63 research outputs found

    Numerical methods for electromagnetic wave propagation and scattering in complex media

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Vita.Includes bibliographical references (p. 227-242).Numerical methods are developed to study various applications in electromagnetic wave propagation and scattering. Analytical methods are used where possible to enhance the efficiency, accuracy, and applicability of the numerical methods. Electromagnetic induction (EMI) sensing is a popular technique to detect and discriminate buried unexploded ordnance (UXO). Time domain EMI sensing uses a transient primary magnetic field to induce currents within the UXO. These currents induce a secondary field that is measured and used to determine characteristics of the UXO. It is shown that the EMI response is difficult to calculate in early time when the skin depth is small. A new numerical method is developed to obtain an accurate and fast solution of the early time EMI response. The method is combined with the finite element method to provide the entire time domain response. The results are compared with analytical solutions and experimental data, and excellent agreement is obtained. A fast Method of Moments is presented to calculate electromagnetic wave scattering from layered one dimensional rough surfaces. To facilitate the solution, the Forward Backward method with Spectral Acceleration is applied. As an example, a dielectric layer on a perfect electric conductor surface is studied. First, the numerical results are compared with the analytical solution for layered flat surfaces to partly validate the formulation. Second, the accuracy, efficiency, and convergence of the method are studied for various rough surfaces and layer permittivities. The Finite Difference Time Domain (FDTD) method is used to study metamaterials exhibiting both negative permittivity and permeability in certain frequency bands.(cont.) The structure under study is the well-known periodic arrangement of rods and split-ring resonators, previously used in experimental setups. For the first time, the numerical results of this work show that fields propagating inside the metamaterial with a forward power direction exhibit a backward phase velocity and negative index of refraction. A new metamaterial design is presented that is less lossy than previous designs. The effects of numerical dispersion in the FDTD method are investigated for layered, anisotropic media. The numerical dispersion relation is derived for diagonally anisotropic media. The analysis is applied to minimize the numerical dispersion error of Huygens' plane wave sources in layered, uniaxial media. For usual discretization sizes, a typical reduction of the scattered field error on the order of 30 dB is demonstrated. The new FDTD method is then used to study the Angular Correlation Function (ACF) of the scattered fields from continuous random media with and without a target object present. The ACF is shown to be as much as 10 dB greater when a target object is present for situations where the target is undetectable by examination of the radar cross section only.by Christopher D. Moss.Ph.D

    Surface electrical properties experiment, Part 3

    Get PDF
    A complete unified discussion of the electromagnetic response of a plane stratified structure is reported. A detailed and comprehensive analysis of the theoretical parts of the electromagnetic is given. The numerical problem of computing numbers of the electromagnetic field strengths is discussed. It is shown that the analysis of the conductive media is not very far removed from the theoretical analysis and the numerical difficulties are not as accute as for the low-loss problem. For Vol. 1, see N75-15570; for Vol. 2 see N75-15571

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    Final technical report on the Surface Electrical Properties Experiment Part 3

    Get PDF
    This report consists of a series of reports, reprints and preprints that in themselves constitute a self-explanatory record of the work performed by the University of Toronto on the Surface Electrical Properties Experiment. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included. A complete unified discussion of the electromagnetic response of a plane stratified structure is reported. A detailed and comprehensive analysis of the theoretical parts of the electromagnetic is given. The numerical problem of computing numbers of the electromagnetic field strengths is discussed. It is shown that the analysis of the conductive media is not very far removed from the theoretical analysis and the numerical difficulties are not as acute as for the low-loss problem.Submitted to MIT in fulfillment of the subcontract on NASA contract NAS9-1154

    The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    Get PDF
    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies

    DETERMINE: Novel Radar Techniques for Humanitarian Demining

    Get PDF
    Today the plague of landmines represent one of the greatest curses of modern time, killing and maiming innocent people every day. It is not easy to provide a global estimate of the problem dimension, however, reported casualties describe that the majority of the victims are civilians, with almost a half represented by children. Among all the technologies that are currently employed for landmine clearance, Ground Penetrating Radar (GPR) is one of those expected to increase the efficiency of operation, even if its high-resolution imaging capability and the possibility of detecting also non-metallic landmines are unfortunately balanced by the high sensor false alarm rate. Most landmines may be considered as multiple layered dielectric cylinders that interact with each other to produce multiple reflections, which will be not the case for other common clutter objects. Considering that each scattering component has its own angular radiation pattern, the research has evaluated the improvements that multistatic configurations could bring to the collected information content. Employing representative landmine models, a number of experimental campaigns have confirmed that GPR is capable of detecting the internal reflections and that the presence of such scattering components could be highlighted changing the antennas offset. In particular, results show that the information that can be extracted relevantly changes with the antenna separation, demonstrating that this approach can provide better confidence in the discrimination and recognition process. The proposed bistatic approach aims at exploiting possible presence of internal structure beneath the target, which for landmines means the activation or detonation assemblies and possible internal material diversity, maintaining a limited acquisition effort. Such bistatic configurations are then included in a conceptual design of a highly flexible GPR system capable of searching for landmines across a large variety of terrains, at reasonably low cost and targeting operators safety
    corecore