5,709 research outputs found

    Tailoring optical fields emitted by nanometric sources

    Get PDF
    Here we study a simple way of controlling the emitted fields of sub-wavelength nanometric sources. The system consists of arrays of nanoparticles (NPs) embedded in optical active media. The key concept is the careful tuning of NP's damping factors, which changes the eigenmode's decay rates of the whole array. This, at long time, leads to a locking of relative phases and frequencies of individual localized-surfaces-plasmons (LSPs) and, thus, controlls the emitted field. The amplitude of the LSP's oscillations can be kept constant by embedding the system in optical active media. In the case of full loss compensation, this implies that, not only the relative phases, but also the amplitudes of the LSPs remain fixed, leading us, additionally, to interpret the process as a new example of synchronization. The proposed approach can be used as a general way of controlling and designing the electromagnetic fields emitted by nanometric sources, which can find applications in optoelectronic, nanoscale lithography and probing microscopy

    Inverse scattering for reflection intensity phase microscopy

    Full text link
    Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy from intensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combines linear forward-scattering and height-dependent nonlinear back-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model's validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research.https://arxiv.org/abs/1912.07709Accepted manuscrip

    3D microwave tomography with huber regularization applied to realistic numerical breast phantoms

    Get PDF
    Quantitative active microwave imaging for breast cancer screening and therapy monitoring applications requires adequate reconstruction algorithms, in particular with regard to the nonlinearity and ill-posedness of the inverse problem. We employ a fully vectorial three-dimensional nonlinear inversion algorithm for reconstructing complex permittivity profiles from multi-view single-frequency scattered field data, which is based on a Gauss-Newton optimization of a regularized cost function. We tested it before with various types of regularizing functions for piecewise-constant objects from Institut Fresnel and with a quadratic smoothing function for a realistic numerical breast phantom. In the present paper we adopt a cost function that includes a Huber function in its regularization term, relying on a Markov Random Field approach. The Huber function favors spatial smoothing within homogeneous regions while preserving discontinuities between contrasted tissues. We illustrate the technique with 3D reconstructions from synthetic data at 2GHz for realistic numerical breast phantoms from the University of Wisconsin-Madison UWCEM online repository: we compare Huber regularization with a multiplicative smoothing regularization and show reconstructions for various positions of a tumor, for multiple tumors and for different tumor sizes, from a sparse and from a denser data configuration

    Holographic particle localization under multiple scattering

    Full text link
    We introduce a novel framework that incorporates multiple scattering for large-scale 3D particle-localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models which become inaccurate under high particle-density. We demonstrate that by exploiting multiple-scattering, localization is significantly improved. Both forward and back-scattering are computed by our method under a tractable recursive framework, in which each recursion estimates the next higher-order field within the volume. The inverse scattering is presented as a nonlinear optimization that promotes sparsity, and can be implemented efficiently. We experimentally reconstruct 100 million object voxels from a single 1-megapixel hologram. Our work promises utilization of multiple scattering for versatile large-scale applications

    Monitoring the sea environment using acoustics the role of the acoustical observatories

    Get PDF
    The presentation deals with theoretical factors and technical specifications pertinent to the design of an acoustical observatory for the monitoring of the marine environment. Two types of observatories are mentioned, namely active and passive. Among the various cases of active observatories, the ones related to ocean acoustic tomography are presented in some detail and the inverse problem of retrieving information from measured acoustic data is explained. Some basic issues related to the type of measurements that should be made for optimal use of the acoustic field are also given with related references. Finally, the basic features of passive observatories are underlined without going into details
    corecore