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Tailoring optical fields emitted by nanometric sources.
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In this work we study a simple way of controlling the emitted fields of sub-wavelength nanometric
sources. The system studied consists of arrays of nanoparticles (NPs) embedded in optical active
media. The key concept is the careful tuning of NP’s damping factors, which changes the eigenmode’s
decay rates of the whole array. This inevitably leads, at long time, to a locking of relative phases
and frequencies of individual localized-surfaces-plasmons (LSPs) and, thus, controlls the emitted
field. The amplitude of the LSP’s oscillations can be kept constant by embedding the system in
optical active media. In the case of full loss compensation, this implies that, not only the relative
phases, but also the amplitudes of the LSPs remain fixed, leading us, additionally, to interpret the
process as a new example of synchronization. The proposed approach can be used as a general way
of controlling and designing the electromagnetic fields emitted by nanometric sources, which can
find applications in optoelectronic, nanoscale lithography and probing microscopy.

I. INTRODUCTION.

Recent advances in past decades in fabrication and
characterization of nanometric devices have given rise to
a revolution, fueled by the new and intriguing properties
of matter in this size scale. Among the new fields that
rapidly became central, emerged the promise of plasmon-
ics with applications that go from ultra sensitive nano-
sensors to plasmonic circuitry.1–5 Many of those promises
have became a reality nowadays, but the advances do not
seem to slow down and new ideas are still emerging in
this field. One interesting example, is the combination of
plasmonic devices with active media that compensate in
part or totally system’s losses.6–25

Active media are made of dye molecules or semicon-
ductors nanocrystals, where the population inversion is
created optically or electrically. The concept of spaser
(surface plasmon amplification by stimulated emission
of radiation), also known as surface plasmon laser in a
wider context, is an example of that. Originally pro-
posed by Bergman and Stockman in 2003,14 and finally
implemented experimentally in 2009,18–20 it is basically
a source of electromagnetic fields, containing both prop-
agating and evanescent waves, and formed by the inter-
action of surface plasmons with active media that fully
compensate the losses of the plasmonics system.14–17

Spasers can provide us with many possibilities for
prospective applications in nanoscience and nanotechnol-
ogy, in particular for near-field nonlinear-optical probing
and nanomodification. In this respect, it should be de-
sirable to control and to design a priori the electromag-
netic fields generated by those hybrid systems. If the
plasmonic system consist of arrays of NPs, the design of
electromagnetic fields implies a control over the synchro-
nized oscillation of the individual localized surface plas-
mons (LSPs), which leads to another interesting aspect.
Essentially, as in those systems not only the phases and
frequencies of individual LSPs but also their amplitudes
remain fixed, the whole phenomenon can be interpreted
as another example of synchronization

The phenomenon of synchronization, usually defined
as the adjustment of rhythms of self-sustained oscillating
objects because of their mutual interaction,26 has been
observed in many physical and biological systems: from
the coupled pendulums clocks first described by Chris-
tian Huygens27 to the chemical or biological examples,
such as fireflies that flash in unison.26 However, up to
our knowledge, it has never been described in the con-
text of plasmonics.

In this work we study plasmonic systems, consisting of
metallic nanoparticle (NP) arrays, where losses are par-
tially or fully compensated by an active medium. We not
only find that the localized surface plasmons (LSPs) of
individual NPs can be kept oscillating with a fixed am-
plitude and a fixed relative phase, becoming a new exam-
ple of synchronization, but we also show that it should
be relatively easy to control their asymptotic states by
controlling NP’s damping. The manipulation of the sys-
tem’s state at long time implies the control of NP’s dipo-
lar moments and thus of their emitted electromagnetic
field. Therefore, our approach is a general way of design-
ing the interference patterns of sources of optical fields
in the sub-wavelength scale, which can have applications
in several areas of nantechnology.

The paper is organized as follows: In section II we
develop the basics tools used in our calculation. In sec-
tion III we present the main results, analyzed through
two simple examples of NP’s arrays, and discuss them in
terms of: non-Hermiticity of the dynamical matrix and
asymptotic states, phase and frequency locking, role of
active media, gain-loss compensation, amplitude locking,
and generalization to more complex structures, subsec-
tions III A to III F. Finally, in section IV we summarize
the main conclusions.

http://arxiv.org/abs/1402.3184v1
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II. COUPLED DIPOLE APPROXIMATION FOR
ELLIPSOIDS WITH RADIATION DAMPING.

The systems studied are basically different arrays of
metallic NPs which are modeled through the well known
coupled dipole approximation.28–34 In this model, each

ith-NP is described by a dipole ~Pi induced by the elec-

tric field produced by the others dipoles, ~Ej,i, and the

external source, ~E
(ext)
i . We assume a generic ellipsoidal

shape for the NPs whose polarizabilities α are described
in a quasi-static approximation,35,36

α =
ǫ0V (ǫ − ǫm)

[ǫm + L(ǫ− ǫm)]
, (1)

where V is the volume, ǫ0 is the free space permittivity,
ǫm is the dielectric constant of the host medium, and L is
a geometric factor that depends on the shape of the ellip-
soidal NP and the direction of E. The dielectric constant
of the NP, ǫ, is described by a Drude-Sommerfeld’s like
model

ǫ = ǫ∞ − ω2
P

(ω2 + iωη)
, (2)

where ǫ∞ is a material dependent constant and take into
account the contribution of the bound electrons to the
polarizability, ω

P
is the plasmon frequency, and η the

electronic damping factor. Assuming for simplicity a lin-

ear array of NPs and a near field approximation for ~Ei,j

yields,

~Ei,j = − γT,L ~Pj

4πǫ0ǫmd3
, (3)

where d is the distance between NPs, and γ is a constant
that depends on the orientation of the NP’s array relative
to the direction of E, γT = 1 if it is perpendicular and
γL = −2 if it is parallel. If we take take into account these

considerations, then all ~P s and ~E(ext)s can be arranged
as vectors P and E resulting in:28,29

P =
(
Iω2 −M

)−1
RE = χE, (4)

where χ is the response function, M is the dynamical ma-
trix and R is a diagonal matrix that rescales the external
applied field according to local properties:

Ri,i = −ǫ0Viω
2
Pi
f, (5)

with

f =

[
1− (ǫ∞ − ǫm,i)

(
ω2 + iωηi

)
/ω2

Pi

]

[ǫm,i + Li(ǫ∞ − ǫm,i)]
. (6)

To understand the physical meaning of f , first note that
Eq. 4 resembles that of a set of coupled harmonic oscil-
lators. In the quasi-electrostatic limit, Eq. 3, and for a

negligible radiation damping term, see Eq. 9, this sim-
ilarity is strict for f equal to 1. Thus, this factor es-
sentially accounts for deviations of the ideal model of
coupled harmonic oscillators.
The coupling constants, Mi,j = −ω2

Xi,j (for i 6= j), and

the LSP complex square frequencies,Mi,i = ω2
SPi

−iΓi(ω),

are given by:28,29

ω2
Xi,j =

γT,LViω
2
Pi

4πǫmd3i,j
f, (7)

ω2
SPi =

ω2
Pi
Li

[ǫm,i + Li(ǫ∞ − ǫm,i)]
, (8)

and

Γ(ω) = ηω + ηRω
3. (9)

where η is the electronic damping and ηR the radiation
damping. The electronic damping η can be calculated
from the Fermi velocity vf , the bulk mean free path lbulk,
the volume V , and the surface S of the NP by using the
Matthiessen’s rule η = vf (1/lbulk − C/leff ) with C ≈ 1,
and the Coronado-Schatz formula leff = 4V/S.37 The
value of ηR can be calculated from the ellipsoid’s ra-
dius a, b, and c, ηR = 2/9(abc/v3)ω2

P f , where v is the
speed of light in the host medium. This extra damp-
ing term appears when the polarizability α is corrected
by using the modified long-wavelength approximation,
α′ = α[1− i(2/12πǫ0)k

3α]−1.36 In the examples analyzed
here, dynamic depolarization is negligible and thus not
included in the equations for simplicity.
Retardation effects change the coupling terms which

now should be determined by the true dipole-induced
electric field, i.e.:

~E =
eikd|P |

4πǫ0ǫmd3

{
(kd)2(d̂× p̂)× d̂ (10)

+
[
3d̂(d̂ · p̂)− p̂

]
(1− ikd)

}
, (11)

where k is the wavenumber in the dielectric, k = ω/v

(where v is the speed of light in the medium), d̂ is the

unit vector in the direction of ~d (where ~d is the position
of the observation point with respect to the position of

the dipole), p̂ is the unit vector in the direction of ~P ,
and |P | is its modulus. If the system consists of a linear
array of NPs where the spheroids axes are aligned with
respect to the direction of the array, transversal (T ) and
longitudinal (L) excitations do not mix, which allows us
to preserve the form of Eq. 7 by simply replacing γT,L

by γ̃T,L , where:

γ̃L

i,j = −2[1− ikdi,j ]e
ikdi,j

γ̃T

i,j = [1− ikdi,j − (kdi,j)
2]eikdi,j . (12)
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We use this final form of the equations in all the calcu-
lations shown here. However, the qualitative results do
not change by using the quasistatic approximation.
The temporal evolution of the dipolar moments of in-

dividual NPs can be evaluated by Fourier transforming
the response function χ(ω) into χ(t) and using the con-
volution theorem:

Pi(t) =
∑

j

∫ t

0

χi,j(t− τ)E
(ext)
j (τ)dτ. (13)

The functions χ(t)i,j were numerically computed from
χ(ω)i,j by using a fast Fourier transform algorithm.38

Here, one must be careful, in case of using active me-
dia, of not overpassing the loss-compensation condition
as one is always assuming that the response function χi,j

is square integrable.

III. RESULTS.

A. Non-Hermiticity of M and asymptotic states.

In the type of system studied here, frequency and
phase locking may appear as a natural consequence of
the properties of non-Hermitian matrices. While isolated
systems are described by a typical Hermitian dynamical
matrix M, where the final state depends on the initial
conditions, the presence of an “environment” leads to a
non-Hermitian dynamical matrix.28,29,39,41 This interac-
tion may cause asymptotic states that are independent
of the initial conditions. An illustrative example of that
is the case of a pair of piano strings in a unison group.42

There, the slightly detuned strings are coupled through
the bridge, which, in turn, is coupled to a dissipative
soundboard. Within a certain critical parametric range,
this dissipative coupling induces the synchronous oscilla-
tion of both strings42 and gives the piano its character-
istic and persistent aftersound. This dissipative coupling
can be modeled by an imaginary coupling which, at a
critical strength, produces the collapse of the pair of orig-
inally mistuned eigenfrequencies into a single tone. Si-
multaneously, the originally identical dampings split into
a short and a long lived modes. The effect of this is that
the long time evolution is dominated, for almost any ini-
tial condition, by the normal mode whose eigenvalue has
the smallest imaginary part.
The same analysis can be straightforwardly applied to

plasmonics systems represented by Eq. 4, where the anal-
ogy also includes the concepts of dissipative couplings,
frequency collapses, and damping’s splittings, see Ap-
pendix. However, in plasmonic’s systems it is not al-
ways obvious which is the asymptotic state of a given
system, which makes its control even less obvious. The
situation worses if we consider that usually parameters
such as NP’s shape and separations are not accurately
determined. Besides, unlike the discussed case of cou-
pled piano strings, the amplitude of the oscillations of

the LSPs decays so fast that it would be quite difficult to
observe the phase and frequency locking. Therefore, two
main features are desirable. The control at will of the
asymptotic state of the system and to be able to keep
the amplitude of the LSP’s oscillations over a long pe-
riod of time. In the following sections we will address
sequentially each one of these points.

B. Phase and frequency locking.
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FIG. 1. (Color online) - A). Dipolar moment Pi of NPs 1
and 3 (in arbitrary units) vs time (in units of ω−1

SP
) for three

aligned and identical NPs. Between t = 0 and 62 (mark
in green) a external field of frequency ω = ωSP and direc-
tion parallel to the array, is applied locally to the first NP
to initialize the system. The parameters used correspond to
spheroidal Ag’s NPs of radii 30, 30 and 8 nm, separated 32nm,
and ǫm = 1.77. B). The same but with the middle NP hav-
ing a different shape (90x90x8 nm). Upper insets: Detail
of the main figure. Bottom insets: Detail of the decay rate
of different oscillation modes. S1 = (P1 +

√

2P2 + P3)/2,
A = (P1 − P3)/

√

2, and S2 = (P1 −

√

2P2 + P3)/2. Side
figures: Schemes of the NP’s arrays.

As we mentioned, the plasmonic dynamical matrix M

resembles that of coupled harmonic oscillators. This can
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be used to analyze certain systems in simple terms as
we will see. Assuming the quasi-electrostatic limit, neg-
ligible damping terms, and f ≈ 1, it is easy to evaluate
the normal modes of M. In the case of three equal NPs,
aligned linearly, and equally spaced the normal modes
can be written as: (P1 − P3)/

√
2, (P1 +

√
2P2 + P3)/2

and (P1 −
√
2P2 + P3)/2. Where P1, P2, and P3 stand

for the dipolar moments in some given direction of NPs
1, 2, and 3 respectively. If the difference in frequency
between the NPs of the ends and the central one is small
this expressions are still approximately valid.

Let us analyze this simple example of three aligned Nps
and let us assume that we want to ensure an asymptotic
state in which the NPs of the ends remain oscillating in
anti-phase. In this case, one only need to add a larger
damping factor to the middle NP. The normal mode ofM
that has zero weight over the NP with a high damping
factor, ≈ (P1 − P3)/

√
2, has a small decay rate com-

pared with the other two, ≈ (P1 +
√
2P2 + P3)/2 and

≈ (P1 −
√
2P2 + P3)/2, which both have finite weights

over the highly dispersive nanostructrure (NP 2 in this
example). The strategy is then clear, the key to control
the phase and frequency locking is the careful designing
of the damping factors of NPs in such a way that it leaves
one normal mode (the one that will define the desirable
phase relationship and frequency) with the smallest, ide-
ally zero, weight over the regions of the array with the
largest damping factors.

There are of course several ways of increasing the
damping factor of NPs, not only by changing their shape
or material but also by “connecting” them to waveguides
for example.28,29 Here we use the shape of NPs to control
the damping factors. According to the parameters cho-
sen, the radiation damping term is the dominant one for
the NP with the high damping factor, while the electronic
damping term is the dominant one for the others.

In Fig. 1, we evaluate the temporal evolution of the
dipolar moment Pi(t) of each NP, by using Eq. 13 in two
examples that illustrate how tuning the damping factor
of NPs can be used to control the asymptotic state of
the system. In these examples we explicitly take into
account the material and shape of NPs, always within
the couple dipole approximation described in section II
and including the full dependence of ω2

X
and Γ on ω.

The results essentially show the above discussed: After
the external source is switched off the LSPs decay very
fast, but as indicated in the lower insets, different modes
decay at different rates which leads to a natural phase
and frequency locking of the LSPs of individual NPs. The
asymptotic state of case A is not easily seen in the upper
inset, but a more careful analysis, depicted in the lower
inset, reveals that the mode with the lowest decay rate
is “S1”. A comparison of Figs. A and B shows that the
asymptotic state changes as consequence of the increased
damping factor of the middle NP. It should be mentioned
that the only role of the external source of electric field is
just to initialize the system. This could have been done
in many different ways in the simulation, for example by

using a pulse of electromagnetic radiation. However, as
long as all normal modes are excited the final state will
be the same, up to a factor in the amplitude of course.

C. Role of active media.

As previously mentioned, there is a problem with the
phase and frequency locking mechanism described above.
Everything occurs too fast. Note that in Fig. 1 the time
scale is in units of ωSP of NPs 1 which for the NPs used
corresponds to around 0.2 fs. This implies that all the
process starts and finishes in less than 0.1 ps approxi-
mately. There is a need, then, of keeping the system
oscillating for longer periods of time, in order to reason-
ably envision possible applications. This can be done by
embedding the system in an optically active medium.
If the gain of the active medium is below the loss

compensation threshold, its effect can be modeled phe-
nomenologically on the basis of classical electrodynamics
without taking into account explicitly the quantum dy-
namics of the chromophores. This is done by considering
the medium as a dielectric with a negative imaginary part
in the refraction index n. n = n0 − iκ.6–13,15 Within this
model, the active medium is consistent with an homoge-
neous distribution of the dye molecules, or nanocrystals
quantum dots, and with a wide band approximation for
its response.
The wide band approximation implies that the eigen-

frequencies of the modes are close compared with the fre-
quency dependence of the active medium. If this condi-
tion is not fulfilled, each mode will have a different value
of κ or even a null one if the frequency of the mode is far
enough from the maximum of the medium’s stimulated-
emission-spectrum. In this case the analysis of mode’s
compensation is direct as it can be based only on mode’s
frequencies. On the contrary if the eigenfrequencies of
the modes are close enough, such as all modes experi-
ence approximately the same value of κ, it is in principle
not obvious which mode will be compensated first, and
less obvious how to control this. This is why, the wide
band approximation allows us to explore alternatives for
controlling the system’s asymptotic states, beyond the
mechanisms based on the frequency response of the ac-
tive medium or the use of some spatial inhomogeneities
in its distribution around the system.24?

As mentioned, it could result not obvious how an ac-
tive medium would affect the phenomenon depicted in
Fig. 1, mainly because n enters not-linearly in the equa-
tions, see Eqs. 4-9, and this could in principle changes the
expected asymptotic state. However, as we are precisely
considering gain media without explicit spacial distribu-
tion or frequency dependence, it is reasonable to expect
that all modes will be excited similarly. Thus, if there
are appreciable differences in the natural decay rates, the
asymptotic states with active medium should be deter-
mined directly by them.
Figs. 2 shows essentially that. Incorporation of op-
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tical gain media does not change the asymptotic states
discussed in the previous section, even thought it has
been used a value of κ that almost completely compen-
sate losses. In the two examples analyzed, the slowest de-
caying mode keeps as such, modes “S1” and “A” for cases
A, B respectively. The only effect of the active medium
in those examples, besides keeping the system oscillating
for longer periods of times, is that it systematically in-
creases even further the differences in the decaying rates,
making phase and frequency locking to occur even ear-
lier. As the system remains oscillating for longer periods,
it is easier to see in the figures (upper insets) the phase
locking and how it is affected by changing the damping
factors. In case A, the NPs of the edges (Nps 1 and 3 in
Fig. 2) end oscillating in phase, while, if we increase the
damping factor of the middle NP as in case C, the NPs
of the edges end oscillating in anti-phase. As mentioned
before, the reason of that is simply that the anti-phase
oscillation of the NPs of the edges interfere destructively
over the NP of the middle where the largest damping fac-
tor is present. The other two normal modes having some
weight on the middle NP will increase their decay rate.
Besides the examples shown in the figures, we also tried

other possibilities as, other NP’s arrays or changing the
system’s parameters. However, the results were always
the same, when there are appreciable differences in the
decay rates with κ = 0, which is for example the case of
Fig. 1-B, an homogeneous active medium is not able to
change the expected asymptotic state. Only, for systems
like case A of Fig. 1, where the decay rates for κ = 0 are
very close, we observed, for some system’s parameters,
that the active media changes the expected asymptotic
state.

D. Gain-loss compensation.

At this point, it is important to discuss about the lim-
iting value of κ, κlim, for which losses are exactly com-
pensated, and the experimental feasibility of this. The
value of κlim can be evaluated from the poles of Eq. 4
by looking for the pole with the smallest imaginary part.
Thus, κlim is the value of κ for which the imaginary part
of this pole equals zero. In some cases, it can be easy to
obtain approximate analytical expressions, but in general
one must resort to numerical evaluations.
In case B of Figs. 1 and 2, the eigenvalue of the “A“

eigenmode ω2
eig−A, (P1 −P3)/

√
2, can be obtained easily

by assuming a wide band approximation:

ω2
eig−A ≈ ω2

SP
− iΓ, (14)

where ω2
SP

is the LSP resonant frequency of one of the
NPs of the ends, and Γ is its damping factor. Then,
the value of κlim can be obtained by using Eq. 8 with
ǫm = n2 and assuming a small κ. The result is:

κlim ≈ Γ[n2
0 + L(ǫ∞ − n2

0)]

2n0ω2
SP
(1− L)

(15)
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FIG. 2. (Color online) - The same as Fig. 1 but considering an
optically active medium with κ = 0.11 and 0.12 for subfigures
A and B respectively.

which according to the parameters used, n0 = 1.33, L =
0.689, ǫ∞ = 3.7, and Γ/ω2

SP
≈ 0.032, gives κlim ≈ 0.121.

For case A of Figs. 1 and 2, it is more difficult to ob-
tain simple analytical solutions as ω2

X
also enters into the

equations and depends on κ. However, they can always
be evaluated numerically. From the simulation, we esti-
mated the value of κlim as 0.11 and 0.12 approximately
for cases A and B respectively, which should be close to
experimental possibilities.18–23,44–47 Note the agreement
between the numerical and analytical results for case B.

The value of κ is a phenomenological coefficient that
represent the property of some media of coherently am-
plify an electromagnetic field. It is related with the am-
plification coefficient g by g = 4πκ/λ. Gain media in
plasmonics are made of chromophores that overlap spa-
tially and spectrally with the surface plasmon modes of
the nanostructure. These chromophores can be semicon-
ductors nanocrystals, dye molecules, rare-earth ions, or
electron-hole excitations of a bulk semiconductor. The
gain coefficient can be written as g = Nσe, where N
is the concentration of electron-hole pairs in the case
of semiconductors or the concentration of molecules and
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their population inversion in the case of dye molecules.
The symbol σe is the stimulated emission cross section
which, in turn, depends on the dipolar moment of the
transition.6–17

Here we should clarify one point. Up to now, we have
been discussing and comparing the decay rates of differ-
ent modes that have always the same direction of the
electric field, parallel to the array. However, there are
two other set of modes, those with the electric field per-
pendicular to the array, that can also enter in the anal-
ysis of the system’s asymptotic state. If the dipolar mo-
ment of the transition of the molecules or semiconduc-
tors nanocrystals that constitute the active media, have
a preferential direction, then the media can only feed-
back some modes, those with a finite overlap between
the mode’s electric field and the dipolar moment.15–17 In
this case, only some modes, ideally those that oscillate
in the preferable direction, should be considered. On the
contrary, if the dipolar moment of the transition has a
random orientation, then one has to analyze the full pic-
ture, i.e. the whole nine modes for the arrays. In this
last case, the shape of the NPs acquires a central role,
because it determines in which direction the system will
remain oscillating. To see that, note that the Li fac-
tor of Eq. 1, depends on both the shape of the NP and
the direction of electric field, and this parameter enters,
not only in eigenfrequency of the mode, but also in the
damping term Γ through ηR and f .
For example, let us consider a system of three equal

NPs of 30x20x8 nm aligned in the direction of the mi-
nor axis and separated 24 nm. Here, the mode that is
compensated in the first place by the active medium is
that where all LSPs are oscillating synchronous in phase
and parallel to the major axis. In this case κlim ≈ 0.024.
The equivalent modes but for the other directions, those
where the LSPs oscillate in phase and parallel to the sec-
ond largest axis and to the minor axis, have a value of
κlim of approximately 0.029 and 0.073 respectively.

E. Amplitude locking.

According to our equations up to now, for κ > κlim,
P (t) should grow exponentially at infinitum, which is of
course not realistic. At some point the pumping mecha-
nism that keeps the inversion population must be over-
come by the decay rate of the molecules in the excited
state decaying toward their fundamental state. The re-
alistic situation is that the amplitude of the surface plas-
mon oscillations should stabilize at some point. This is
so, because the stimulated emission that depletes the ex-
cited states depends on |E|2 which, in turn, depends on
Pi, while the mechanism that restore the inversion pop-
ulation is fixed and independent of Pi.

15–17

A complete treatment would require to solve the quan-
tum mechanics dynamics of each chromophore under the
influence of the electromagnetic field corresponding to
its position and the coupled equation of motion of the

FIG. 3. Electric field E for the asymptotic state of case A and
B of Fig. 2. The strength of E is normalized to its maximum
value in each figure.

surface plasmon dynamics. This is beyond the scope of
this work and besides was already addressed by other
authors in the context of spasers.15,17 The important re-
sult of these previous works, for the present purposes,
is that the system evolves in a somehow complex way,
until a stationary regime is reached. This stationary
regime corresponds to a net amplification equals zero,
which means that gain exactly compensate losses,14–17

a condition expressed in our case by Eqs 15 in terms
of κlim. Essentially, the convergence towards a station-
ary regime where losses are compensated, implies am-
plitude locking. The asymptotic value of the amplitude
could be complex to evaluate but the important point
is that, sooner or latter, it is reached and it is non zero
for κinitial > κlim and initial conditions different from the
trivial one, Pi = 0. The other important point is that,
once the system is in the stationary state regime, the in-
version population freezes, fixating the gain coefficient g
and thus κ, at κ = κlim. Then, independently of how or
when this stationary regime is reached, in the end one
should see the type of behaviors showed in the context
of Fig. 2, i.e. different normal modes are compensated
differently by the active medium. Therefore, while the
slowest decaying mode is exactly compensated, the oth-
ers will be undercompensated which will inevitably lead
to a phase, frequency, and also amplitude locking. Note
that, because of this, the plasmonics systems studied can
be considered as a new example of synchronization.
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A B C

...etc

FIG. 4. (Color online) - Schemes of others NP’s arrays. Small
spheres stand for NPs with large damping factors while the
large ones represent NPs with small damping factors.

The above analysis has also another important conse-
quence, gain medium can not, in general, exactly com-
pensate the losses of all eigenmodes at the same time.
Let us assume the system has three eigenmodes each one
with different values of κlim; κ1 < κ2 < κ3 . Then, if
one try to compensate the second or the third modes ,
κ = κ2 or κ = κ3, the first one will be overcompensated
which can not define a stationary state as it should grow
indefinitely. The realistic situation is that the inversion
population of the active medium will be depleted by the
increasing electromagnetic field of the first mode, reduc-
ing the value of κ until it reaches κ1. As this argument
is very general, we believe its consequences should be
present in the majority of this kind of systems provided
that the necessary ingredients are present. The eigenfre-
quencies of the modes must be close enough compared
with the frequency response of the medium and different
modes should share somehow the same dye molecules or
semiconductor nanocrystals. We plan to address this in-
teresting issue in a future work.
Figs. 3-A and 3-B show the electric field generated by

the examples shown in Figs. 1 and 2 for t → ∞. The
former corresponds to the system with three equal Nps
and the latter to the system with the middle Np having a
larger damping factor. Note the great differences in the
emitted electric fields. The upper case shows the typical
interference patterns of a punctual dipolar source, while
the lower one shows that of a quadrupole. This example
highlight the fact that amplitude locking becomes our
system into, not only another example of synchroniza-
tion, but also a nanometric source of both evanescent
and propagating waves with a predetermined and con-
trollable interference pattern.

F. Generalization to more complex structures.

The proposed synchronization mechanism can be eas-
ily extended to more complex nano-structures. The key
is to build the system such as all normal modes but one
have some weight on the highly dispersive NPs, the mid-
dle one in Fig. 2-B for example. Then, if the damping
factor of the highly dispersive NP is large enough, the
slowest decaying normal mode, which will control the rel-
ative phases of the LSP in the asymptotic state, will be
that having the smallest weight over these NPs. In Fig.

4 we present just one possible set of examples of that
for NP’s arrays of arbitrary size. The examples assume
nearest neighbors interactions. The small spheres rep-
resent equal NPs with large damping factors while the
large ones represent equal NPs with small damping fac-
tors. In all these cases, one can show that there is always
one eigenvalue of M that has zero weight over the small
NPs. This normal mode corresponds to that where the
LSP of the large NPs oscillates in anti-phase with respect
to their nearest large-NPs neighbors. Thus, as this mode
will have the slowest decay rate it will determine the
phase locking at long time. Others asymptotic states are
also possible in those systems. One only has to evaluate
the weight of individual NPs on each normal mode and,
based on that, increases selectively the damping factors
of certain Nps to achieve the desired asymptotic state.

IV. CONCLUSIONS.

In this work we have shown a simple way of control-
ling phase and frequency locking of the self-sustained os-
cillation of NP’s LSPs, by tuning the damping factors
of individual NPs. Furthermore, we have shown that it
should be possible to keep the system oscillating with
constant amplitude by including optically active media
properly tuned. We interpret this as a new example of
synchronization as we are in the presence of self sustained
oscillating objects, clearly separable, that depict phase,
frequency as well as amplitude locking, consequence of
their mutual interaction. Since it is possible to control
the asymptotic state of these NP arrays with self sus-
tained LSP, our approach is a general way of designing
the interference patterns of sources of optical fields in
the sub-wavelength scale. This can surely find applica-
tions in optoelectronic, nanoscale lithography and prob-
ing microscopy. In addition, the proposed method can
naturally be combined with other alternatives, such as
using the frequency dependence of the active medium or
controlling its spatial distribution.
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VI. APPENDIX: DISSIPATIVE COUPLINGS
AND DYNAMICAL PHASE TRANSITIONS.

We mentioned that in the case of coupled piano strings,
there is a dissipative coupling between the strings which
can be modeled by an imaginary coupling term in the dy-
namical matrix M. Pure imaginary, or at least complex,
couplings have interesting effects on the properties of the
eigenvalues of M. At some critical values of the system’s
parameters, there can be a collapse of the real part of
the eigenvalues of M and a bifurcation of their imaginary
part at points called ”exceptional points“. There, among
other effects, M becomes singular and the system’s eigen-
vectors behave oddly in their surroundings.39,40 Since the
dynamical observables have a non-analytic dependence
on the system’s paremeters, this results in what is called
a dynamical phase transition, DPT.28,29,39,41

In the case of plasmonics systems, as those showed
in this work, the complex coupling can be seen as just
the consequence of the effective interaction between two
parts of a system connected through a bridging dissi-
pative subsystem. For example, if we have three NPs
aligned one can always calculate an effective coupling
between the NPs at the ends.43 The result of this is a
complex effective coupling, consequence of the damping
term of the NP in the middle.28,29

Fig. 5 shows that the eigenvalues of M present a col-
lapse of their real part accompanied by a splitting of their
imaginary part. Just as in the example of the coupled pi-
ano strings. This case corresponds to a very large value
of the damping term of the middle NP and a mistuning
parameter, δ, below a critical value. Here, it should be
mentioned that what really sets the decay rates, are the
imaginary part of the poles, Im (ωpole), of the response
function χ(ω), and not the imaginary part of the eigen-
values of M. In the wide band approximation, these last

coincides with Im
(
ω2
pole

)
. This distinction can be quite

irrelevant in some situations but becomes fundamental in
others. In Fig.6 we consider the case of two internacting
NPs. We can see that although the eigenvalues ofM have
exactly the same imaginary part, which would preclude
the synchronization mechanism depicted in the main sec-
tion of the article, there is a difference in the imaginary
part of ωpole. Although this difference is very small, as
compared with the case shown in Fig. 5, it is enough to
give rise to a characteristic asymptotic state and, thus, it
can be used to induce a phase and frequency locking. In
this example, the mode with the longest lifetime will be
the antisymmetric one. This, at sufficiently long times,
implies that the LSPs of both NPs will end oscillating in
anti-phase.

In general, systems with dynamical phase transitions
are expected to have large differences in the imaginary
parts of the eigenfrequencies, as in the case of coupled
piano strings or in the example shown in Fig. 5. How-
ever, phase and frequency locking is not an exclusive
phenomenom of this situation. For the particular case

of metallic nanoparticle arrays, the value of the damp-
ing terms needed to achieve the DPT described here are
far from the realistic situation, at least for metallic NPs.
Thus, the cases discussed in the main section of the ar-
ticle correspond to systems that do not present a DPT.
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FIG. 5. (Color online) - Figs. A and C are respectively the
real and imaginary part of ω2

pole, the eigenvalues of M; while
Figs. B and D are respectively the real and imaginary part
of ωpole, the poles of χ. The system consists of three aligned
NPs with δ = ω2

SP1
− ω3

SP3
, where 1 and 3 stand for the NPs

of the edges. Only nearest neighbor couplings are considered,
ω2
X = 0.2, ω2

SP = 1 (for δ = 0), and Γ = 0.03 for all NPs
except for the middle one where Γ = 0.7.
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FIG. 6. (Color online) - The same as Fig. 5 but for a system
of two NPs with equal damping, Γ = 0.03. Notice that in
spite of the small differences in decay rates as compared to
those in Fig. 5, they can be enough to produce an observable
phase locking through the use of an active medium.
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