its standing
meaning. Meanwhile, each predicate token has a
corresponding entity, for which there is a posterior
distribution over the semantic space, conditioning
on the rest of the graph and any pragmatic factors
– this represents its occasion meaning.

Unlike previous approaches to context depen-
dence, such as Dinu et al. (2012), Erk and Padó
(2008), and Thater et al. (2011), we represent
meanings in and out of context by different kinds
of object, reflecting a type/token distinction. Even
Herbelot (2015), who explicitly contrasts individ-
uals and kinds, embeds both in the same space.

As an example of how this separation of pred-
icates and entities can be helpful, suppose we
would like “dogs chase cats” and “cats chase
mice” to be true in a model, but “dogs chase mice”
and “cats chase cats” to be false. In other words,
there is a dependence between the verb’s argu-
ments. If we represent each predicate by a single
vector, it is not clear how to capture this. However,
by separating predicates from entities, we can have
two different entities which chase is true of, where
one co-occurs with a dog-entity ARG1 and cat-
entity ARG2, while the other co-occurs with a cat-
entity ARG1 and a mouse-entity ARG2.

3 Implementation

In the previous section, we described a general
framework for probabilistic semantics. Here we
give details of one way that such a framework
can be implemented for distributional semantics,
keeping the architecture as simple as possible.

3.1 Network Architecture
We take the semantic spaceX to be a set of binary-
valued vectors,4 {0, 1}N . A situation s is then
composed of entity vectors x(1), · · · , x(K) ∈ X
(where the number of entities K may vary), along
with links between the entities. We denote a link
from x(n) to x(m) with label l as: x(n) l−→ x(m).
We define the background distribution over sit-
uations using a Restricted Boltzmann Machine

4We use the term vector in the computer science sense of
a linear array, rather than in the mathematical sense of a point
in a vector space.

43

(RBM) (Smolensky, 1986; Hinton et al., 2006),
but rather than having connections between hidden
and visible units, we have connections between
components of entities, according to the links.

The probability of the network being in the
particular configuration s depends on the energy
of the configuration, Eb(s), as shown in equa-
tions (1)-(2). A high energy denotes an unlikely
configuration. The energy depends on the edges
of the graphical model, plus bias terms, as shown
in (3). Note that we follow the Einstein sum-
mation convention, where repeated indices indi-
cate summation; although this notation is not typ-
ical in NLP, we find it much clearer than matrix-
vector notation, particularly for higher-order ten-
sors. Each link label l has a corresponding weight
matrix W (l), which determines the strength of as-
sociation between components of the linked enti-
ties. The first term in (3) sums these contributions
over all links x(n) l−→ x(m) between entities. We
also introduce bias terms, to control how likely an
entity vector is, independent of links. The second
term in (3) sums the biases over all entities x(n).

P (s) =
1
Z

exp
(
−Eb(s)

)
(1)

Z =
∑
s′

exp
(
−Eb(s′)

)
(2)

−Eb(s) =
∑

x(n)
l−→x(m)

W
(l)
ij x

(n)
i x

(m)
j −

∑
x(n)

bix
(n)
i (3)

Furthermore, since sparse representations have
been shown to be beneficial in NLP, both for ap-
plications and for interpretability of features (Mur-
phy et al., 2012; Faruqui et al., 2015), we can en-
force sparsity in these entity vectors by fixing a
specific number of units to be active at any time.
Swersky et al. (2012) introduce this RBM variant
as the Cardinality RBM, and also give an efficient
exact sampling procedure using belief propaga-
tion. Since we are using sparse representations, we
also assume that all link weights are non-negative.

Now that we’ve defined the background distri-
bution over situations, we turn to the semantic
functions tc, which map entities x to probabilities.
We implement these as feedforward networks, as
shown in (4)-(5). For simplicity, we do not in-
troduce any hidden layers. Each predicate c has
a vector of weights W ′(c), which determines the
strength of association with each dimension of the
semantic space, as well as a bias term b′(c). These

together define the energy Ep(x, c) of an entity x
with the predicate, which is passed through a sig-
moid function to give a value in the range [0, 1].

tc(x) = σ(−Ep(x, c)) =
1

1 + exp (Ep)
(4)

−Ep(x, c) = W
′(c)
i xi − b′(c) (5)

Given the semantic functions, choosing a predi-
cate for a entity can be hard-coded, for simplicity.
The probability of choosing a predicate c for an
entity x is weighted by the predicate’s frequency
fc and the value of its semantic function tc(x)
(how true the predicate is of the entity), as shown
in (6)-(7). This is a mean field approximation to
the stochastic truth values shown in figure 3.

P (c|x) =
1
Zx
fctc(x) (6)

Zx =
∑
c′
fc′tc′(x) (7)

3.2 Learning Algorithm
To train this model, we aim to maximise the likeli-
hood of observing the training data – in Bayesian
terminology, this is maximum a posteriori estima-
tion. As described in section 2.2, each data point
is a lexicalised DMRS graph, while our model de-
fines distributions over lexicalisations of graphs.
In other words, we take as given the observed
distribution over abstract graph structures (where
links are given, but nodes are unlabelled), and try
to optimise how the model generates predicates
(via the parameters W (l)

ij , bi,W
′(c)
i , b′(c)).

For the family of optimisation algorithms based
on gradient descent, we need to know the gradient
of the likelihood with respect to the model param-
eters, which is given in (8), where x ∈ X is a latent
entity, and c ∈ V is an observed predicate (corre-
sponding to the top and bottom rows of figure 3).
Note that we extend the definition of energy from
situations to entities in the obvious way: half the
energy of an entity’s links, plus its bias energy. A
full derivation of (8) is given in the appendix.

∂

∂θ
logP (c) = Ex|c

[
∂

∂θ

(
−Eb(x)

)]
− Ex

[
∂

∂θ

(
−Eb(x)

)]
+ Ex|c

[
(1− tc(x)) ∂

∂θ
(−Ep(x, c))

]
− Ex|c

[
Ec′|x

[
(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]]
(8)

44

There are four terms in this gradient: the first
two are for the background distribution, and the
last two are for the semantic functions. In both
cases, one term is positive, and conditioned on the
data, while the other term is negative, and repre-
sents the predictions of the model.

Calculating the expectations exactly is infeasi-
ble, as this requires summing over all possible
configurations. Instead, we can use a Markov
Chain Monte Carlo method, as typically done for
Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths and Steyvers, 2004). Our aim is to sample
values of x and c, and use these samples to ap-
proximate the expectations: rather than summing
over all values, we just consider the samples. For
each token in the training data, we introduce a la-
tent entity vector, which we use to approximate the
first, third, and fourth terms in (8). Additionally,
we introduce a latent predicate for each latent en-
tity, which we use to approximate the fourth term
– this latent predicate is analogous to the negative
samples used by Mikolov et al. (2013).

When resampling a latent entity conditioned on
the data, the conditional distribution P (x|c) is un-
known, and calculating it directly requires sum-
ming over the whole semantic space. For this rea-
son, we cannot apply Gibbs sampling (as used in
LDA), which relies on knowing the conditional
distribution. However, if we compare two enti-
ties x and x′, the normalisation constant cancels
out in the ratio P (x′|c)/P (x|c), so we can use
the Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). Given the current sam-
ple x, we can uniformly choose one unit to switch
on, and one to switch off, to get a proposal x′. If
the ratio of probabilities shown in (9) is above 1,
we switch the sample to x′; if it’s below 1, it is the
probability of switching to x′.

P (x′|c)
P (x|c) =

exp
(−Eb(x′)) 1

Zx′ tc(x
′)

exp (−Eb(x)) 1
Zx
tc(x)

(9)

Although Metropolis-Hastings avoids the need
to calculate the normalisation constant Z of the
background distribution, we still have the nor-
malisation constant Zx of choosing a predicate
given an entity. This constant represents the num-
ber of predicates true of the entity (weighted by
frequency). The intuitive explanation is that we
should sample an entity which few predicates are
true of, rather than an entity which many predi-
cates are true of. We approximate this constant

by assuming that we have an independent contri-
bution from each dimension of x. We first aver-
age over all predicates (weighted by frequency), to
get the average predicate W avg. We then take the
exponential of W avg for the dimensions that we
are proposing switching off and on – intuitively,
if many predicates have a large weight for a given
dimension, then many predicates will be true of
an entity where that dimension is active. This is
shown in (10), where x and x′ differ in dimensions
i and i′ only, and where k is a constant.

Zx
Zx′
≈ exp

(
k
(
W avg
i −W avg

i′
))

(10)

We must also resample latent predicates given a
latent entity, for the fourth term in (8). This can
similarly be done using the Metropolis-Hastings
algorithm, according to the ratio shown in (11).

P (c′|x)
P (c|x) =

fc′tc′(x)
fctc(x)

(11)

Finally, we need to resample entities from
the background distribution, for the second term
in (8). Rather than recalculating the samples from
scratch after each weight update, we used fantasy
particles (persistent Markov chains), which Tiele-
man (2008) found effective for training RBMs.
Resampling a particle can be done more straight-
forwardly than resampling the latent entities – we
can sample each entity conditioned on the other
entities in the situation, which can be done exactly
using belief propagation (see Yedidia et al. (2003)
and references therein), as Swersky et al. (2012)
applied to the Cardinality RBM.

To make weight updates from the gradients, we
used AdaGrad (Duchi et al., 2011), with exponen-
tial decay of the sum of squared gradients. We also
used L1 and L2 regularisation, which determines
our prior over model parameters.

We found that using a random initialisation is
possible, but seems to lead to a long training time,
due to slow convergence. We suspect that this
could be because the co-occurrence of predicates
is mediated via at least two latent vectors, which
leads to mixing of semantic classes in each di-
mension, particularly in the early stages of train-
ing. Such behaviour can happen with compli-
cated topic models – for example, Ó Séaghdha
(2010) found this for their “Dual Topic” model.
One method to reduce convergence time is to ini-
tialise predicate parameters using pre-trained vec-
tors. The link parameters can then be initialised

45

as follows: we consider a situation with just one
entity, and for each predicate, we find the mean-
field entity vector given the pre-trained predicate
parameters; we then fix all entity vectors in our
training corpus to be these mean-field vectors, and
find the positive pointwise mutual information of
each each pair of entity dimensions, for each link
label. In particular, we initialised predicate pa-
rameters using our sparse SVO Word2Vec vectors,
which we describe in section 4.2.

4 Training and Initial Experiments

In this section, we report the first experiments car-
ried out within our framework.

4.1 Training Data

Training our model requires a corpus of DMRS
graphs. In particular, we used WikiWoods, an
automatically parsed version of the July 2008
dump of the full English Wikipedia, distributed
by DELPH-IN5. This resource was produced by
Flickinger et al. (2010), using the English Re-
source Grammar (ERG; Flickinger, 2000), trained
on the manually treebanked subcorpus WeScience
(Ytrestøl et al., 2009), and implemented with
the PET parser (Callmeier, 2001; Toutanova et
al., 2005). To preprocess the corpus, we used
the python packages pydelphin6 (developed by
Michael Goodman), and pydmrs7 (Copestake et
al., 2016).

For simplicity, we restricted attention to
subject-verb-object (SVO) triples, although we
should stress that this is not an inherent limita-
tion of our model, which could be applied to ar-
bitrary graphs. We searched for all verbs in the
WikiWoods treebank, excluding modals, that had
either an ARG1 or an ARG2, or both. We kept all
instances whose arguments were nominal, exclud-
ing pronouns and proper nouns. The ERG does
not automatically convert out-of-vocabulary items
from their surface form to lemmatised predicates,
so we applied WordNet’s morphological processor
Morphy (Fellbaum, 1998), as available in NLTK
(Bird et al., 2009). Finally, we filtered out situa-
tions including rare predicates, so that every pred-
icate appears at least five times in the dataset.

As a result of this process, all data was of the
form (verb, ARG1, ARG2), where one (but not

5http://moin.delph-in.net/WikiWoods
6https://github.com/delph-in/pydelphin
7https://github.com/delph-in/pydmrs

both) of the arguments may be missing. A sum-
mary is given in table 1. In total, the dataset con-
tains 72m tokens, with 88,526 distinct predicates.

Situation type No. instances
Both arguments 10,091,234
ARG1 only 6,301,280
ARG2 only 14,868,213
Total 31,260,727

Table 1: Size of the training data.

4.2 Evaluation

As our first attempt at evaluation, we chose to look
at two lexical similarity datasets. The aim of this
evaluation was simply to verify that the model was
learning something reasonable. We did not expect
this task to illustrate our model’s strengths, since
we need richer tasks to exploit its full expressive-
ness. Both of our chosen datasets aim to evalu-
ate similarity, rather than thematic relatedness: the
first is Hill et al. (2015)’s SimLex-999 dataset, and
the second is Finkelstein et al. (2001)’s WordSim-
353 dataset, which was split by Agirre et al. (2009)
into similarity and relatedness subsets. So far, we
have not tuned hyperparameters.

Results are given in table 2. We also trained
Mikolov et al. (2013)’s Word2Vec model on the
SVO data described in section 4.1, in order to
give a direct comparison of models on the same
training data. In particular, we used the continu-
ous bag-of-words model with negative sampling,
as implemented in Řehůřek and Sojka (2010)’s
gensim package, with off-the-shelf hyperparame-
ter settings. We also converted these to sparse vec-
tors using Faruqui et al. (2015)’s algorithm, again
using off-the-shelf hyperparameter settings. To
measure similarity of our semantic functions, we
treated each function’s parameters as a vector and
used cosine similarity, for simplicity.

For comparison, we also include the perfor-
mance of Word2Vec when trained on raw text. For
SimLex-999, we give the results reported by Hill
et al. (2015), where the 2-word window model
was the best performing model that they tested.
For WordSim-353, we trained a model on the full
WikiWoods text, after stripping all punctuation
and converting to lowercase. We used the gensim
implementation with off-the-shelf settings, except
for window size (2 or 10) and dimension (200, as
recommended by Hill et al.). In fact, our re-trained
model performed better on SimLex-999 than Hill

46

Model SimLex Nouns SimLex Verbs WordSim Sim. WordSim Rel.
Word2Vec (10-word window) .28 .11 .69 .46
Word2Vec (2-word window) .30 .16 .65 .34
SVO Word2Vec .44 .18 .61 .24
Sparse SVO Word2Vec .45 .27 .63 .30
Semantic Functions .26 .14 .34 .01

Table 2: Spearman rank correlation of different models with average annotator judgements. Note that we
would like to have a low score on the final column (which measures relatedness, rather than similarity).

flood / water (related verb and noun) .06
flood / water (related nouns) .43
law / lawyer (related nouns) .44
sadness / joy (near-antonyms) .77
happiness / joy (near-synonyms) .78
aunt / uncle (differ in a single feature) .90
cat / dog (differ in many features) .92

Table 3: Similarity scores for thematically related
words, and various types of co-hyponym.

et al. reported (even when we used less preprocess-
ing or a different edition of Wikipedia), although
still worse than our sparse SVO Word2Vec model.

It is interesting to note that training Word2Vec
on verbs and their arguments gives noticeably bet-
ter results on SimLex-999 than training on full
sentences, even though far less data is being used:
∼72m tokens, rather than ∼1000m. The better
performance suggests that semantic dependencies
may provide more informative contexts than sim-
ple word windows. This is in line with previous
results, such as Levy and Goldberg (2014a)’s work
on using syntactic dependencies. Nonetheless, this
result deserves further investigation.

Of all the models we tested, only our semantic
function model failed on the relatedness subset of
WordSim-353. We take this as a positive result,
since it means the model clearly distinguishes re-
latedness and similarity.

Examples of thematically related predicates and
various kinds of co-hyponym are given in table 3,
along with our model’s similarity scores. How-
ever, it is not clear that it is possible, or even de-
sirable, to represent these varied relationships on a
single scale of similarity. For example, it could be
sensible to treat aunt and uncle either as synonyms
(they refer to relatives of the same degree of re-
latedness) or as antonyms (they are “opposite” in
some sense). Which view is more appropriate will
depend on the application, or on the context.

Nouns and verbs are very strongly distin-
guished, which we would expect given the struc-
ture of our model. This can be seen in the simi-
larity scores between flood and water, when flood
is considered either as a verb or as a noun.8

SimLex-999 generally assigns low scores to near-
antonyms, and to pairs differing in a single fea-
ture, which might explain why the performance of
our model is not higher on this task. However, the
separation of thematically related predicates from
co-hyponyms is a promising result.

5 Related Work

As mentioned above, Coecke et al. (2010) and Ba-
roni et al. (2014) introduce a tensor-based frame-
work that incorporates argument structure through
tensor contraction. However, for logical inference,
we need to know how one vector can entail an-
other. Grefenstette (2013) explores one method
to do this; however, they do not show that this
approach is learnable from distributional informa-
tion, and furthermore, they prove that quantifiers
cannot be expressed with tensors.

Balkır (2014), working in the tensorial frame-
work, uses the quantum mechanical notion of a
“mixed state” to model uncertainty. However, this
doubles the number of tensor indices, so squares
the number of dimensions (e.g. vectors become
matrices). In the original framework, expressions
with several arguments already have a high dimen-
sionality (e.g. whose is represented by a fifth-order
tensor), and this problem becomes worse.

Vilnis and McCallum (2015) embed predicates
as Gaussian distributions over vectors. By assum-
ing covariances are diagonal, this only doubles
the number of dimensions (N dimensions for the
mean, and N for the covariances). However, simi-
larly to Mikolov et al. (2013), they simply assume

8We considered the ERG predicates flood v cause
and flood n of, which were the most frequent predicates
in WikiWoods for flood, for each part of speech.

47

that nearby words have similar meanings, so the
model does not naturally capture compositionality
or argument structure.

In both Balkır’s and Vilnis and McCallum’s
models, they use the probability of a vector
given a word – in the notation from section 2.1,
P (x|t). However, the opposite conditional prob-
ability, P (t|x), more easily allows composition.
For instance, if we know two predicates are true
(t1 and t2), we cannot easily combine P (x|t1) and
P (x|t2) to get P (x|t1, t2) – intuitively, we’re gen-
erating x twice. In contrast, for semantic func-
tions, we can writeP (t1, t2|x) = P (t1|x)P (t2|x).

Gärdenfors (2004) argues concepts should be
modelled as convex subsets of a semantic space.
Erk (2009) builds on this idea, but their model re-
quires pre-trained count vectors, while we learn
our representations directly. McMahan and Stone
(2015) also learn representations directly, consid-
ering colour terms, which are grounded in a well-
understood perceptual space. Instead of consider-
ing a single subset, they use a probability distribu-
tion over subsets: P (A|t) forA ⊂ X . This is more
general than a semantic function P (t|x), since we
can write P (t|x) =

∑
A3v P (A|t). However, this

framework may be too general, since it means we
cannot determine the truth of a predicate until we
know the entire set A. To avoid this issue, they
factorise the distribution, by assuming different
boundaries of the set are independent. However,
this is equivalent to considering P (t|x) directly,
along with some constraints on this function. In-
deed, for the experiments they describe, it is suffi-
cient to know a semantic function P (t|x). Fur-
thermore, McMahan and Stone find expressions
like greenish which are nonconvex in perceptual
space, which suggests that representing concepts
with convex sets may not be the right way to go.

Our semantic functions are similar to Cooper et
al. (2015)’s probabilistic type judgements, which
they introduce within the framework of Type The-
ory with Records (Cooper, 2005), a rich seman-
tic theory. However, one difference between our
models is that they represent situations in terms
of situation types, while we are careful to define
our semantic space without reference to any pred-
icates. More practically, although they outline
how their model might be learned, they assume we
have access to type judgements for observed situ-
ations. In contrast, we describe how a model can
be learned from observed utterances, which was

necessary for us to train a model on a corpus.
Goodman and Lassiter (2014) propose another

linguistically motivated probabilistic model, using
the stochastic λ-calculus (more concretely, prob-
abilistic programs written in Church). However,
they rely on relatively complex generative pro-
cesses, specific to individual semantic domains,
where each word’s meaning may be represented
by a complex expression. For a wide-scale sys-
tem, such structures would need to be extended to
cover all concepts. In contrast, our model assumes
a direct mapping between predicates and seman-
tic functions, with a relatively simple generative
structure determined by semantic dependencies.

Finally, our approach should be distinguished
from work which takes pre-trained distributional
vectors, and uses them within a richer semantic
model. For example, Herbelot and Vecchi (2015)
construct a mapping from a distributional vector
to judgements of which quantifier is most appro-
priate for a range of properties. Erk (2016) uses
distributional similarity to probabilistically infer
properties of one concept, given properties of an-
other. Beltagy et al. (2016) use distributional sim-
ilarity to produce weighted inference rules, which
they incorporate in a Markov Logic Network. Un-
like these authors, we aim to directly learn in-
terpretable representations, rather than interpret
given representations.

6 Conclusion

We have introduced a novel framework for distri-
butional semantics, where each predicate is rep-
resented as a function, expressing how applica-
ble the predicate is to different entities. We have
shown how this approach can capture semantic
phenomena which are challenging for standard
vector space models. We have explained how our
framework can be implemented, and trained on a
corpus of DMRS graphs. Finally, our initial eval-
uation on similarity datasets demonstrates the fea-
sibility of this approach, and shows that themati-
cally related words are not given similar represen-
tations. In future work, we plan to use richer tasks
which exploit the model’s expressiveness.

Acknowledgments

This work was funded by a Schiff Foundation Stu-
dentship. We would also like to thank Yarin Gal,
who gave useful feedback on the specification of
our generative model.

48

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of the 2009 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 19–27.

Keith Allan. 2001. Natural Language Semantics.
Blackwell Publishers.

Esma Balkır. 2014. Using density matrices in a com-
positional distributional model of meaning. Mas-
ter’s thesis, University of Oxford.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Proceedings of the 11th
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues
in Language Technology, 9.

Jon Barwise and John Perry. 1983. Situations and At-
titudes. MIT Press.

Islam Beltagy, Stephen Roller, Pengxiang Cheng, Ka-
trin Erk, and Raymond J. Mooney. 2016. Repre-
senting meaning with a combination of logical and
distributional models.

Maxwell R Bennett and Peter Michael Stephan Hacker.
2008. History of cognitive neuroscience. John Wi-
ley & Sons.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. O’Reilly
Media, Inc.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet Allocation. the Journal of
Machine Learning Research, 3:993–1022.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague dependency treebank. In
Treebanks, pages 103–127. Springer.

Ulrich Callmeier. 2001. Efficient parsing with large-
scale unification grammars. Master’s thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany.

Ronnie Cann. 1993. Formal semantics: An intro-
duction. Cambridge Textbooks in Linguistics. Cam-
bridge University Press.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical foundations for a com-
positional distributional model of meaning. Linguis-
tic Analysis, 36:345–384.

Robin Cooper, Simon Dobnik, Staffan Larsson, and
Shalom Lappin. 2015. Probabilistic type theory and
natural language semantics. LiLT (Linguistic Issues
in Language Technology), 10.

Robin Cooper. 2005. Austinian truth, attitudes and
type theory. Research on Language and Computa-
tion, 3(2-3):333–362.

Ann Copestake and Aurelie Herbelot. 2012. Lexi-
calised compositionality. Unpublished draft.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal Recursion Semantics:
An introduction. Research on Language and Com-
putation.

Ann Copestake, Guy Emerson, Michael Wayne Good-
man, Matic Horvat, Alexander Kuhnle, and Ewa
Muszyńska. 2016. Resources for building appli-
cations with Dependency Minimal Recursion Se-
mantics. In Proceedings of the 10th International
Conference on Language Resources and Evaluation
(LREC 2016). European Language Resources Asso-
ciation (ELRA).

Ann Copestake. 2009. Slacker semantics: Why super-
ficiality, dependency and avoidance of commitment
can be the right way to go. In Proceedings of 12th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Donald Davidson. 1967. The logical form of action
sentences. In Nicholas Rescher, editor, The Logic of
Decision and Action, chapter 3, pages 81–95. Uni-
versity of Pittsburgh Press.

Georgiana Dinu, Stefan Thater, and Sören Laue. 2012.
A comparison of models of word meaning in con-
text. In Proceedings of the 13th Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 611–615.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Michael Dummett. 1976. What is a theory of mean-
ing? (II). In Gareth Evans and John McDowell, ed-
itors, Truth and Meaning, pages 67–137. Clarendon
Press (Oxford).

Michael Dummett. 1978. What Do I Know When
I Know a Language? Stockholm University.
Reprinted in Dummett (1993) Seas of Language,
pages 94–105.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context.
In Proceedings of the 13th Conference on Empiri-
cal Methods in Natural Language Processing, pages
897–906. Association for Computational Linguis-
tics.

49

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the 13th Confer-
ence on Computational Natural Language Learning,
pages 57–65. Association for Computational Lin-
guistics.

Katrin Erk. 2016. What do you know about an alliga-
tor when you know the company it keeps? Seman-
tics and Pragmatics, 9(17):1–63.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcomplete
word vector representations. In Proceedings of the
53rd Annual Conference of the Association for Com-
putational Linguistics.

Christiane Fellbaum. 1998. WordNet. Blackwell Pub-
lishers.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th Inter-
national Conference on the World Wide Web, pages
406–414. Association for Computing Machinery.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. WikiWoods: Syntacto-semantic annotation
for English Wikipedia. In Proceedings of the 7th In-
ternational Conference on Language Resources and
Evaluation.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering.

Peter Gärdenfors. 2004. Conceptual spaces: The ge-
ometry of thought. MIT Press, second edition.

Dan Garrette, Katrin Erk, and Raymond Mooney.
2011. Integrating logical representations with prob-
abilistic information using Markov logic. In Pro-
ceedings of the 9th International Conference on
Computational Semantics (IWCS), pages 105–114.
Association for Computational Linguistics.

Noah D Goodman and Daniel Lassiter. 2014. Prob-
abilistic semantics and pragmatics: Uncertainty in
language and thought. Handbook of Contemporary
Semantic Theory.

Edward Grefenstette. 2013. Towards a formal distri-
butional semantics: Simulating logical calculi with
tensors. In Proceedings of the 2nd Joint Conference
on Lexical and Computational Semantics.

Thomas L Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228–5235.

W. Keith Hastings. 1970. Monte Carlo sampling
methods using Markov chains and their applications.
Biometrika, 57(1):97–109.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: Mapping distributional to
model-theoretic semantic spaces. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 22–32. Association
for Computational Linguistics.

Aurélie Herbelot. 2015. Mr Darcy and Mr Toad, gen-
tlemen: distributional names and their kinds. In
Proceedings of the 11th International Conference on
Computational Semantics, pages 151–161.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. 2006. A fast learning algorithm for deep be-
lief nets. Neural computation, 18(7):1527–1554.

Hans Kamp and Uwe Reyle. 1993. From discourse
to logic; introduction to modeltheoretic semantics of
natural language, formal logic and discourse repre-
sentation theory.

Anthony Kenny. 2010. Concepts, brains, and be-
haviour. Grazer Philosophische Studien, 81(1):105–
113.

William Labov. 1973. The boundaries of words and
their meanings. In Charles-James N. Bailey and
Roger W. Shuy, editors, New ways of analyzing vari-
ation in English, pages 340–73. Georgetown Univer-
sity Press.

Staffan Larsson. 2013. Formal semantics for percep-
tual classification. Journal of Logic and Computa-
tion.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 302–308.

Omer Levy and Yoav Goldberg. 2014b. Neural
word embedding as implicit matrix factorization.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2177–2185. Curran Associates, Inc.

Godehard Link. 2002. The logical analysis of plurals
and mass terms: A lattice-theoretical approach. In
Paul Portner and Barbara H. Partee, editors, Formal
semantics: The essential readings, chapter 4, pages
127–146. Blackwell Publishers.

Michael E McCloskey and Sam Glucksberg. 1978.
Natural categories: Well defined or fuzzy sets?
Memory & Cognition, 6(4):462–472.

Brian McMahan and Matthew Stone. 2015. A
Bayesian model of grounded color semantics.
Transactions of the Association for Computational
Linguistics, 3:103–115.

50

Nicholas Metropolis, Arianna W Rosenbluth, Mar-
shall N Rosenbluth, Augusta H Teller, and Edward
Teller. 1953. Equation of state calculations by
fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the 1st
International Conference on Learning Representa-
tions.

Brian Murphy, Partha Pratim Talukdar, and Tom M
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In Proceedings of the 24th International
Conference on Computational Linguistics (COLING
2012), pages 1933–1950. Association for Computa-
tional Linguistics.

Gregory Leo Murphy. 2002. The Big Book of Con-
cepts. MIT Press.

Diarmuid Ó Séaghdha. 2010. Latent variable mod-
els of selectional preference. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 435–444. Association for
Computational Linguistics.

Terence Parsons. 1990. Events in the Semantics of
English: A Study in Subatomic Semantics. Current
Studies in Linguistics. MIT Press.

Willard Van Orman Quine. 1960. Word and Object.
MIT Press.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50. ELRA.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62(1-
2):107–136.

Paul Smolensky. 1986. Information processing in dy-
namical systems: Foundations of harmony theory.
In Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, volume 1, pages
194–281. MIT Press.

Kevin Swersky, Ilya Sutskever, Daniel Tarlow,
Richard S Zemel, Ruslan R Salakhutdinov, and
Ryan P Adams. 2012. Cardinality Restricted Boltz-
mann Machines. In Advances in Neural Information
Processing Systems, pages 3293–3301.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and ef-
fective vector model. In Proceedings of the 5th In-
ternational Joint Conference on Natural Language
Processing, pages 1134–1143.

Tijmen Tieleman. 2008. Training restricted Boltz-
mann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th Inter-
national Conference on Machine Learning, pages
1064–1071. Association for Computing Machinery.

Kristina Toutanova, Christoper D. Manning, Dan
Flickinger, and Stephan Oepen. 2005. Stochastic
HPSG parse selection using the Redwoods corpus.
Journal of Research on Language and Computation.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. Journal of Artificial Intelligence Research.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via Gaussian embedding. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Jonathan S. Yedidia, William T. Freeman, and Yair
Weiss. 2003. Understanding Belief Propagation
and its generalizations. In Exploring Artificial In-
telligence in the New Millennium, chapter 8, pages
239–269.

Gisle Ytrestøl, Stephan Oepen, and Daniel Flickinger.
2009. Extracting and annotating Wikipedia sub-
domains. In Proceedings of the 7th International
Workshop on Treebanks and Linguistic Theories.

Appendix: Derivation of Gradients

In this section, we derive equation (8). As our
model generates predicates from entities, to find
the probability of observing the predicates, we
need to sum over all possible entities. After then
applying the chain rule to log, and expanding
P (x, c), we obtain the expression below.

∂

∂θ
logP (c) =

∂

∂θ
log
∑
x

P (x, c)

=
∂
∂θ

∑
x P (x, c)∑

x′ P (x′, c)

=
∂
∂θ

∑
x

1
Zx
fctc(x) 1

Z exp
(−Eb(x))∑

x′ P (x′, c)

When we now apply the product rule, we will
get four terms, but we can make use of the fact
that the derivatives of all four terms are multiples
of the original term:

∂

∂θ
e−E

b(x) = e−E
b(x) ∂

∂θ

(
−Eb(x)

)
∂

∂θ
tc(x) = tc(x) (1− tc(x)) ∂

∂θ
(−Ep(x, c))

∂

∂θ

1
Zx

=
−1
Z2
x

∂

∂θ
Zx

∂

∂θ

1
Z

=
−1
Z2

∂

∂θ
Z

51

This allows us to derive:

=
∑
x

P (x, c)∑
x′ P (x′, c)

[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− 1
Zx

∂

∂θ
Zx

]
−
∑

x P (x, c)∑
x′ P (x′, c)

1
Z

∂

∂θ
Z

We can now simplify using conditional proba-
bilities, and expand the derivatives of the normali-
sation constants:

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− 1
Zx

∂

∂θ

∑
c′
fc′tc′(x)

]

− 1
Z

∂

∂θ

∑
x

exp
(
−Eb(x)

)

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

−
∑
c′

fc′tc′(x)
Zx

(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]

−
∑
x

exp
(−Eb(x))
Z

∂

∂θ

(
−Eb(x)

)

=
∑
x

P (x|c)
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

−
∑
c′
P (c′|x) (1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]

−
∑
x

P (x)
∂

∂θ

(
−Eb(x)

)

Finally, we write expectations instead of sums
of probabilities:

=Ex|c
[
∂

∂θ

(
−Eb(x)

)
+ (1− tc(x)) ∂

∂θ
(−Ep(x, c))

− Ec′|x
[
(1− tc′(x)) ∂

∂θ

(−Ep(x, c′))]]
− Ex

[
∂

∂θ

(
−Eb(x)

)]

52

