Here we study a simple way of controlling the emitted fields of
sub-wavelength nanometric sources. The system consists of arrays of
nanoparticles (NPs) embedded in optical active media. The key concept is the
careful tuning of NP's damping factors, which changes the eigenmode's decay
rates of the whole array. This, at long time, leads to a locking of relative
phases and frequencies of individual localized-surfaces-plasmons (LSPs) and,
thus, controlls the emitted field. The amplitude of the LSP's oscillations can
be kept constant by embedding the system in optical active media. In the case
of full loss compensation, this implies that, not only the relative phases, but
also the amplitudes of the LSPs remain fixed, leading us, additionally, to
interpret the process as a new example of synchronization. The proposed
approach can be used as a general way of controlling and designing the
electromagnetic fields emitted by nanometric sources, which can find
applications in optoelectronic, nanoscale lithography and probing microscopy