321 research outputs found

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up Design of RF Systems

    Get PDF
    Indo-ChinaAn agreement between Ho Chi Minh and the French (1946) made Vietnam a free state though fighting between parties erupted into the First Indochina War ending in May 1954.Vietnam. (2013). In EncyclopĂŠdia Britannica. Retrieved from http://school.eb.com/eb/article-52744GrayscaleForman Safety Negatives, Box

    Addressing the Smart Systems Design Challenge: The SMAC Platform

    Get PDF
    This article presents the concepts, the organization, and the preliminary application results of SMAC, a smart systems co-design platform. The SMAC platform, which has been developed as Integrated Project (IP) of the 7th ICT Call under the Objective 3.2 \u201cSmart components and Smart Systems integration\u201d addresses the challenges of the integration of heterogeneous and conflicting domains that emerge in the design of smart systems. SMAC includes methodologies and EDA tools enabling multi-disciplinary and multi-scale modelling and design, simulation of multidomain systems, subsystems and components at different levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. The article presents the preliminary results obtained by adopting the SMAC platform for the design of a limb tracking smart system

    Simulation multi-moteurs multi-niveaux pour la validation des spécifications systÚme et optimisation de la consommation

    Get PDF
    This work aims at system-level modelling a defined transceiver for Bluetooth Low energy (BLE) system using SystemC-AMS. The goal is to analyze the relationship between the transceiver performance and the accurate energy consumption. This requires the transceiver model contains system-level simulation speed and the low-level design block power consumption and other RF specifications. The Meet-in-the-Middle approach and the Baseband Equivalent method are chosen to achieve the two requirements above. A global simulation of a complete BLE system is achieved by integrating the transceiver model into a SystemC-TLM described BLE system model which contains the higher-than-PHY levels. The simulation is based on a two BLE devices communication system and is run with different BLE use cases. The transceiver Bit-Error-Rate and the energy estimation are obtained at the end of the simulation. First, we modelled and validated each block of a BT transceiver. In front of the prohibitive simulation time, the RF blocks are rewritten by using the BBE methodology, and then refined in order to take into account the non-linearities, which are going to impact the couple consumption, BER. Each circuit (each model) is separately verified, and then a first BLE system simulation (point-to-point between a transmitter and a receiver) has been executed. Finally, the BER is finally estimated. This platform fulfills our expectations, the simulation time is suitable and the results have been validated with the circuit measurement offered by Riviera Waves Company. Finally, two versions of the same transceiver architecture are modelled, simulated and comparedCe travail vise la modĂ©lisation au niveau systĂšme, en langage SystemC-AMS, et la simulation d'un Ă©metteur-rĂ©cepteur au standard Bluetooth Low Energy (BLE). L'objectif est d'analyser la relation entre les performances, en termes de BER et la consommation d'Ă©nergie du transceiver. Le temps de simulation d’un tel systĂšme, Ă  partir de cas d’étude (use case) rĂ©aliste, est un facteur clĂ© pour le dĂ©veloppement d’une telle plateforme. De plus, afin d’obtenir des rĂ©sultats de simulation le plus prĂ©cis possible, les modĂšles « haut niveau » doivent ĂȘtre raffinĂ©s Ă  partir de modĂšles plus bas niveau oĂč de mesure. L'approche dite Meet-in-the-Middle, associĂ©e Ă  la mĂ©thode de modĂ©lisation Ă©quivalente en Bande Base (BBE, BaseBand Equivalent), a Ă©tĂ© choisie pour atteindre les deux conditions requises, Ă  savoir temps de simulation « faible » et prĂ©cision des rĂ©sultats. Une simulation globale d'un systĂšme de BLE est obtenue en intĂ©grant le modĂšle de l'Ă©metteur-rĂ©cepteur dans une plateforme existante dĂ©veloppĂ©e en SystemC-TLM. La simulation est basĂ©e sur un systĂšme de communication de deux dispositifs BLE, en utilisant diffĂ©rents scĂ©narios (diffĂ©rents cas d'utilisation de BLE). Dans un premier temps nous avons modĂ©lisĂ© et validĂ© chaque bloc d’un transceiver BT. Devant le temps de simulation prohibitif, les blocs RF sont rĂ©Ă©crits en utilisant la mĂ©thodologie BB, puis raffinĂ©s afin de prendre en compte les non-linĂ©aritĂ©s qui vont impacter le couple consommation, BER. Chaque circuit (chaque modĂšle) est vĂ©rifiĂ© sĂ©parĂ©ment, puis une premiĂšre simulation systĂšme (point Ă  point entre un Ă©metteur et un rĂ©cepteur) est effectuĂ©

    Analog-Digital System Modeling for Electromagnetic Susceptibility Prediction

    Get PDF
    The thesis is focused on the noise susceptibility of communication networks. These analog-mixed signal systems operate in an electrically noisy environment, in presence of multiple equipments connected by means of long wiring. Every module communicates using a transceiver as an interface between the local digital signaling and the data transmission through the network. Hence, the performance of the IC transceiver when affected by disturbances is one of the main factors that guarantees the EM immunity of the whole equipment. The susceptibility to RF and transient disturbances is addressed at component level on a CAN transceiver as a test case, highlighting the IC features critical for noise immunity. A novel procedure is proposed for the IC modeling for mixed-signal immunity simulations of communication networks. The procedure is based on a gray-box approach, modeling IC ports with a physical circuit and the internal links with a behavioural block. The parameters are estimated from time and frequency domain measurements, allowing accurate and efficient reproduction of non-linear device switching behaviours. The effectiveness of the modeling process is verified by applying the proposed technique to a CAN transceiver, involved in a real immunity test on a data communication link. The obtained model is successfully implemented in a commercial solver to predict both the functional signals and the RF noise immunity at component level. The noise immunity at system level is then evaluated on a complete communication network, analyzing the results of several tests on a realistic CAN bus. After developing models for wires and injection probes, a noise immunity test in avionic environment is carried out in a simulation environment, observing good overall accuracy and efficiency

    A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up Design of RF Systems

    Get PDF
    This paper presents a modelling methodology for the top-down/bottom-up design of RF systems based on systematic use of VHDL-AMS models. The model interfaces are parameterizable and pin-accurate. The designer can choose to parameterize the models using performance specifications or device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analog/digital component behavior has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. These properties make the models suitable for different design tasks such as architectural exploration or overall system validation. This is demonstrated on a model of a binary FSK transmitter parameterized to meet very different target specifications. The achieved flexibility and systematic model documentation facilitate their reuse in other design projects

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    Mixed-signal integrated circuits design and validation for automotive electronics applications

    Get PDF
    Automotive electronics is a fast growing market. In a field primarily dominated by mechanical or hydraulic systems, over the past few decades there has been exponential growth in the number of electronic components incorporated into automobiles. Partly thanks to the advance in high voltage smart power processes in nowadays cars is possible to integrate both power/high voltage electronics and analog/digital signal processing circuitry thus allowing to replace a lot of mechanical systems with electro-mechanical or fully electronic ones. High level modeling of complex electronic systems is gaining importance relatively to design space exploration, enabling shorter design and verification cycles, allowing reduced time-to-market. A high level model of a resistor string DAC to evaluate nonlinearities has been developed in MATLAB environment. As a test case for the model, a 10 bit resistive DAC in 0.18um is designed and the results were compared with the traditional transistor level approach. Then we face the analysis and design of a fundamental block: the bandgap voltage reference. Automotive requirements are tough, so the design of the voltage reference includes a pre-regulation part of the battery voltage that allows to enhance overall performances. Moreover an analog integrated driver for an automotive application whose architecture exploits today’s trends of analog-digital integration allowing a greater range of flexibility allowing high configurability and fast prototipization is presented. We covered also the mixed-signal verification approach. In fact, as complexity increases and mixed-signal systems become more and more pervasive, test and verification often tend to be the bottleneck in terms of time effort. A complete flow for mixed-signal verification using VHDL-AMS modeling and Python scripting is presented as an alternative to complex transistor level simulations. Finally conclusions are drawn
    • 

    corecore