1,026 research outputs found

    Scalable video

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 51).This thesis presents the design and implementation of a scalable video scheme that accommodates the uncertainties in networks and the differences in receivers' displaying mechanisms. To achieve scalability, a video stream is encoded into two kinds of layers, namely the base layer and the enhancement layer. The decoder must process the base layer in order to display minimally acceptable video quality. For higher quality, the decoder simply combines the base layer with one or more enhancement layers. Incorporated with the IP multicast system, the result is a highly flexible and extensible structure that facilitates video viewing to a wide variety of devices, yet customizes the presentation for each individual receiver.by Ying Lee.M.Eng

    MPEG-7 Description of Generic Video Objects for Scene Reconstruction

    Get PDF
    ABSTRACT We present an MPEG-7 compliant description of generic video sequences aiming at their scalable transmission and reconstruction. The proposed method allows efficient and flexible video coding while keeping the advantages of textual descriptions in database applications. Visual objects are described in terms of their shape, color, texture and motion; these features can be extracted automatically and are sufficient in a wide range of applications. To permit partial sequence reconstruction, at least one simple qualitative as well as a quantitative descriptor is provided for each feature. In addition, we propose a structure for the organization of the descriptors into objects and scenes and some possible applications for our method. Experimental results obtained with news and video surveillance sequences validate our method and highlight its main features

    A novel constant quality rate control scheme for object- based encoding

    Get PDF
    Master'sMASTER OF ENGINEERIN

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Qos concept for scalable MPEG-4 video object decoding on multimedia (NoC) chips

    Full text link

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Joint source-channel multistream coding and optical network adapter design for video over IP

    Full text link

    Segmentation based coding of depth Information for 3D video

    Get PDF
    Increased interest in 3D artifact and the need of transmitting, broadcasting and saving the whole information that represents the 3D view, has been a hot topic in recent years. Knowing that adding the depth information to the views will increase the encoding bitrate considerably, we decided to find a new approach to encode/decode the depth information for 3D video. In this project, different approaches to encode/decode the depth information are experienced and a new method is implemented which its result is compared to the best previously developed method considering both bitrate and quality (PSNR)

    Selected topics in video coding and computer vision

    Get PDF
    Video applications ranging from multimedia communication to computer vision have been extensively studied in the past decades. However, the emergence of new applications continues to raise questions that are only partially answered by existing techniques. This thesis studies three selected topics related to video: intra prediction in block-based video coding, pedestrian detection and tracking in infrared imagery, and multi-view video alignment.;In the state-of-art video coding standard H.264/AVC, intra prediction is defined on the hierarchical quad-tree based block partitioning structure which fails to exploit the geometric constraint of edges. We propose a geometry-adaptive block partitioning structure and a new intra prediction algorithm named geometry-adaptive intra prediction (GAIP). A new texture prediction algorithm named geometry-adaptive intra displacement prediction (GAIDP) is also developed by extending the original intra displacement prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on various test sequences demonstrate that intra coding performance of H.264/AVC can be significantly improved by incorporating the proposed geometry adaptive algorithms.;In recent years, due to the decreasing cost of thermal sensors, pedestrian detection and tracking in infrared imagery has become a topic of interest for night vision and all weather surveillance applications. We propose a novel approach for detecting and tracking pedestrians in infrared imagery based on a layered representation of infrared images. Pedestrians are detected from the foreground layer by a Principle Component Analysis (PCA) based scheme using the appearance cue. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm. Simulations with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithms.;Multi-view video alignment is a process to facilitate the fusion of non-synchronized multi-view video sequences for various applications including automatic video based surveillance and video metrology. In this thesis, we propose an accurate multi-view video alignment algorithm that iteratively aligns two sequences in space and time. To achieve an accurate sub-frame temporal alignment, we generalize the existing phase-correlation algorithm to 3-D case. We also present a novel method to obtain the ground-truth of the temporal alignment by using supplementary audio signals sampled at a much higher rate. The accuracy of our algorithm is verified by simulations using real-world sequences
    corecore