762 research outputs found

    Frontalparietal networks involved in categorization and item working memory

    Get PDF
    Categorization and memory for specific items are fundamental processes that allow us to apply knowledge to novel stimuli. This study directly compares categorization and memory using delay match to category (DMC) and delay match to sample (DMS) tasks. In DMC participants view and categorize a stimulus, maintain the category across a delay, and at the probe phase view another stimulus and indicate whether it is in the same category or not. In DMS, a standard item working memory task, participants encode and maintain a specific individual item, and at probe decide if the stimulus is an exact match or not. Constrained Principal Components Analysis was used to identify and compare activity within neural networks associated with these tasks, and we relate these networks to those that have been identified with resting state-fMRI. We found that two frontoparietal networks of particular interest. The first network included regions associated with the dorsal attention network and frontoparietal salience network; this network showed patterns of activity consistent with a role in rapid orienting to and processing of complex stimuli. The second uniquely involved regions of the frontoparietal central executive network; this network responded more slowly following each stimulus and showed a pattern of activity consistent with a general role in role in decision-making across tasks. Additional components were identified that were associated with visual, somatomotor and default mode network

    Self-Prioritization Reconsidered : Scrutinizing Three Claims

    Get PDF
    Open Access via the Sage R&P AgreementPeer reviewedPublisher PD

    Synchronous beta rhythms of frontoparietal networks support only behaviorally relevant representations

    Get PDF
    Categorization has been associated with distributed networks of the primate brain, including the prefrontal cortex (PFC) and posterior parietal cortex (PPC). Although category-selective spiking in PFC and PPC has been established, the frequency-dependent dynamic interactions of frontoparietal networks are largely unexplored. We trained monkeys to perform a delayed-match-to-spatial-category task while recording spikes and local field potentials from the PFC and PPC with multiple electrodes. We found category-selective beta- and delta-band synchrony between and within the areas. However, in addition to the categories, delta synchrony and spiking activity also reflected irrelevant stimulus dimensions. By contrast, beta synchrony only conveyed information about the task-relevant categories. Further, category-selective PFC neurons were synchronized with PPC beta oscillations, while neurons that carried irrelevant information were not. These results suggest that long-range beta-band synchrony could act as a filter that only supports neural representations of the variables relevant to the task at hand.National Institute of Mental Health (U.S.) (4R01MH065252)Prop. 63 the Mental Health Services ActUniversity of California, Davis. Behavioral Health Center of Excellenc

    Visual Puzzles, Figure Weights, and Cancellation: Some Preliminary Hypotheses on the Functional and Neural Substrates of These Three New WAIS-IV Subtests

    Get PDF
    In this study, five consecutive patients with focal strokes and/or cortical excisions were examined with the Wechsler Adult Intelligence Scale and Wechsler Memory Scale—Fourth Editions along with a comprehensive battery of other neuropsychological tasks. All five of the lesions were large and typically involved frontal, temporal, and/or parietal lobes and were lateralized to one hemisphere. The clinical case method was used to determine the cognitive neuropsychological correlates of mental rotation (Visual Puzzles), Piagetian balance beam (Figure Weights), and visual search (Cancellation) tasks. The pattern of results on Visual Puzzles and Figure Weights suggested that both subtests involve predominately right frontoparietal networks involved in visual working memory. It appeared that Visual Puzzles could also critically rely on the integrity of the left temporoparietal junction. The left temporoparietal junction could be involved in temporal ordering and integration of local elements into a nonverbal gestalt. In contrast, the Figure Weights task appears to critically involve the right temporoparietal junction involved in numerical magnitude estimation. Cancellation was sensitive to left frontotemporal lesions and not right posterior parietal lesions typical of other visual search tasks. In addition, the Cancellation subtest was sensitive to verbal search strategies and perhaps object-based attention demands, thereby constituting a unique task in comparison with previous visual search tasks

    Cathodal electrical stimulation of frontoparietal cortex disrupts statistical learning of visual configural information

    Get PDF
    Attentional performance is facilitated by exploiting regularities and redundancies in the environment by way of incidental statistical learning. For example, during visual search, response times to a target are reduced by repeating distractor configurations-a phenomenon known as contextual cueing (Chun & Jiang, 1998). A range of neuroscientific methods have provided evidence that incidental statistical learning relies on subcortical neural structures associated with long-term memory, such as the hippocampus. Functional neuroimaging studies have also implicated the prefrontal cortex (PFC) and posterior parietal cortex (PPC) in contextual cueing. However, the extent to which these cortical regions are causally involved in statistical learning remains unclear. Here, we delivered anodal, cathodal, or sham transcranial direct current stimulation (tDCS) to the left PFC and left PPC online while participants performed a contextual cueing task. Cathodal stimulation of both PFC and PPC disrupted the early cuing effect, relative to sham and anodal stimulation. These findings causally implicate frontoparietal regions in incidental statistical learning that acts on visual configural information. We speculate that contextual cueing may rely on the availability of cognitive control resources in frontal and parietal regions

    The causal neural substrates of statistical learning

    Get PDF
    corecore