800 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep Learning

    Full text link
    In this paper, we investigate estimating emergence and biomass traits from color images and elevation maps of wheat field plots. We employ a state-of-the-art deconvolutional network for segmentation and convolutional architectures, with residual and Inception-like layers, to estimate traits via high dimensional nonlinear regression. Evaluation was performed on two different species of wheat, grown in field plots for an experimental plant breeding study. Our framework achieves satisfactory performance with mean and standard deviation of absolute difference of 1.05 and 1.40 counts for emergence and 1.45 and 2.05 for biomass estimation. Our results for counting wheat plants from field images are better than the accuracy reported for the similar, but arguably less difficult, task of counting leaves from indoor images of rosette plants. Our results for biomass estimation, even with a very small dataset, improve upon all previously proposed approaches in the literature.Comment: WACV 2018 (Code repository: https://github.com/p2irc/deepwheat_WACV-2018

    Semantic segmentation of roof materials in urban environment by utilizing hyperspectral and LiDAR data

    Get PDF
    Mapping areas in an urban environment can be challenging due to various materials and manufactured structures. The urban environment is a mix of natural and artificial materials, and finding the right object of a specific material is a challenge even for the trained eye. Therefore, by applying high spectral resolution hyperspectral imagery it is possible to examine surface materials based on spectral signature. Combined with LiDAR, it is also feasible to detect the geometrical structure of the surface. These data can be exposed to a machine learning algorithm to recognize objects automatically. In this study machine learning algorithms are exposed to airborne images of roof materials. This thesis presents an application of semantic segmentation for roof materials based on fused hyperspectral (HySpex VNIR-1800 and SWIR-384) and LiDAR (Riegl VQ-560i) data acquired from 2021 over Bærum municipality near Oslo in Norway. The machine learning algorithm is a semantic segmentation model named Res-U-net with a U-net architecture and a ResNet34 backbone. The Res-U-Net is a supervised neural network with high capacity to learn high-dimensional airborne data. The model returns a mask of the urban area that pinpoints the roofs’ position and materials. The ground truth is generated with information from field work, a geographical database and the watershed algorithm for object detection. This ground truth consists of nine different roof materials and background. The semantic segmentation model is optimized by testing different model configurations for this specific problem. The best model scores 0.903, 0.896, and 0.579 in accuracy score, F1 score weighted and Matthews Correlation Coefficient. For the binary problem of detecting roof the model scores 0.948, 0.946, and 0.767 on the same metrics. This study demonstrates that semantic segmentation is viable for localizing and classifying roof materials with fused hyperspectral and LiDAR data. Such an analysis can potentially automate several mapping chores and manual assignments by systemically processing a larger area in a short time to free human capacity.M-M

    A Review on Deep Learning in UAV Remote Sensing

    Full text link
    Deep Neural Networks (DNNs) learn representation from data with an impressive capability, and brought important breakthroughs for processing images, time-series, natural language, audio, video, and many others. In the remote sensing field, surveys and literature revisions specifically involving DNNs algorithms' applications have been conducted in an attempt to summarize the amount of information produced in its subfields. Recently, Unmanned Aerial Vehicles (UAV) based applications have dominated aerial sensing research. However, a literature revision that combines both "deep learning" and "UAV remote sensing" thematics has not yet been conducted. The motivation for our work was to present a comprehensive review of the fundamentals of Deep Learning (DL) applied in UAV-based imagery. We focused mainly on describing classification and regression techniques used in recent applications with UAV-acquired data. For that, a total of 232 papers published in international scientific journal databases was examined. We gathered the published material and evaluated their characteristics regarding application, sensor, and technique used. We relate how DL presents promising results and has the potential for processing tasks associated with UAV-based image data. Lastly, we project future perspectives, commentating on prominent DL paths to be explored in the UAV remote sensing field. Our revision consists of a friendly-approach to introduce, commentate, and summarize the state-of-the-art in UAV-based image applications with DNNs algorithms in diverse subfields of remote sensing, grouping it in the environmental, urban, and agricultural contexts.Comment: 38 pages, 10 figure
    • …
    corecore