237 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?

    Get PDF
    Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring

    Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists

    Get PDF
    Computer-aided diagnosis (CAD) systems hold potential to improve the diagnostic accuracy of thyroid ultrasound (US). We aimed to develop a deep learning-based US CAD system (dCAD) for the diagnosis of thyroid nodules and compare its performance with those of a support vector machine (SVM)-based US CAD system (sCAD) and radiologists. dCAD was developed by using US images of 4919 thyroid nodules from three institutions. Its diagnostic performance was prospectively evaluated between June 2016 and February 2017 in 286 nodules, and was compared with those of sCAD and radiologists, using logistic regression with the generalized estimating equation. Subgroup analyses were performed according to experience level and separately for small thyroid nodules 1-2 cm. There was no difference in overall sensitivity, specificity, positive predictive value (PPV), negative predictive value and accuracy (all p > 0.05) between radiologists and dCAD. Radiologists and dCAD showed higher specificity, PPV, and accuracy than sCAD (all p < 0.001). In small nodules, experienced radiologists showed higher specificity, PPV and accuracy than sCAD (all p < 0.05). In conclusion, dCAD showed overall comparable diagnostic performance with radiologists and assessed thyroid nodules more effectively than sCAD, without loss of sensitivity.ope

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Application of Artificial Intelligence to Ultrasonography

    Get PDF
    The use of artificial intelligence (AI) technology in medicine has gained considerable attention, although its application in ultrasound medicine is still in its infancy. Deep learning, the main algorithm of AI technology, can be applied to intelligent ultrasound picture detection and classification. Describe the application status of AI in ultrasound imaging, including thyroid, breast, and liver disease applications. The merging of AI and ultrasound imaging can increase the accuracy and specificity of ultrasound diagnosis and decrease the percentage of incorrect diagnoses

    Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry

    Get PDF
    Thyroid volumetry is crucial in the diagnosis, treatment, and monitoring of thyroid diseases. However, conventional thyroid volumetry with 2D ultrasound is highly operator-dependent. This study compares 2D and tracked 3D ultrasound with an automatic thyroid segmentation based on a deep neural network regarding inter- and intraobserver variability, time, and accuracy. Volume reference was MRI. 28 healthy volunteers (24—50 a) were scanned with 2D and 3D ultrasound (and by MRI) by three physicians (MD 1, 2, 3) with different experience levels (6, 4, and 1 a). In the 2D scans, the thyroid lobe volumes were calculated with the ellipsoid formula. A convolutional deep neural network (CNN) automatically segmented the 3D thyroid lobes. 26, 6, and 6 random lobe scans were used for training, validation, and testing, respectively. On MRI (T1 VIBE sequence) the thyroid was manually segmented by an experienced MD. MRI thyroid volumes ranged from 2.8 to 16.7ml (mean 7.4, SD 3.05). The CNN was trained to obtain an average Dice score of 0.94. The interobserver variability comparing two MDs showed mean differences for 2D and 3D respectively of 0.58 to 0.52ml (MD1 vs. 2), −1.33 to −0.17ml (MD1 vs. 3) and −1.89 to −0.70ml (MD2 vs. 3). Paired samples t-tests showed significant differences for 2D (p = .140, p = .002 and p = .002) and none for 3D (p = .176, p = .722 and p = .057). Intraobsever variability was similar for 2D and 3D ultrasound. Comparison of ultrasound volumes and MRI volumes showed a significant difference for the 2D volumetry of all MDs (p = .002, p = .009, p <.001), and no significant difference for 3D ultrasound (p = .292, p = .686, p = 0.091). Acquisition time was significantly shorter for 3D ultrasound. Tracked 3D ultrasound combined with a CNN segmentation significantly reduces interobserver variability in thyroid volumetry and increases the accuracy of the measurements with shorter acquisition times

    Ultrasound Image Segmentation of Thyroid Nodule via Latent Semantic Feature Co-Registration

    Full text link
    Segmentation of nodules in thyroid ultrasound imaging plays a crucial role in the detection and treatment of thyroid cancer. However, owing to the diversity of scanner vendors and imaging protocols in different hospitals, the automatic segmentation model, which has already demonstrated expert-level accuracy in the field of medical image segmentation, finds its accuracy reduced as the result of its weak generalization performance when being applied in clinically realistic environments. To address this issue, the present paper proposes ASTN, a framework for thyroid nodule segmentation achieved through a new type co-registration network. By extracting latent semantic information from the atlas and target images and utilizing in-depth features to accomplish the co-registration of nodules in thyroid ultrasound images, this framework can ensure the integrity of anatomical structure and reduce the impact on segmentation as the result of overall differences in image caused by different devices. In addition, this paper also provides an atlas selection algorithm to mitigate the difficulty of co-registration. As shown by the evaluation results collected from the datasets of different devices, thanks to the method we proposed, the model generalization has been greatly improved while maintaining a high level of segmentation accuracy
    corecore