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The use of artificial intelligence (AI) technology in medicine has gained considerable attention, 

although its application in ultrasound medicine is still in its infancy. Deep learning, the main 

algorithm of AI technology, can be applied to intelligent ultrasound picture detection and clas-

sification. Describe the application status of AI in ultrasound imaging, including thyroid, breast, 

and liver disease applications. The merging of AI and ultrasound imaging can increase the ac-

curacy and specificity of ultrasound diagnosis and decrease the percentage of incorrect diag-

noses. 
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OHN MCCARTHY first presented the concept of artificial 

intelligence (AI) at the Dartmouth Conference in 1956 (1), 

and it has a history of more than 60 years. The goal is to 

teach computers to replicate human thought and cognitive func-

tions and to develop human-like thought. There will be three 

stages of development for artificial intelligence: weak artificial 

intelligence, strong artificial intelligence, and super AI (2). The 

advancement of AI technologies relies heavily on deep learning 

algorithms. Convolutional neural network (CNN)-based learning 

systems have become one of the most rapidly expanding areas 

of deep learning algorithms in recent years, mostly utilized for 

image recognition and classification (3). Deep learning is the 

automatic extraction of image features, the fusion of basic fea-

tures into complex features, and the application of complex 

features to problem solving (4). Presently, AI technology is em-

ployed extensively in numerous industries, and its relationship 

with the medical industry, particularly in conjunction with med-

ical imaging, is growing (CT, X-ray, MRI, and PET). Ultrasound 

has been widely used in the inspection and diagnosis of the liver, 

heart, blood vessels, thyroid, breast, muscle, and other internal 

organs and superficial structures due to the fact that it is painless, 

non-invasive, non-ionizing radiation, simple, fast, capable of 

real-time imaging, and has high repeatability (5, 6). However, 

there are subjective variances in ultrasound examinations, and 

extensive training and education are required to become a certi-

fied sonographer. In contrast, the coupling of AI and ultrasound 

imaging simplifies operating stages, eliminates subjectivity, 

conserves physician resources, reduces reporting time, and en-

hances diagnostic efficacy. Its primary research topics are the 

detection of abnormalities in the thyroid, breast, and liver. 

 
Intelligent Application of Ultrasound Imaging 
to the Thyroid 
Ultrasound is essential for the diagnosis of thyroid disorders. 

Nodule location, size, and number; echo intensity; whether the 

boundary is clear and regular; calcification; cystic degeneration; 

aspect ratio, and color Doppler blood flow signals can be used to 

identify worrisome lesions. Acharya et al. employed the 

K-nearest neighbor algorithm to detect three-dimensional con-

trast-enhanced ultrasound thyroid pictures with an accuracy of 
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98.9%, a sensitivity of 98.0%, and a specificity of 99.8%, based 

on the image texture and discrete wavelet transform (7). Deep 

convolutional neural networks (DCNN) paved the way for this 

advancement in computer-based diagnostics. Nguyen et al. ex-

tracted picture features from ultrasound thyroid images in two 

domains: the spatial domain using deep learning and the fre-

quency domain using Fast Fourier transform and confirmed that 

the combination of AI and ultrasound imaging is beneficial for 

the detection of benign and malignant thyroid nodules (8). Wang 

et al. used a device combining ultrasound and AI to identify 600 

images of thyroid nodules with a sensitivity of 86.20% and a 

specificity of 85.48%, indicating that AI ultrasound plays a sig-

nificant role in the clinical diagnosis of thyroid disease (9). Chi 

et al. preprocessed ultrasound pictures of the thyroid to elimi-

nate artifacts and then fine-tuned the preprocessed GoogleNet 

model to extract features. Their results indicated that the model 

has good classification performance with a classification accu-

racy of 98.29% and a sensitivity of 98.29% (10). However, the 

images of the thyroid lesions were not discovered by a comput-

er-aided diagnostic (CAD) system, but rather by clinicians. Ma 

et al. utilized two CNN fusion methods for the gathered 15,000 

images, and this method’s accuracy was 83.02%, indicating that 

deep learning may considerably increase the diagnostic accuracy 

of thyroid nodules by ultrasound (11). 

In addition, Ma et al. used a CNN cascade model to detect 

thyroid lesions in 21,532 ultrasound pictures. Their method in-

volved two CNN systems with varying depths, and the results 

revealed an AUC of 98.51%, which was higher than the conven-

tional model. based on machine learning, but the physician must 

manually manipulate the ultrasound picture detection area (12). 

The AICAD system was used by Zhang et al. to distinguish 

between benign and malignant thyroid nodules (13). Its diagnos-

tic sensitivity and negative predictive value for malignant thy-

roid nodules were comparable to those of experienced sonog-

raphers, whereas its specificity and accuracy rate were lower. 

Using the DCNN model, Li and colleagues enhanced the detec-

tion accuracy of thyroid cancer compared to professional so-

nographers (14). 

 
Intelligent Application of Breast Ultrasound 
Imaging 
Breast cancer is one of the most prevalent cancers and the major 

cause of cancer-related mortality in women. The screening and 

detection of benign and malignant breast nodules are greatly 

facilitated by artificial intelligence. The distinguishing charac-

teristics between benign and malignant breast nodules can begin 

with the following: whether the mass has a regular shape, 

whether the edge is smooth, internal echo (hypoechoic, anecho-

ic), posterior echo attenuation, capsule integrity, presence or 

absence of calcification, longitudinal and transverse ratio, color 

Doppler blood flow signal, and so on. Wu et al. reviewed breast 

ultrasound AI technology to detect breast nodule (15). Using a 

deep learning model (GoogleNet model of CNN), Kalafi et al. 

analyzed ultrasound breast images to identify benign and ma-

lignant tumors with an accuracy of 93% (16). This method can 

classify malignant lesions in a short amount of time and aids the 

radiologists’ diagnosis of malignant lesions. Lei et al. employed 

3D CNN-based detection system for 3D automatic whole breast 

ultrasonography tumor diagnosis, obtaining good sensitivity but 

low specificity when the sensitivity was > 98% (17). Park et al. 

performed CAD detection on breast masses and evaluated the 

differences between physicians (18). They discovered that when 

CAD was paired with ultrasonography, the diagnostic abilities of 

all physicians were greatly enhanced. 

A general deep learning software was developed to iden-

tify and differentiate ultrasound breast cancer images and dis-

covered that deep learning software can aid in diagnosing breast 

cancer images similarly to sonographers and novice academics. 

improved acceptance and accelerated learning (19). Kim et al. 

investigated the diagnostic effectiveness of the deep learning 

algorithm-based smart detect (S-Detect) technology in breast 

ultrasound examinations and employed the Kappa test to deter-

mine the consistency between sonographers and S-Detect (20). 

When the BI-RADS grade was above grade 4a, their results 

indicated that the specificity, positive predictive value, and ac-

curacy of S-Detect technology were considerably higher than 

those of sonographers. Alzubaidi and coworkers established a 

deep learning architecture, which is a 2-layer deep learning 

model: the first layer is a fully connected neural network for 

feature extraction, and the second layer is a constrained Boltz-

mann machine to provide better features (21). This architecture 

can automatically extract the features of shear wave 

elastography and distinguish between benign and malignant 

tumors. Ghosh et al. identified breast ultrasonography lesions 

using stacked denoising autoencoders, which is superior to con-

ventional machine learning techniques (22). Yap et al. employed 

three deep learning approaches (patch-based Lenet, U-net, and 

pre-trained FCN-AlexNet transfer learning method) for the de-

tection of breast lesions by ultrasound, and then compared their 

performance to that of four cutting-edge algorithms, and their 

findings indicated that transfer learning has a superior learning 

effect (23). 

Xiao et al. gathered ultrasound pictures consisting of 

1,370 benign and 688 malignant lesions and compared the dif-

ferential diagnosis of benign and malignant tumors using the 

transfer model, CNN model, and conventional machine learning 

(24). Their results indicated that the transfer model is valid. 

Among the models, InceptionV3 performed the best, with an 

accuracy of 85.13% and an AUC of 91%; additionally, a model 

based on deep feature classification retrieved from the transfer 

model also achieved good performance, with an accuracy of 

89.44% and an AUC of 93%. Di Segni et al. investigated the 

diagnostic performance of S-Detect for breast lesions, demon-

strating a sensitivity of 90% and a specificity of 70.8%, sup-

porting its increased specificity (25). Using a deep learn-

ing-based transfer learning CNN model, Zahoor and coworkers 

identified benign and malignant breast lesions with an AUC of 

93.6%, which could assist sonographers in classifying breast 

masses (26). 

 
Intelligent Application of Ultrasound Imaging 
to the Liver 
Sonography is the imaging method of choice for evaluating liver 

disorders. The application of AI in liver ultrasound is primarily 

for fat detection and fibrosis evaluation. Byra et al. used a 

DCNN model with transfer learning for pre-training on the 
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ImageNet dataset for the ultrasound assessment of non-alcoholic 

fatty liver disease for the assessment of liver steatosis on liver 

ultrasound, and then applied the support vector machine (SVM) 

algorithm (27). For picture classification, the sensitivity was 

100%, the specificity was 88.2%, the accuracy was 96.3%, and 

the AUC was 97.7%, demonstrating that this method can assist 

doctors in determining the fat content of the liver. Biswas et al. 

employed a deep learning approach (DL-CNN model) to evalu-

ate fatty liver. Compared with SVM and extreme learning ma-

chines (ELM), the diagnosis accuracy was 100%, 82%, and 92%, 

respectively, showing that ultrasonography utilizing deep learn-

ing can better distinguish fatty liver (28). A stacked sparse 

autoencoder based on deep learning approaches extracted 

high-level features from segmented liver images with 97.2% 

accuracy and was compared to multi-support vector machine 

(multi-SVM) and K-nearest neighbor classification (29). 

Meng et al. used a transfer learning-based VGGNet and a 

fully connected network (FCNet) model to stage liver fibrosis, 

and the results showed a 93.9% accuracy on a 30% test set (30). 

Liu et al. proposed using the DCNN model of liver pictures to 

extract the image features of the liver capsule, and the AUC was 

96.8%, showing that this technique can effectively extract the 

image characteristics of the liver capsule and diagnose liver 

cirrhosis properly (31). Yeom et al. presented a high-frequency 

ultrasound imaging algorithm for liver cirrhosis, which primari-

ly analyzed the continuity and smoothness of the liver capsule 

and extracted the image’s form or texture features for quantita-

tive analysis. The results demonstrate that this method can be 

used to assess liver cirrhosis (32). The AUC of this method was 

97% for liver cirrhosis (F4 stage), 98% for advanced liver fibro-

sis (F3 stage), and statistically significant for liver fibrosis (F3 

stage). The F2 AUC was reduced from 99% to 85%, demon-

strating that this method is more accurate than two-dimensional 

shear wave elastography for assessing liver cirrhosis and ad-

vanced liver fibrosis. In addition, Oezdemir et al. used AI to 

quantitatively analyze the response of CEUS to transarterial 

chemoembolization in order to predict the effect of transarterial 

chemoembolization in patients with hepatocellular carcinoma 

and established a deep learning radiomics-based CEUS model, 

machine-based on radiomics and deep learning (33). Contrast 

was drawn between the contrast-enhanced ultrasound model for 

machine learning radiomics and the B-Mode image model based 

on machine learning radiomics. According to their findings, 

contrast-enhanced ultrasonography was capable of accurately 

predicting the AUC of 93%. 

 
Other Intelligent Applications for Ultrasound 
Imaging 
Wilkinson et al. investigated the use of computer texture analy-

sis technology to quantitatively identify the texture features of 

skeletal muscle ultrasound images under vision, and their 

self-developed intensity interface multilevel decomposition 

method for quantitative analysis of skeletal muscle injury ultra-

sound images was demonstrated to be effective (34). Yu et al. 

proposed a DCNN to identify fetal facial standard planes. It 

consists of 16 convolutional layers with 3 kernels and 3 fully 

connected layers, and it can classify fetal ultrasound planes with 

an accuracy of up to 93.03%, which is higher than the accuracy 

of the conventional method, making it useful for clinical diag-

nosis (35). 

Wu et al. proposed evaluating the quality of fetal ultra-

sound images using two DCNN models (36). The L-type CNN 

model was used to detect the ROI of the abdomen in the ultra-

sound picture; the C-type CNN model was used to evaluate the 

gastric vesicles and umbilical veins of important structures in 

the images; and the model was used to evaluate the ROI of the 

abdomen. The outcomes were comparable to the subjective im-

age quality evaluations of three physicians. Chen et al. investi-

gated a composite neural network framework of DCNN and 

recurrent neural networks that can explore intra-and inter-plane 

features and classify fetal standard planes from ultrasound im-

ages of fetal organs (37). This neural network is referred to as 

T-RNN. The test demonstrated the model’s validity, and its AUC 

for recognizing fetus standard plane was achieved at 95%. 

The research of Hetherington et al. helped anesthesiolo-

gists perform anesthesia procedures by automatically identifying 

the spinal level from ultrasound pictures (38). A CNN model 

with four convolutional layers of 3 x 3 size and three completely 

linked layers can categorize atherosclerotic plaques, including 

lipid content. The Pearson’s correlation coefficients for the 

number of cores, fibrous tissue, and calcified tissue were 0.92 

for lipid cores, 0.87 for fibrous tissue, and 0.93 for calcified 

tissue, indicating that automatic measurement can be utilized for 

clinical prediction of carotid ultrasound plaques. 

Currently, in the medical industry, 90% of the data sources 

rely on medical images, and each piece of data is inseparable 

from manual analysis, which wastes medical resources and in-

evitably leads to subjective errors in doctors’ judgment (39). 

Intelligent ultrasound imaging can compensate for personnel 

shortages and human error, hence enhancing the accuracy of 

disease diagnosis. However, the capture of large volumes of 

ultrasound data is frequently dependent on the physician’s ac-

tions, which raises the bar for the identification and extraction of 

ultrasound images. In addition, a quantitative standard can be 

defined for the obtained ultrasound pictures to promote industry 

standardization. Using AI technology, during an ultrasound ex-

amination, images can be automatically classified to ensure the 

continuity and integrity of image acquisition (40, 41). 

 
Conclusion 
The advancement of AI has facilitated the growth of ultrasound 

imaging. It is believed that as scientific and technological 

strength continues to grow, the combination of ultrasound imag-

ing and AI will become more in-depth, and AI will be utilized in 

a wider variety of fields. It can increase the accuracy of ultra-

sound diagnostics and decrease the number of incorrect diagno-

ses.■ 
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