172 research outputs found

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades

    Design of an adaptive self-organizing fuzzy neural network controller for uncertain nonlinear chaotic systems

    Get PDF
    [[abstract]]Though the control performances of the fuzzy neural network controller are acceptable in many previous published papers, the applications are only parameter learning in which the parameters of fuzzy rules are adjusted but the number of fuzzy rules should be determined by some trials. In this paper, a Takagi–Sugeno-Kang (TSK)-type self-organizing fuzzy neural network (TSK-SOFNN) is studied. The learning algorithm of the proposed TSK-SOFNN not only automatically generates and prunes the fuzzy rules of TSK-SOFNN but also adjusts the parameters of existing fuzzy rules in TSK-SOFNN. Then, an adaptive self-organizing fuzzy neural network controller (ASOFNNC) system composed of a neural controller and a smooth compensator is proposed. The neural controller using the TSK-SOFNN is designed to approximate an ideal controller, and the smooth compensator is designed to dispel the approximation error between the ideal controller and the neural controller. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived based on the Lyapunov stability theory, thus not only the system stability can be achieved but also the convergence of tracking error can be speeded up. Finally, the proposed ASOFNNC system is applied to a chaotic system. The simulation results verify the system stabilization, favorable tracking performance, and no chattering phenomena can be achieved using the proposed ASOFNNC system.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback

    Get PDF
    In this paper, an adaptive neural bounded control scheme is proposed for an n-link rigid robotic manipulator with unknown dynamics. With the combination of the neural approximation and backstepping technique, an adaptive neural network control policy is developed to guarantee the tracking performance of the robot. Different from the existing results, the bounds of the designed controller are known a priori, and they are determined by controller gains, making them applicable within actuator limitations. Furthermore, the designed controller is also able to compensate the effect of unknown robotic dynamics. Via the Lyapunov stability theory, it can be proved that all the signals are uniformly ultimately bounded. Simulations are carried out to verify the effectiveness of the proposed scheme

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty
    corecore