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Abstract Though the control performances of the fuzzy

neural network controller are acceptable in many previous

published papers, the applications are only parameter

learning in which the parameters of fuzzy rules are adjusted

but the number of fuzzy rules should be determined by

some trials. In this paper, a Takagi–Sugeno-Kang (TSK)-

type self-organizing fuzzy neural network (TSK-SOFNN)

is studied. The learning algorithm of the proposed TSK-

SOFNN not only automatically generates and prunes the

fuzzy rules of TSK-SOFNN but also adjusts the parameters

of existing fuzzy rules in TSK-SOFNN. Then, an adaptive

self-organizing fuzzy neural network controller (ASO-

FNNC) system composed of a neural controller and a

smooth compensator is proposed. The neural controller

using the TSK-SOFNN is designed to approximate an ideal

controller, and the smooth compensator is designed to

dispel the approximation error between the ideal controller

and the neural controller. Moreover, a proportional-integral

(PI) type parameter tuning mechanism is derived based on

the Lyapunov stability theory, thus not only the system

stability can be achieved but also the convergence of

tracking error can be speeded up. Finally, the proposed

ASOFNNC system is applied to a chaotic system. The

simulation results verify the system stabilization, favorable

tracking performance, and no chattering phenomena can be

achieved using the proposed ASOFNNC system.

Keywords Chaotic system � Fuzzy neural network �
Neural control � Self-organizing

1 Introduction

If the exact model of the controlled system is well known,

there exists an ideal controller to achieve a favorable

control performance [1]. A trade-off between the system

performance and the model accuracy is necessary for the

ideal controller design. The exact models of the nonlinear

systems are difficult to develop accurately in real-time

applications. To relax this requirement, the neural network-

based adaptive controllers have represented an alternative

design method for the control of unknown nonlinear sys-

tems to compensate the effects of nonlinearities and system

uncertainties; so the stability, convergence, and robustness

of the control system can be improved [2–6]. Recently,

taking the advantages of fuzzy reasoning in handling

uncertain information and neural networks in learning from

processes, the researches of fuzzy neural networks (FNNs)

have attracted the increasing interests [7]. Since the

parameterized FNNs can approximate an unknown system

dynamics, the FNN-based adaptive control schemes have

grown rapidly in many previous published papers [8–12].

The basic issue of the FNN-based adaptive control tech-

nique is to provide online learning algorithms that do not

require preliminary off-line training.

Though the control performances of the FNN-based

adaptive controllers are usually acceptable in [8–12], the
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learning algorithm considers only parameter learning in

which the parameters of the membership functions and the

fuzzy rules are adjusted but the structure of the FNN should

be determined in advanced and fixed. For a large number of

fuzzy rules, the computation loading is heavy so they are

unsuitable for the real-time practical applications. If the

number of fuzzy rules is chosen small, the learning per-

formance may be not good enough to achieve a desired

control performance due to the inevitable approximation

error. Unfortunately, it is difficult to consider the balance

between the number of fuzzy rules and the desired per-

formance for the FNN approaches.

To attack the problem of structure determination for

FNN, several self-organizing FNN (SOFNN) approaches

consist of structure and parameter learning algorithm

for FNN, which have been proposed in [13–15]. The self-

organizing approach demonstrates the property of auto-

matically generating and pruning fuzzy rules of FNN

without the preliminary knowledge. The learning algo-

rithms not only extract the fuzzy rule from input data and

adjust the fuzzy partitions of the input and output spaces

but also adjust the parameters of existing fuzzy rules.

Recently, several SOFNN-based adaptive control schemes

have been applied to control the unknown nonlinear sys-

tems [16–20]. However, some are too complex; some

cannot avoid the structure growing unbounded; and some

lack online adaptation ability.

In this paper, a Takagi–Sugeno-Kang (TSK)-type

SOFNN (TSK-SOFNN) is studied in which learning

algorithm not only automatically generates and prunes the

fuzzy rules but also adjusts the parameters of existing fuzzy

rules. Then, an adaptive self-organizing fuzzy neural net-

work controller (ASOFNNC) system composed of a neural

controller and a smooth compensator is proposed. The

neural controller uses the TSK-SOFNN to approximate an

ideal controller, and the smooth compensator is utilized to

eliminate the approximation error between the neural

controller and the ideal controller without occurring chat-

tering phenomena to ensure system stability. Further, this

paper derives the proportional-integral (PI) type form

adaptation tuning algorithms in the sense of Lyapunov

stability to speed up the convergence of the tracking errors

and controller parameters. Finally, the proposed ASO-

FNNC system is applied to a chaotic system. In the sim-

ulation study, it is shown that the proposed ASOFNNC

system can achieve a favorable tracking performance with

rapid convergence of the tracking error and without

occurring chattering phenomena. It should be emphasized

that the proposed self-organizing method demonstrates the

properties of generating and pruning the fuzzy rules auto-

matically with a simple computation.

2 Description of TSK-SOFNN

2.1 Structure learning of TSK-SOFNN

A TSK-SOFNN is shown in Fig. 1, which is comprised of

the input, the membership, the rule, and the output layers.

Each rule in a TSK-SOFNN is of the following form [7]

Rule i : IF q1 is Ai
1 And. . .And qn is Ai

1; THEN y ¼ aT
i z

ð1Þ

where q ¼ ½q1; . . .; qn�T is the input vector; y is the output

variable; ai ¼ ½ai0; ai1; . . .; ain�T is the parameter vector

designed by the designer; Ai
j is the fuzzy set; and

z ¼ ½1; q1; . . .; qn�T . For fuzzy set Ai
j, the Gaussian fuzzy

set with membership function is used as

/ijðqjÞ ¼ exp
�ðqj � cijÞ2

r2
ij

" #
ð2Þ

where cij and rij denote the center and width of the fuzzy

set Ai
j, respectively. According to the fuzzy AND operation

by the algebraic product, the firing strength of the i-th rule

is calculated by

Hiðq; ci; riÞ ¼ P
n

j¼1
/ijðqjÞ ð3Þ

where ci ¼ ½ci1; . . .; cin�T and ri ¼ ½ri1; . . .; rin�T . Assuming

there are m rules in the TSK-SOFNN, the output according

to the simple weighted sum method would be obtained as

y ¼
Xm

i¼1

aT
i zHiðq; ci; riÞ: ð4Þ

Then, the output of the TSK-SOFNN represents in a

vector form as

y ¼ aTHðq; c; rÞ ð5Þ

where a ¼ ½aT
1 ; . . .; aT

m�
T
; H ¼ ½H1qT ; . . .;HmqT �T ; c ¼

½cT
1 ; . . .; cT

m�
T
; and r ¼ ½rT

1 ; . . .; rT
m�

T
.

It is well known that the amount of the fuzzy rules is

difficult to select. A trade-off problem between the com-

putation loading and the learning performance arises. This

paper proposes that a self-organizing algorithm including

how to generate and prune the fuzzy rules of TSK-SOFNN

is introduced. The first process of the structure learning is

to determine whether to add a new fuzzy rule. If a new

input data fall within the boundary of clusters, the TSK-

SOFNN will not generate a new fuzzy rule but update

parameters of the existing TSK-type fuzzy rules. Consider

a distance of mean in association memory as [21]

di ¼ q� cik k; for k ¼ 1; 2; . . .;m: ð6Þ
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Find the minimum distance of mean defined as

dmin ¼ min
1� i�m

di: ð7Þ

If the distance between input data and the mean is too

large for the existing clusters, this means a new cluster

should be generated a new input data. It implies if dmin� dth

is satisfied, where dth a pre-given threshold, then a new fuzzy

rule should be generated. For the new fuzzy rule, the

parameters of the new TSK-type fuzzy rule will be defined as

anew ¼ 0 ð8Þ
cnew

i ¼ q ð9Þ
rnew

i ¼ �r ð10Þ

where �r is a pre-specified vector.

To avoid the endless growing of the TSK-SOFNN

structure and the overload computation loading, another

self-organizing method is considered to determine whether

to delete the existing fuzzy rule but is inappropriate. When

the k-th firing strength Hk is smaller than a elimination

threshold Hth, it means that the relationship becomes weak

between the input and the k-th firing strength. This fuzzy

rule may be less or never used. Then, it will gradually

reduce the value of the k-th significance index. A signifi-

cance index determined for the importance of the k-th layer

can be given as follows [18]

Ikðt þ 1Þ ¼ IkðtÞ expð�sÞ; if Hk\Hth

IkðtÞ; if Hk �Hth

�
ð11Þ

where Ik is the significance index of the k-th layer whose

initial value is 1 and s is the elimination speed constant.

If Ik � Ith is satisfied, where Ith a pre-given threshold, then

the k-th layer will be deleted. The computation loading

should be decreased.

2.2 Approximation property of TSK-SOFNN

The main property of TSK-SOFNN regarding feedback

control purpose is the universal function approximation

property. It implies there exists an expansion of (5) such

that it can uniformly approximate a nonlinear function X as

[13, 18, 22]

X ¼ a�THðq; c�; r�Þ þ D ¼ a�TH� þ D ð12Þ

where D is the approximation error; a* and H* are the optimal

parameter vectors of a and H, respectively; and c* and r*

are the optimal parameter vectors of c and r, respectively.

Since these optimal parameters are unobtainable to best

approximation, an estimated TSK-SOFNN is defined as

ŷ ¼ âTHðq; ĉ; r̂Þ ¼ âTĤ ð13Þ

where â, Ĥ, ĉ and r̂ are the estimated values of a*, H*, c*

and r*, respectively. To speed up the convergence, the

optimal parameter vector a* is decomposed into two parts

as [23, 24]

a� ¼ gPa�P þ gIa
�
I ð14Þ

where a�P and a�I are the proportional and integral terms

of a*, respectively; gP and g1 are positive coefficients;

and a�I ¼
R t

0
a�Pds. Similarly, the estimation parameter

vector âa is decomposed into two parts as [23, 24]

â ¼ gPâP þ gI âI ð15Þ

where âP and âI are the proportional and integral terms of

â; respectively; and âI ¼
R t

0
âPds. Thus, ~a ¼ a� � â can be

expressed as

~a ¼ gI~aI � gPâP þ gPa�P ð16Þ

where ~aI ¼ a�I � âI. Define the estimated error ~y as

~y ¼ X� ŷ

¼ a�TH� � âTĤþ D

¼ ~aTĤþ âT ~Hþ ~aT ~Hþ D

¼ ðgI~aI � gPâP þ gPa�PÞ
TĤþ âT ~Hþ ~aT ~Hþ D

¼ gI~a
T
I Ĥ� gPâT

PĤþ gPa�TP Ĥþ âT ~Hþ ~aT ~Hþ D ð17Þ

where ~a ¼ a� � â and ~H ¼ H� � Ĥ. The Taylor

expansion linearization technique is employed to
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Fig. 1 The architecture of TSK-SOFNN
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transform the nonlinear function into a partially linear

form [2, 4], i.e.

~H ¼ AT~cþ BT ~rþ h ð18Þ

where ~c ¼ c� � ĉ; ~r ¼ r� � r̂; h is a vector of high order

terms; A ¼ oH1

oc
oH2

oc � � �
oHm

oc

� �
jc¼ĉ; and B ¼ oH1

or
oH2

or � � �
oHm

or

� �
jr¼r̂: Substitute (18) into (17), yields

~y ¼ gI~a
T
I Ĥ� gPâT

PĤþ gPa�TP Ĥþ âTðAT~cþ BT ~rþ hÞ
þ ~aT ~Hþ D

¼ gI~a
T
I Ĥ� gPâT

PĤþ ~cT Aâþ ~rT Bâþ e ð19Þ

where âT AT~c ¼ ~cTAâ and âT BT ~r ¼ ~rT Bâ are used

since they are scalars; and e ¼ âT hþ ~aT ~Hþ gPa�TP Ĥþ D
denotes the lump of approximation error which is assumed to

be bounded by 0� ej j �E in which E is a positive constant.

3 Design of ASOFNNC

3.1 Problem statement

Consider an n-th order class of SISO nonlinear systems

described by the following form

xðnÞ ¼ f ðxÞ þ u ð20Þ

where x ¼ ½x; _x; . . .; xðn�1Þ�T is the state vector of the

control system which is assumed to be available for

measurement; f(x) is the nonlinear system dynamics which

can be unknown; and u is the control input. The tracking

control problem is to find a control law such the state

trajectory x can track a state command xc closely. Thus,

define the tracking error as

e ¼ xc � x: ð21Þ

Assume all the parameters in (20) are well known, there

exists an ideal controller [1]

u� ¼ �f ðxÞ þ xðnÞc þ k1eðn�1Þ þ � � � þ kn�1 _eþ kne ð22Þ

where ki, i = 1,2, …, n is positive constant. Applying ideal

controller (22) into system dynamic (20), it is obtained

_e ¼ Ame ð23Þ

where Am ¼

0 1 � � � 0

0 0 � � � 0

0 0 . .
. ..

.

�kn �kn�1 � � � �k1

2
664

3
775 and e ¼

½e; _e; . . .; eðn�1Þ�T is the state error vector. Suppose the

feedback gain ki is chosen to correspond with the coefficients

of a Hurwitz polynomial, it implies that limt!1 e ¼ 0

for any starting initial conditions. Since the system

dynamics f(x) may be unknown or perturbed in practical

applications, the ideal controller (22) cannot be precisely

obtained.

3.2 ASOFNNC system design

To attack this problem for the determination of system

dynamics, this paper proposes an ASOFNNC system which

is composed of a neural controller and a smooth compen-

sator as shown in Fig. 2, i.e.

uafnc ¼ unc þ usc: ð24Þ

The neural controller unc utilizes the TSK-SOFNN as

(13) to mimic the ideal controller in (22), and the smooth

compensator usc is designed to dispel the approximation

error introduced by the neural controller in the sense of

Lyapunov stability. The self-organizing approach in (6–11)

lets the TSK-SOFNN vary its structure dynamically to keep

the prescribed approximation accuracy. Substituting (24)

into (20) and using (22), the error dynamic equation can be

obtained as

nonlinear
system

(20)

neural
controller

(13)

adaptive
law

(31)~(34)

gain 
estimation law

(36), (44)

xcx

scu

e

adaptive self-organizing fuzzy 
neural network control

+
−

+
+

smooth
compensator

(27)

ncû afncu

self-organizing
approach
(6)~(11)

m

Fig. 2 The block diagram of the ASOFNNC for a class of nonlinear

system
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_e ¼ Ameþ b u� � unc � uscð Þ ð25Þ

where b = [0,0,…1]T. Using the approximation property

(19), (25) can be rewritten as

_e¼ Ameþ b gI~a
T
I Ĥ� gPâT

PĤþ ~cTAâþ ~rT Bâþ e� usc

� �
:

ð26Þ

Since the number of the fuzzy rules in the TSK-SOFNN

is finite for the real-time practical applications, the

approximation errors cannot be evitable. To ensure the

system stability of the control system, a supervisor compen-

sator was used to dispel the approximation error which

requires the bound of the approximation error liking as a

sliding-mode controller [8]. If the bound of approximation

error chooses too small, it cannot guarantee the system

stability in the sense of Lyapunov stability. If the bound

of approximation error chooses large to avoid instability,

it can be seen that a large bound of approximation

error results substantial chattering in the control effort. To

cope with this drawback, this paper proposes a smooth

compensator as

usc ¼
ÊsgnðeT PbÞ;

f̂
T
h¼ ÊPeT Pbþ ÊI

Z t

0

ðeT PbÞds;

8><
>:

for eT Pbj j[U
for eT Pbj j�U

ð27Þ

where f̂ ¼ ½ÊP; ÊI �T is a free controller parameter vector;

h ¼ ½eT Pb;
R
ðeT PbÞdt�T ; and U is a positive constant

which tradeoff between chattering attenuation versus

increasing the speed of convergence. When the state tra-

jectory of the system is outside the boundary layer U, i.e.

eTPbj j[ U, the smooth compensator usc ¼ ÊsgnðeT PbÞ is

same as a supervisor compensator in [8], and when the state

trajectory of the system is inside the boundary layer U, i.e.

eTPbj j �U, the smooth compensator usc ¼ f̂
T
h is used to

eliminate the approximation error between the neural

controller and ideal controller. To guarantee the stability of

the proposed ASOFNNC system, two cases are considered

separately depending on the value of eT Pbj j.
For eT Pbj j[ U, consider the Lyapunov function can-

didate in the following form as

V1 ¼
1

2
eT Peþ gI

2
~aT

I ~aI þ
1

2gc

~cT~cþ 1

2gr
~rT ~rþ 1

2gE

~E2 ð28Þ

where the positive constants gc, g and gE are the learning

rates; ~E ¼ E � Ê in which Ê is the estimated approxi-

mation error bound; and P is a symmetric positive definite

matrix that satisfies the Lyapunov equation

AT
mPþ PAm ¼ �Q ð29Þ

in which Q sis a positive definite matrix. Taking the

derivative of Lyapunov function in (28) and using (26),

yields

_V1 ¼
1

2
_eT Peþ 1

2
eT P _eþ gI~a

T
I

_~aI þ
~cT _~c

gc

þ ~rT _~r

gr
þ

~E _~E

gE

¼ 1

2
eT AT

mPþ PAm

� �
e

þ eT Pb gI~a
T
I Ĥ� gPâT

PĤþ ~cT Aâþ ~rT Bâþ e� usc

� �

þ gI~a
T
I

_~aI þ
~cT _~c

gc

þ ~rT _~r

gr
þ

~E _~E

gE

¼ � 1

2
eT Qeþ gI~a

T
I eT PbĤþ _~aI

� �

� gPâT
PeTPbĤþ ~cT eT PbAâþ

_~c

gc

 !

þ ~rT eTPBâþ
_~r

gr

	 

þ eT Pbðe� uscÞ þ

~E _~E

gE

ð30Þ

If the adaptation laws of neural controller choose as

âP ¼ eT PbĤ ð31Þ
_~aI ¼ � _̂aI ¼ �eT PbĤ ð32Þ
_~c ¼ � _̂c ¼ �gceT PbAâ ð33Þ
_~r ¼ � _̂r ¼ �eT PBâ ð34Þ

and the smooth compensator is chosen as

usc ¼ ÊsgnðeT PbÞ ð35Þ

with the approximation error bound estimation law

_~E ¼ � _̂E ¼ �gE eT Pb
�� �� ð36Þ

then the (30) can be rewritten as

_V1 ¼ �
1

2
eT Qe� gPâT

PâP þ eeT Pb� Ê eT Pb
�� ��

� ðE � ÊÞ eT Pb
�� ��

� � 1

2
eT Qeþ ej j eT Pb

�� ��� E eT Pb
�� ��

¼ � 1

2
eT Qe� ðE � ej jÞ eT Pb

�� ��
� � 1

2
eT Qe� 0: ð37Þ

Since _V1 is negative semi-definite, that is V1ðtÞ�V1ð0Þ;
it implies that e, ~a; ~c; ~r and ~E are bounded. Let function

NðtÞ � 1
2

eT Qe� � _V1; and integrate NðtÞ with respect to

time, and it is then obtained as
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Z t

0

NðsÞds�V1ð0Þ � V1ðtÞ: ð38Þ

Because V1ð0Þ is bounded, and V1ðtÞ is nonincreasing

and bounded, the following result can be obtained

lim
t!1

Z t

0

NðsÞds\1: ð39Þ

Also, since _NðtÞ is bounded, so by Barbalat’s Lemma,

it can be shown that lim
t!1

NðtÞ ¼ 0. That is eðtÞ ! 0 as

t!1 [1]. As a result, the ASOFNNC system with a

smooth compensator can be stable for eT Pbj j[ U.

For eT Pbj j �U, consider the Lyapunov function candi-

date in the following form as

V2 ¼
1

2
eT Peþ gI

2
~aT

I ~aI þ
1

2gc

~cT~cþ 1

2gr
~rT ~rþ 1

2gn

~f
T~f ð40Þ

where the positive constant gn is the learning rate; ~n ¼
n� � n̂ and n� is the optimal value for n as defined

f� ¼ arg min
f2R2

sup
eT Pb2R

f̂
T
h� EsgnðeT PbÞ

��� ���� 
: ð41Þ

Taking the derivative of Lyapunov function in (40) and

using (26), (31–34), yields

_V2 ¼
1

2
_eT Peþ 1

2
eT P _eþ gI~a

T
I

_~aI þ
~cT _~c

gc

þ ~rT _~r

gr
þ

~f
T _~f

gn

¼ 1

2
eTðAT

mPþ PAmÞeþ eT PbðgI~a
T
I Ĥ� gPâT

PĤþ ~cT Aâ

þ ~rT Bâþ e� uscÞ þ gI~a
T
I

_~aI þ
~cT _~c

gc

þ ~rT _~r

gr
þ

~f
T _~f

gn

¼ � 1

2
eTQeþ gI~a

T
I ðeT PbĤþ _~aIÞ � gPâT

PeT PbĤ

þ ~cTðeT PbAâþ
_~c

gc

Þ þ ~rTðeTPBâþ
_~r

gr
Þ

þ eT Pbðe� uscÞ þ
~f

T _~f

gn
¼ � 1

2
eT Qe� gPâT

PâP

þ eT Pbðe� uscÞ þ
~f

T _~f

gn
ð42Þ

The smooth compensator is chosen as

usc ¼ f̂
T
h ð43Þ

with the adaptation law

_~f ¼ � _̂
f ¼ �gneT Pbh ð44Þ

then the (42) can be rewritten as

_V2 ¼ �
1

2
eT Qe� gPâT

PâP þ eT Pbðe� f̂
T
hÞ þ

~f
T _~f

gn

� � 1

2
eT Qeþ eT Pbðe� f̂

T
hÞ þ

~f
T _~f

gn

¼ � 1

2
eT Qeþ eT Pbðeþ ~f

T
h� f�ThÞ þ

~f
T _~f

gn

¼ � 1

2
eT Qeþ eeT Pbþ ~f

TðeT Pbhþ
_~f

gn
Þ � eT Pbf�Th

¼ � 1

2
eT Qeþ eeT Pb� eT Pbf�Th

� � 1

2
eT Qeþ ej j eT Pb

�� ��� eT Pbf�Th

� � 1

2
eT Qeþ E eT Pb

�� ��� eT Pbf�Th: ð45Þ

From the definition of (27), it can find eT Pbf�Th lies in

the first and third quadrant. So eT Pbf�Th ¼ 0 for eT Pb ¼ 0

and eT Pbf�Th� 0 for all eTPb. It can find eTPbf�Th ¼
eTPbj j f�Th

�� ��, thus (45) can be rewritten as

_V2� �
1

2
eT Qeþ E eT Pb

�� ��� f�Th
�� �� eT Pb

�� ��
¼ � 1

2
eT Qe� f�Th

�� ��� E
� �

eTPb
�� ��

� � 1

2
eT Qe� 0: ð46Þ

Similar to the proof of (37), it can be similarly shown

eðtÞ ! 0 as t!1. As a result, the ASOFNNC system

with a smooth compensator can be stable for eT Pbj j �U:

4 Simulation results

Chaotic systems have been studied and known to exhibit

complex dynamical behavior. The interest in chaotic sys-

tems lies mostly upon their complex, unpredictable

behavior, and extreme sensitivity to initial conditions as

well as parameter variations. The issue of the chaotic

controller design has become a significant research topic in

the physics, mathematics, and engineering communities

[25–29]. This study considers a second-order chaotic sys-

tem as follow [25]

€x ¼ �p _x� p1x� p2x3 þ q cosðxtÞ þ u ¼ f ðxÞ þ u ð47Þ

where x ¼ ½x; _x�T is the state vector of the system; f ðxÞ ¼
�p _x� p1x� p2x3 þ q cosðxtÞ is the system dynamic

function; u is the control effort; and p, p1, p2, q and x are

real constants. For observing these complex phenomena,

the open-loop chaotic system behavior with u = 0 was
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simulated with p = 0.4, p1 = 0.4, p1 = -1.1, p2 = 1.0 and

x = 1.8. For the phase plane plots from an initial condition

point (0, 0), an uncontrolled trajectory of chaotic with

q = 2.1 and q = 7.0 are shown in Fig. 3a, b, respectively.

It is shown that the uncontrolled chaotic system has dif-

ferent chaotic trajectories with different system parameters

[25]. To illustrate the effectiveness of the proposed ASO-

FNNC system, a comparison among FNN-based adaptive

controller in [8], ASOFNNC system with an integral type

adaptation law, and ASOFNNC system with a PI type

adaptation law is made.

First, the FNN-based adaptive controller in [8] is applied

to the chaotic system. The simulation results of the FNN-

based adaptive controller with 5 fuzzy rules are shown in

Figs. 4 and 5 for q = 2.1 and q = 7.0, respectively. The

structure of the used FNN was determined by some trial. The

tracking responses of state x are shown in Figs. 4a and 5a;

the tracking responses of state _x are shown in Figs. 4b

and 5b; and the associated control efforts are shown in

Fig. 3 The uncontrolled Duffing’s chaotic system

Fig. 4 Simulation results of the FNN-based adaptive controller for

q = 2.1

Fig. 5 Simulation results of the FNN-based adaptive controller for

q = 7.0

Neural Comput & Applic (2012) 21:1243–1253 1249

123

Author's personal copy



Figs. 4c and 5c. The simulation results show that a robust

tracking performance can be achieved after the controller

parameters being well learned. Unfortunately, to guarantee

the system stability, a switching compensator should be

used, but the undesirable chattering phenomenon occurs as

shown in Figs. 4c and 5c.

Then, the proposed ASOFNNC system is applied to the

chaotic system again. It should be emphasized that the

development of the ASOFNNC scheme does not need to

know the system dynamics. For the practical implementa-

tion, the controller parameters of the ASOFNNC system

can be tuned online by the developed adaptive laws. For a

choice of Q = I, solve the Riccati-like Eq. (29), then

P ¼ 3:2250 3:1250

3:1250 4:5312

� 
: ð48Þ

The control parameters of the proposed ASOFNNC

system are chosen as k1 =0.8, k2 =0.16, gP ¼ gI ¼ 10,

gc ¼ gr ¼ 1, gE ¼ ge ¼ 0:1, dth ¼ 0:6, �r ¼ 0:3, Hth ¼ 0:1,

s ¼ 0:01 and Ith ¼ 0:01. The choice of these parameters is

also through some trails, and all the gains are chosen in

consideration of the requirement of stability. To compare

the convergence speed of the tracking error, the ASOFNNC

system with an integral type learning algorithm is applied

first. This is a special case of the proposed ASOFNNC

system with a PI type learning algorithm for gP = 0. The

simulation results of the ASOFNN system with an integral

type learning algorithm are shown in Figs. 6 and 7 for

q = 2.1 and q = 7.0, respectively. The tracking responses

of state x are shown in Figs. 6a and 7a; the tracking

responses of state _x are shown in Figs. 6b and 7b; the

associated control efforts are shown in Figs. 6c and 7c; and

the numbers of fuzzy rules are shown in Figs. 6d and 7d.

The simulation results show that the proposed ASOFNNC

system with an integral type learning algorithm not only can

achieve a favorable tracking performance but also an

Fig. 6 Simulation results of the ASOFNNC system with an integral

type adaptation law for q = 2.1
Fig. 7 Simulation results of the ASOFNNC system with an integral

type adaptation law for q = 7.0
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appropriate network size can be obtained since the proposed

self-organizing mechanism is applied. Since the smooth

compensator is designed as ÊsgnðeT PbÞ outside the

boundary layer and is designed as f̂
T
h inside the boundary

layer to attenuate the effects of the approximation errors,

there are no chattering phenomena in Figs. 6c and 7c.

However, the convergence speed of the tracking error is

slow using an integral type learning algorithm.

Finally, the PI type learning algorithm is applied with

gP = 10. The simulation results of the ASOFNN system

with a PI type learning algorithm are shown in Figs. 8 and 9

for q = 2.1 and q = 7.0, respectively. The tracking

responses of state x are shown in Figs. 8a and 9a; the

tracking responses of state _x are shown in Figs. 8b and 9b;

the associated control efforts are shown in Figs. 8c and 9c;

and the numbers of fuzzy rules are shown in Figs. 8d

and 9d. The simulation results show that the proposed

ASOFNNC system with a PI type learning algorithm can

achieve a favorable tracking performance if the controller

parameters are well trained. The used TSK-SOFNN varies

its structure dynamically to keep the prescribed approxi-

mation accuracy with a simple computation. Moreover, it

does not cause the chattering phenomena in the associated

control efforts, and the convergence speed of the tracking

error is accelerated by the PI type learning algorithm.

For further performance, comparison among the afore-

mentioned control schemes, a performance index I ¼P
t e2 þ _e2 is considered. The performance indices of

FNN-based adaptive controller, ASOFNNC system with an

integral type adaptation law, and ASOFNNC system with a

PI type adaptation law are shown Fig. 10a, b for q = 2.1

and q = 7.0, respectively. It is shown that the performance

index of the proposed ASOFNNC system with a PI type

adaptation law is smaller than those of the other methods.

Fig. 8 Simulation results of the ASOFNNC system with a PI type

adaptation law for q = 2.1

Fig. 9 Simulation results of the ASOFNNC system with a PI type

adaptation law for q = 7.0
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This is due to the fact that the tracking errors converge the

most quickly by using the proposed ASOFNNC system

with a PI type adaptation law.

5 Conclusions

In this paper, an adaptive self-organizing fuzzy neural

network controller (ASOFNNC) system has been success-

fully applied to a chaotic system. All the controller

parameters of the proposed ASOFNNC system online tune

in the sense of Lyapunov stability; thus, the system sta-

bility can be guaranteed. A comparison of control charac-

teristics among FNN-based adaptive controller in [8],

ASOFNNC system with an integral type adaptation law,

and ASOFNNC system with a PI type adaptation law is

summarized in Table 1. It is shown that the ASOFNNC

system with a PI type adaptation law has the fast transient

response and without occurring chattering phenomena to

ensure system stability.

In summary, the major contributions of this paper are as

follows: (1) the developed TSK-type self-organizing fuzzy

neural network varies its structure dynamically to keep the

prescribed approximation accuracy with a simple compu-

tation, (2) the successful development of the ASOFNNC

scheme in the sense of Lyapunov stability, (3) the pro-

portional-integral type learning algorithm is designed to

achieve a better tracking performance, (4) the smooth

compensator can guarantee system stability without

occurring chattering phenomena, and (5) the successful

applications of the ASOFNNC system to a chaotic system.
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