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Abstract 
Although humans often struggle to make rational decisions based on probability, there 

are types of information processing that appear highly sensitive to statistics. In fact, the 

human brain can extract information about complex statistical probabilities present in the 

environment through an automatic statistical learning process. Statistical learning is the 

primary way that human infants, with no developed frontal cortex or reasoing skills, can learn 

the complexities of language and grammar.  As adults, statistical learning enables us to 

benefit from the many repetitive and predictable elements of our sensory environment, such 

as visual scenes or event sequences. Statistical knowledge is often implicit, but it can be used 

by the explicit system to facilitate other cognitive processes; such as decision-making, skill 

learning, and social capabilities. The reach of statistical learning across the cognitive 

landscape is broad, and this brings into question the nature of the neural substrates that 

govern this process. Neuroscientific research supports there being a critical role of the 

hippocampus, as it relates to long-term memory. But neuroimaging work suggests a role of 

higher-level cortical regions, within the frontal and parietal cortices. These areas are more 

commonly associated with explicit executive functions, and less so for implicit learning 

abilities. Recent advances in non-invasive brain stimulation allow is to directly control cortical 

brain acitvity in order to unearth causal relationships between the brain and behaviour. To 

date, there is little causal evidence regarding the neural substrates of statistical learning 

outside the hippocampus. In this thesis, I investigate how the direct manipulation of local 

activity in cortical brain regions is related to the incidental statistical learning process. 

Chapter 2 examines task parametres that produce the most robust statistical learning 

behaviour using a well-known contextual cuing paradigm (Chun & Jiang, 1998). In this task, 

observers search through visual scenes containing statistical regularities. They typically have 

around 2000 ms to scan the displays.  To investigate the speed of statistical processing, I 

briefly flashed displays for only 300ms and controlled further processing with backward 

masking. In a series of experiments, I found that learning could occur with briefly presented 

displays, but only for a reduced amount of information. These findings illustrate an efficient 

learning mechanism that can operate rapidly, but may be capacity limited at these speeds. 

In Chapter 3 I report a large-scale tDCS study (n = 120) investigating the causal 

relationship between cortical activity and statistical learning. I compare bidirectional currents 

(i.e., anodal and cathodal) and two active brain regions (i.e., left prefrontal cortex and left 
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posterior parietal cortex) to a sham stimulation condition - a placebo control. The contextual 

cuing task was used to tap the statistical learning process, and the stimulation was delivered 

online, during exposure to regularities. Cathodal currents selectively affected learning, 

compared to sham and anodal currentsm and this was for both the frontal and pareital target 

regions. Specifically, cathodal stimulation disrupted the early cuing benefit, suggesting that 

stimulation delayed learning or the effects of learning on behaviour, but did not abolish it 

altogether. The effect was not explained by a general change in response times, a change in 

awareness or a speed/accuracy tradeoff. Instead, the impact of tDCS on performance was 

specific to the learning effect over time. This revealed a causal link between activity in 

frontoparietal areas and the evolution of statistical learning in this task.  

Chapter 4 investigates the causal relationship using a different task believed to tap the 

same underlying process. Known as Visual Statistical Learning (Fiser & Aslin, 2001), this 

paradigm involves passive visual exposure to shapes with embeded probabilities, and 

learning is measured offline, in a recognition test after exposure. I focus on the cathodal 

effect, and compare stimulation of two brain regions (i.e., left posterior parietal cortex and left 

orbitofrontal cortex) to sham. Using the offline measure, I found no effect of stimulation 

(Experiment 1). This was despite having a large sample (n = 150) and observing robust 

learning at test. In Experiment 2, I develop an online measure of learning to investigate 

effects of stimulation that may be dynamic across time. Using a double-blind, pre-registerred 

design, I compare active (cathodal) stimulation to sham (n = 80) and observe that tDCS did 

influence statistical learning. As with chapter 3, the effect was selective to the early time-

window. These findings provide converging evidence on the intervening role that cortical brain 

areas play in a visual statistical learning process. 

The empiricle studies provide novel insights into the causal relationship that cortical 

areas have in producing statistical learning behaviours. The observation of direct cortical 

involvement has implications for theoretical accounts of statistical learning; and is consistent 

with the idea that statistical learning should be operationalised as a principal of processing 

similar to the Bayesian brain hypothesis. The work presented in this thesis broadens our 

understanding of the neural substrates that support implicit learning abilities, particularly those 

that involve extracting regularities from the visual scene and using them for implicit prediction. 
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     GENERAL INTRODUCTION 

 

"Learning is an experience. Everything else is just information." 

ALBERT EINSTEIN 

 

The way we process information in a given moment is influenced not only by our current 

goals, but by experience that accumulates over time. In a game of tennis, your decision about 

how to serve the ball will be affected by the things that were important for past serves, along 

with aspects unique to the moment that may be goal-directed, like a strategy, or saliency-

based, like an unexpected (and in appropriate) shout from the stands. Over the span of 

minutes to an entire lifetime, the history of sensory experience will amount to regularities that 

capture likely and less likely events, as well as more complicated patterns. Encoding the 

patterns in past experience can yield predictions about new experiences. Intriguingly, one 

need not be aware of any patterns for them to impact behaviour in a meaningful way. The 

impact of such regularities on the brain is believed by many to reflect an ability to learn the 

statistical characteristics of the environment (Aslin, 2016; Aslin & Newport, 2012; Chun & 

Turk-Browne, 2007; Fiser & Aslin, 2001; Perruchet & Pacton, 2006; Reber, 1967; 1989; 

Saffran, Aslin, & Newport, 1996). Individuals learn these statistics passively and 

automatically, without looking for patterns or being taught about them through feedback or 

reinforcement. They also tend to be unable to describe the knowledge gained, or that learning 

has taken place at all. For these reasons, the statistical learning process fits within a larger 

family of implicit learning abilities, characterised by experience-based learning without 

awareness (Batterink, Paller, & Reber, 2019; Perruchet & Pacton, 2006; Reber, 1989). 

Encoding in a statistical manner is powerful. The representations exhibit a large 

capacity for storing information; much larger than any goal-directed or saliency-based 
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mechanism would allow (Perruchet & Gallego, 1997). For this reason, statistical learning 

plays a critical role in the many aspects of cognition that require interacting with high-

dimensional information, including language learning, maths learning, decision-making and 

social interactions. Beyond merely storing structured input, statistical encoding can become 

input itself and used for other cognitive operations or contribute to the dynamics of learning. 

Learning has been defined as the change in a stimulus-response pattern that occurs with 

task-specific training, practice, or repeated experience (Thorndike, 1931). The essence of this 

definition is how learning produces adaptive changes that unfold over time. The behaviour of 

learning is paralleled by changes in the brain, known most generally as neural plasticity 

(Pascual-Leone, Amedi, Fregni, & Merabet, 2005). There is accumulating evidence that being 

sensitive to the structure of experience facilitates visual perception (Fiser & Aslin, 2002a; 

Orbán, Fiser, Aslin, & Lengyel, 2008), object recognition (Brady & Oliva, 2008; Otsuka, 

Nishiyama, Nakahara, & Kawaguchi, 2013), visuo-motor skills (J. H. Howard & Howard, 1997; 

Remillard, 2008), attentional operations (Chun & Jiang, 1998; Chun & Turk-Browne, 2007), 

decision-making (Sewell, Colagiuri, & Livesey, 2017) and predictive processing (Schapiro, 

Kustner, & Turk-Browne, 2012; Turk-Browne, Scholl, Johnson, & Chun, 2010a). Therefore, 

the fact that the brain both encodes and learns in a statistical manner is well-established.  

What is less well understood are the neural substrates that support this process, and how 

learning may be linked to the neural mechanisms involved in attention and memory.  

This opening chapter outlines the recent theoretical and empirical work on statistical 

learning mechanisms in the human brain. I focus on statistical learning that applies to 

simultaneously presented items and how it facilitates visuospatial processing to do with scene 

recognition and visual search. I describe the breadth of the statistical learning phenomena 

and how this demonstrates a domain-general learning mechanism. I examine behavioural 

data showing how statistical cues are used to organise perception and guide cognitive 

operations to do with attention and decision-making. I present neuroscientific models that link 

statistical learning to memory systems in the brain, and contrast these against neuroimaging 

evidence that ties it to cortical regions that are thought to play a role in attention and decision-

making. Finally, I outline how causal techniques may shed light on the underlying neural 

mechanisms, as has been done for other types of explicit learning. Along the way I highlight 

key experimental paradigms and identify issues in the literature that are yet to be resolved. 

This material sets the stage for the core research aim, which is to investigate a set of 
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outstanding questions on the nature of cortical neural activity associated with a behaviour in 

statistical learning tasks: (1) Can brain stimulation be used to influence forms of statistical 

learning that are not purely stimulus- or response-based? (2) Is the cortical activity observed 

in fMRI directly involved in the statistical learning process? (3) To what degree may cortical 

involvement generalise across tasks that are believed to tap the same underlying process? 

The remaining chapters present three empirical papers that addressed each of these 

questions using a combination of psychophysics and brain stimulation approaches. 

 

Statistical Learning – A Domain General Process 
 

The current framing of statistical learning in the literature embodies a convergence of 

two historically distinct research fields: implicit learning (Reber, 1967; 1989) and statistical 

learning (Fiser & Aslin, 2001; Saffran et al., 1996; Turk-Browne & Scholl, 2009). The modern 

study of implicit learning was established by Arthur Reber following the discovery that 

individuals could infer grammar syntax rules from structured input without instructions and 

without awareness of the resulting knowledge (Reber, 1967). The concept of statistical 

learning was developed more recently, and stemmed from Jenny Saffran and Richard Aslin’s 

research showing that infants learn words among continuous streams of syllables based on 

the transitional probabilities between neighbouring syllables (Saffran et al., 1996).  

A number of recent reviews have highlighted commonalities between these two. These 

identified a shared set of principles that underlie both types of learning, and proposed the 

unifying term implicit statistical learning (Conway & Christiansen, 2006; Jost & Christiansen, 

2010; Perruchet & Pacton, 2006; Schapiro & Turk-Browne, 2015). A variant incidental 

statistical learning has also been used (Fan & Turk-Browne, 2016; Hall, Naughtin, Mattingley, 

& Dux, 2018b; Schapiro & Turk-Browne, 2015; Turk-Browne, Johnson, Chun, & Scholl, 

2008b), which sidesteps the issue of unconscious processes. The principles of both types of 

learning are that the process is:  

• automatic – it occurs without instruction or supervision (i.e., reinforcement);  

• incidental – it emerges as a result of exposure, rather than being a result of 

explicit analytical processes, such as hypothesis testing;  

• implicit – observers are typically not aware of the resulting knowledge 

according to direct questioning or recognition tests; and 



 

 

 4 

• domain-general – in that the learning mechanism can act on information 

formed by all types of input and then be used for a variety of perceptual and 

cognitive operations.  

For ease of reference, this thesis will henceforth refer to incidental statistical learning 

more simply as statistical learning (SL). This process is still distinguished from the more 

general form of learning that was defined above (i.e., Thorndike).    

The broad meaning of statistical learning deliberately reflects the ubiquitous nature of 

the phenomena. Statistical learning has been observed across all sensory modalities, 

including the visual, motor, auditory, olfactory and tactile domains, as well as cross-modally 

(Mitchel, Christiansen, & Weiss, 2014). It has also been observed for abstract information, 

such as semantic concepts (Goujon, Didierjean, & Marmèche, 2009) and illusory stimuli 

(Endress & Mehler, 2009), demonstrating that the process can be unbound to the sensory 

input itself. Statistical learning is not limited to spatiotemporal patterns in adjacent elements 

(Fiser & Aslin, 2001; 2002b),. It can apply to dynamics events, such as motion trajectories 

(Chun & Jiang, 1999; Experiment 2), and non-adjacent regularities (Newport & Aslin, 2004; 

Ono, Jiang, & Kawahara, 2005). This suggests the process may not be constrained to 

transitional probabilities alone. In fact, learners can infer a vast array of statistical 

characteristics, that include; covariation (Chun & Jiang, 1999); conditional probabilities (Fiser 

& Aslin, 2005); distributional elements such as variability and central tendency (Alvarez, Oliva, 

& Treisman, 2009; Chetverikov, Campana, & Kristjánsson, 2016); and more complex 

geographical structures that control for transitional probability (Schapiro, Turk-Browne, 

Norman, & Botvinick, 2016).  

Statistical learning is present in both humans and non-human species, including rats, 

pigeons and primates (Santolin & Saffran, 2018). In humans, the abilities begin early in 

infancy (Kirkham, Slemmer, & Johnson, 2002; Saffran et al., 1996) and are maintained into 

adulthood (Rieckmann, Fischer, & Bäckman, 2010; Simon, Howard, & Howard, 2010), 

suggesting they are preserved across developmental stages. Thus, the nature and extent of 

this process appears impressively broad across the dimensions of stimulus type, relationships 

and species. This breadth supports the notion that statistical learning is fundamentally about 

processing the structure of experience. Likewise, the underlying neural mechanism should be 

similarly capable of representing a diverse range of inputs for a diverse range of functions.   
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Statistical Learning in Vision 
 

Learning to represent statistics found in visual input has been investigated using a 

variety of stimuli and types of regularities. The earliest and most well-characterised 

demonstration of this phenomena was a set of experiments by József Fiser and Richard Aslin 

about visual scene segmentation. These authors sought to understand a function; how do 

observers deal with visual information that comes from a continuous stream of input with no 

explicit markings about what will be relevant for future behaviour. Recall the computational 

problem of extracting words among unmarked speech streams faced by infants in Jenny 

Saffran’s original work. This was an analogous problem in vision. Learners were presented 

with a series of visual scenes. Each was comprised of multiple shapes presented 

simultaneously (Figure 1). The shapes in the scenes contained embedded probabilities 

whereby some shapes were more likely to appear adjacent to a certain other shape, in space 

or time (Fiser & Aslin, 2001; 2002a; 2005). Participants simply viewed the scenes. There was 

no task and subjects were not informed about the patterns. Over the span of eight minutes, 

observers viewed 144 scenes, each presented for 1 second. Afterwards, a surprise 

recognition test was used to assess whether visual encoding was sensitive to the statistics of 

experience. Across a number of experiments, Fiser and Aslin observed recognition rates 

between 60 to 70%, which were above-chance at the group level. These findings illustrated 

automatic learning of the embedded statistical structure that affected visual recognition.  

The phenomenon was named visual statistical learning, and the experimental paradigm 

is commonly referred to as the Fiser task. It has been replicated many times in other 

behavioural and neuroscience work (Conway, Goldstone, & Christiansen, 2007; Covington, 

Brown-Schmidt, & Duff, 2018; Karuza et al., 2017; Luo & Zhao, 2017; Roser, Aslin, McKenzie, 

Zahra, & Fiser, 2015; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; Zhao, 

Ngo, McKendrick, & Turk-Browne, 2011). Follow-up experiments confirmed that subjects 

learn the transitional probabilities between shapes in the pairs above frequency or joint 

probability alone. Altogether, Fiser and Aslin’s work on visual statistical learning was critically 

important to the field for two reasons. It provided an ecologically valid demonstration that the 

mere existence of structure in visual input allowed observers to represent statistics that would 

be required for learning higher-order features in real-world scenes through experience. It also 
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demonstrated that statistics are spontaneously used by the perceptual system to bind objects 

in the service of recognition.  

 

Figure 1. Schematic illustration of the stimuli in the Visual Statistical Learning task by Fiser and Aslin (1998). A 

set of twelve abstract shapes are organised into six base pairs that contain two shapes with a given spatial 

arrangement (A). Base pairs are combined in a grid-like array to form a visual scene (B). Each scene contains 

three of the possible six base pairs. Note that the grid lines are not visible to participants. During exposure, 

observers view a series of visual scenes in which the base pairs are recombined in all possible locations within 

the grid, and in all possible combinations of other base pairs. This means that after exposure, the shapes in the 

base pairs are identifiable because they have a higher conditional probability of appearing together, in a fixed 

spatial arrangement, than other shape pair combinations that were formed during exposure.   

 

Since then, a number of tasks have developed to tap the statistical learning process in 

vision. Many employ this basic design where a series of arrays are presented that contain 

relationships among elements, and then the representations that result from passive learning 

are measured in a subsequent test phase. Findings concur that observers extract a variety of 

relationships passively or while performing a range of cover tasks (e.g., Turk-Browne, 2014). 

In some cases, aspects of attentional selection imposed by the task may affect which 

regularities are learned or represented (Turk-Browne, Jungé, & Scholl, 2005). Similarly, 

detecting one type of regularity can sometimes interfere with detecting other types of 

regularities (e.g., Hall, Mattingley, & Dux, 2015; Zhao, Ngo, McKendrick, & Turk-Browne, 

2011). In other cases, two types of regularity can be learned in parallel, as was the case for 

spatial and sequential patterns in a visual task (Jiménez & Vázquez, 2011), and for adjacent 

and non-adjacent structures in an artificial grammar task (Romberg & Saffran, 2013). The 
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latter observation has also been observed with linguistic input, and has led some authors to 

propose a multiple component view of statistical learning abilities (see Arciuli, 2017; Thiessen, 

2017; Thiessen, Kronstein, & Hufnagle, 2013).  

 

Figure 2. Summary of methods used to show how passive statistical learning affects representations across test 

methods. (A) Using a set of shape pairs (or auditory pairs, not shown), observers were exposed to a sequence 

of the shapes or tones. (B) In one experiment, the test of learning was a sequential search task. (C) In another 

experiment, the measure was pre and post sensitivity on a shape detection task wthat used forward and 

backward masking to obscure shape items. Both types of tests were sentitive to the pair learning, showing 

statistics chance visual representations even when not predicted in the current task. Reprodued with permission 

from Barakat et al., 2013. 

 

Such ideas are compatible with a domain-general learning process that can act on 

multiple types of inputs to be used for a variety of behavioural outputs. Clear evidence for how 

the same structured input can alter different outputs comes from experiments that used 

different tasks in the test phase. After exposure to a sequence of shapes with embedded 

pairs, observers were tested on two tasks (Barakat et al., 2013). One test involved a 

A

B C

Stimulus Pairs Exposure Phase

Sequential Search Task Shape Detection Pre and Post
Test Version 1 Test Version 2

time
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sequential search task and one involved detection of individual shapes (Figure 2). More 

importantly, neither test task involved making predictions about the shape sequences 

themselves, but rather used a task orthogonal to the predictions. Learning generalised to both 

test tasks. This, among other work (Turk-Browne et al., 2010), shows how multiple cognitive 

processes, in this case temporal search and discrimination, may draw on a common 

representation that comes from passive statistical learning. Granted, the way statistical 

learning draws on underlying components may not be uniform across all tasks, modalities or 

individuals (see Thiessen et al., 2013). Yet overwhelmingly, empirical literature supports the 

idea that statistical learning can produce robust representations that are capable of being 

accessed by many cognitive operations, from familiarity judgements, to perceptual 

discrimination to sequential expectations. 

Subsequent lines of research investigated how statistical regularities are represented. 

A number of elegant manipulations in the Fiser task revealed they recalled patterns to 

differing degrees depending on the hierarchical structure of the overall input. For example, 

pairs of shapes embedded among larger triplets were recalled to a lesser degree than the 

triplets themselves (Fiser & Aslin, 2005). The authors proposed a principal of constraint in 

statistical learning based on the embeddedness of the broader structure. Complementary 

work using visual sequences revealed that embeddedness of the features within an object 

(such as colour and shape) also constrained which statistics were learned (Turk-Browne, 

Isola, Scholl, & Treat, 2008a). The idea of constraint has been important for understanding 

the process that gives rise to statistical learning and how it could overcome the curse of 

dimensionality: how representing all probabilities in an environment would rapidly exceed the 

capacity of the system. Instead, it this idea suggested that the system adaptively scales the 

computations based on information that will be most meaningful given the broader structure of 

the environment. This assertion also describes how the process of representing visual 

covariation could be scaled up to increasingly complex scenes, such as those that may 

contain dynamic objects, features, timescales and meaning.  

A dominant set of models that attempt to explain the learning process are known as 

chunking models. While differing in their details, the key assertion is that information from the 

input itself is being represented in the brain. According to these frameworks, the detection of 

statistical regularities occurs by randomly grouping the input into “chunks” of information, 

which are stored as exemplars in memory (Perruchet & Gallego, 1997; Thiessen et al., 2013). 
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Over repeated encounters, the original elements are combined into new chunks that 

represent a single, more complex, element in the higher-order structure. The simplest of 

these frameworks, the PARSER model (Perruchet, 1998), proposes that processes inherent 

to memory formation, such as activation, decay and interference, give rise to representations 

that are statistically coherent. For example, elements within a chunk that are presented 

frequently will be strengthened in memory based on activation, whereas chunks that appear 

rarely will decay and become weakened. Data from a sequence learning task was 

successfully fit to such a model (Slone & Johnson, 2015). The notion of interference in the 

model predicts that if elements from one chunk appear in another chunk, this will cause a 

suppressive effect. This aspect predicts the findings of Fiser (2005) where embedded pair 

items were remembered to a lesser degree than the larger triplets. It is also consistent with 

evidence of weakened memory representations for competing items found with behavioural 

(Otsuka & Saiki, 2016) and neuroscientific measures of representations (Kim, Norman, & 

Turk-Browne, 2018) after statistical learning.  

Another model that fits the data well was based on the Bayesian computational 

framework. The Bayesian perspective views the brain as an unconscious inference machine 

(Knill & Pouget, 2004). The system attempts to make the most accurate predictions in the 

face of noisy sensory input, by using internal models of the environment (known as priors) 

combined with current sensory input (likelihoods) to continually update the model (posterior) 

in order to generate optimal predictions (Friston, 2010). Data from a series of experiments 

using the visual statistical learning phenomena were fit to models that made different 

assumptions about how statistical representations could be made (Orbán et al., 2008). The 

data were most consistent with a Bayesian model over other counting-based or purely 

associative models. In addition, the Bayesian model was fit to new data that captured two 

important theoretical predictions about statistical learning. Namely, that the system does not 

rely on pair-wise associations, but that objects are grouped into larger hierarchies. And that 

statistical learning is near optimal in capturing complex patterns with a flexible degree of 

generalisation. This work does not conclusively rule out other models of the learning process, 

however it does show that behavioural data on visual learning was consistent with what a 

Bayesian model predicts. Furthermore, Bayesian models are inherently probabilistic, and 

therefore refer to the relationships between items not sensory units directly, which is 

consistent with the original idea that statistical learning captures relationships (e.g., by Fiser & 
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Aslin, 2001). This finding sets the stage for exploring biologically plausible Bayesian models 

that could compare predictions about how this mechanism could be instantiated in the brain.  

The work reviewed above identifies a powerful visual statistical learning mechanism 

that operates via mere exposure. It demonstrates how regularities in sensory input come to 

affect visual perception by structuring representations of visual sequences and visual scenes. 

The work conducted by Fiser and Aslin offered ecological validity and suggested observers 

spontaneously learn and represent the statistical relationships between elements in input. 

However, popular chunking models (e.g., Perruchet & Gallego, 1997) explain the learning 

process as emerging from representing the input itself rather than the relationships. The 

preferred fit of a Bayesian model to data from the Fiser task (Orbán et al., 2008) was 

consistent with the idea that information is stored in a statistically optimal manner. Further 

work is needed to align different model predictions about the mechanism for representing 

statistical information with the vast empirical data on statistical learning phenomena. Stepping 

away from the issue of how representations are formed by statistical input, we see a learning 

process that extends beyond bottom-up perception. 

Once the statistical information is extracted, it becomes available as top-down input 

itself – in the form of implicit knowledge – to produce a variety of downstream effects (Chun & 

Turk-Browne, 2007; Turk-Browne, Johnson, Chun, & Scholl, 2008b). For instance, statistical 

learning can produce mid-level perceptual effects in the form of neural anticipation of the 

associated stimulus (Turk-Browne, Johnson, Chun, & Scholl, 2008b). It can also constrain the 

emergence of rule-learning based on the computed statistics (MacKenzie & Fiser, 2008). 

When regularities are embedded in task-irrelevant locations, they can draw spatial attention to 

those locations, demonstrating an effect of statistical regularity on selection mechanisms 

(Zhao, Al-Aidroos, & Turk-Browne, 2013). Likewise, when task-irrelevant regularities are 

associated with a task-relevant object, statistical learning can expedite procedural learning 

during visual search (Chun & Jiang, 1998). Thus, the notion of a domain-general learning 

process also resides in how the extraction of statistical cues can affect a variety of functions 

in the cognitive domain. 
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When Statistical Learning Guides Top-Down Cognition  
 

The literature reviewed thus far has examined the form of statistical encoding; and form 

heralds function. Statistical cues are not only represented in the brain (i.e., in memory) but 

have a functional role when they are used to make predictions and shift behaviour. This 

occurs when the mental representations about statistics influence ongoing cognitive process, 

such as attention, prediction or response-selection. To appreciate the functional effects of 

statistical learning on behaviour, one must briefly understand what is meant by an underlying 

cognitive process. In the broadest sense, cognition is everything that occurs between the 

arrival of a stimulus in the brain and a response by the organism. At this level, cognition is the 

black box between input and output. And so, the effects of statistical cues on familiarity 

judgements (i.e., Fiser & Aslin, 2001) would surely involve cognition. But in order to 

understand the complex process that is cognition, researchers have broken it down into 

modules. And a number of meaningful modules have been identified (Sternberg, 1969; 

Anderson et al., 2016). While the specific modules may depend on the process being studied, 

cognition, otherwise known as information processing, tends to involve a few key 

subprocesses, namely: perception, selection (or attention), storage (or working memory), 

evaluation (or decision-making) and output preparation (response selection and inhibition). 

Early frameworks viewed these modules as a series of stages (i.e., Donders, 1868); arranged 

sequentially in time. Since then, many different combinations of sequential, parallel and 

overlapping stages have been put forth (e.g., McClelland, 1979; Triesman and Gelade, 1980); 

with each viewing the components as either discrete or continuous in time. Disregarding the 

temporal organization of cognitive stages, the dominant view across models is that there are 

separate processes (Sternberg, 1969). They are separate in the sense that manipulating one 

or more factors of an experiment will produce distinct effects on a given process, while not 

affecting another process; this is known as the additive factors approach (Sternberg, 2011). 

Recently, neural imaging signals from EEG and fMRI have helped to assert the idea of 

separate processes (Ratcliff, Philiastides & Sajda, 2009; Anderson, 2016). Indeed, some 

processes, like visual search, appear to be complex; involving many subprocesses and 

stages. Only by appreciating the separateness of cognitive processes (or stages) can one 

start to look for commonalities in the way statistical learning affects behaviour, and therefore 

cognition, more generally. 
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In our complex and often dynamic visual world, spatial navigation and goal-directed 

search are important processes for every-day functioning. Visuospatial search may be guided 

by voluntary operations, such as top-down attention, as well as by involuntary functions, such 

as bottom-up salience. Visual search is also guided by prior experience. This is because 

visual environments, like language, contain spatiotemporal regularities. All beaches tend to 

look alike, as do kitchens, as do roads. Regardless of the specifics, one can efficiently 

recognize scenes by identifying a common set of items or layouts. In a kitchen, you can 

expect to find items like a kettle, fridge, and toaster, regardless of where they are or what they 

look like. These repeated patterns can be exploited by the information processing system to 

produce adaptive gains in familiar environments.  The situational arrangement of objects in an 

environment is known as a context, and research shows that contextual information can 

facilitate visual-spatial processing (Biederman, Mezzanotte, & Rabinowitz, 1982).  

 

Figure 3. Top-down varieties of visual context effects. (A) Knowledge about word context disambiguates the 

identity of embedded letters obscured by inkblots. (B) Knowledge about a kitchen context facilitates identification 

for an appropriate object (loaf of bread in inset a), compared with a visually similar, misleading object (mailbox in 

inset b) or inappropriate object (drum in inset c). (c) Automatic knowledge about positional constraints in scenes, 

such as a fire hydrant on the ground, means that when violated, such as by having the fire hydrant on the 

mailbox, objects are difficult to detect. (d) Context about visual features influences face recognition. Observers 

can readily discriminate the two figures based on contextual cues such as hairstyle and speaking position, but 

interestingly, the faces are identical in this digitally altered image. Reprinted with permission from Chun, 2000. 
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Early on, contextual information processing was studied using explicit, semantic forms 

of knowledge, which operate in a top-down manner. The examples of a beach and a kitchen 

were Research showed that identifying an object in an expected context, such as bread in a 

kitchen scene, was faster and more accurate than identifying an unexpected object in that 

scene, such as a post box in a kitchen. A variety of visual context effects support the idea that 

context facilitates a number of cognitive processes, including recognition, identification and 

discrimination (summarized in Figure 3). In a similar sense, statistical learning helps to 

constrain predictions based on context. Implicit knowledge about statistical cues can guide 

where, when or what to expect in the environment. But unlike contextual processing that 

occurs in a top-down manner, contextual processing of statistical cues occurs through an 

incidental learning process. 

At its heart, all forms of contextual inference (top-down and implicit) are based on 

knowledge about regularities in the environment. It was Chun and Jiang (1998) who first 

proposed that the development of contextual knowledge in the brain should itself be explained 

by exposure to regularities. The context would be built up over the course of an experimental 

session, rather than be based on pre-experimental information that had been used in the 

studies of visual context effects to date (i.e., schema processing). As a result, Chun and Jiang 

ran a set of experiments that provided the first confirmatory evidence of such an incidental 

learning mechanism for visual context. The phenomenon is known as contextual cuing 

(Figure 4). 

In their task, individuals performed visual search for a target ‘T’ among an array of 

distractor ‘Ls’. In one condition, the distractor context was novel, meaning that for a set of 

configurations the distractors were always randomly located across blocks. In another 

condition, the distractor contexts repeated, meaning a given array of distractors was 

associated with a given target location across the blocks. In this way, visual context - defined 

by configural regularities - came to cue the target’s location.  In the novel condition, 

performance became increasingly faster over the blocks, in line with procedural learning in 

visual search. Critically, in the repeat condition, visual search performance became 

increasingly faster and more accurate compared to the novel condition. This display × block 

interaction (Figure 5) captures the contextual cuing effect. Since observers were not 

instructed to pay attention to the distractors or their configurations, regularities affected 
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performance in an incidental manner. Furthermore, when individuals performed a forced-

choice recognition test on the repeated contexts, they did not show any explicit memory or 

awareness of learned contexts, showing the knowledge about context was implicit.  

 

 

 
 

Figure 4. Schematic illustration of the repeat and novel displays in the contextual cuing paradigm (Chun and 

Jiang, 1998). In repeat displays (top panel) the location of the target “T” and the location and orientation of 

distractor “Ls” is constant over time so that the distractor context predicts the target location (but not the required 

response). In novel arrays (bottom panel) the target location is constant but the distractor configurations vary 

across blocks. Over the course of exposure, faster responses to the target are produced by the effect of 

repeating distractor configuration. Note that the repeated context does not predict the orientation of the target, 

and so learning of location is dissociated from the button-press response. 

 

Contextual cuing is an example of how spatial regularities can affect visual search 

performance in an incidental manner. Note that the repeating configurations predict the 

location of the target but not the target’s orientation, which remains random on any given trial. 

This is a critical element of the paradigm because it separates the learned target-context 

association from the response outcome itself. Thus, learning the regularities comes to 

influence a decision-making process (e.g., searching for a target and determining a feature of 
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the target); distinct from influencing a stimulus-response pattern (e.g., SRT tasks) or stimulus-

location pattern (e.g., perceptual SRT tasks and categorization tasks) in motor learning and 

perceptual learning, respectively.  Therefore, contextual cuing demonstrates effects of 

statistical learning on a process that is distinct from motor-related and perception-related 

processes. 

 

Figure 5. Typical response time effect observed in the contextual cuing task. Responses to the target decision 

become increasingly faster for Repeat displays comared to Novel displays over blocks, indicative of the 

contextual cuing effect.  

 

Since it was first reported, the contextual cuing paradigm has been modified in an 

impressive number of ways by inserting a variety of regularities (Figure 6). These variations 

firmly establish that the learning in contextual cuing is fundamentally about extracting 

covariation with experience and using it to inform task-relevant decisions. Types of 

covariation have included, but are not limited to: using object identity independent of spatial 

location (Chun & Jiang, 1999; Endo & Takeda, 2004); global features of the display like colour 

or background (Hyun & Kim, 2002; Kunar, Flusberg, & Wolfe, 2006); motion trajectories 

(Chun & Jiang, 1999); order effects between trials (Ono et al., 2004; 2005); as well as 

categorical distinctions that supersede the input itself (Goujon et al., 2009; Goujon, 

Didierjean, & Marmèche, 2007; Yang & Merrill, 2014). Such breadth along the dimension of 

stimulus and regularity type is consistent with a domain-general account of statistical learning.  

A number of features place contextual cuing within the broader statistical learning 

framework (for a review see: Goujon, Didierjean, & Thorpe, 2015). Learning emerges rapidly 
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since a reliable difference between repeat and novel arrays can be observed after just three 

repetitions of the displays (Chun & Jiang, 1998; Jiang & Chun, 2001; Jiang & Wagner, 2004; 

Tseng & Lleras, 2012; Zellin, Mühlenen, Müller, & Conci, 2014), convergent with other 

statistical learning phenomena (e.g., Chun & Turk-Browne, 2007; Hall, Mattingley, & Dux, 

2018a; Turk-Browne, Johnson, Chun, & Scholl, 2008b). The magnitude of the cuing benefit is 

between 20 ms and 100 ms, depending on the complexity of the displays. The effect cannot 

simply be explained by perceptual learning because a benefit still occurs when the exact 

locations of repeating distractor items are jittered or altered across repetitions (Chun & Jiang, 

1998). The cuing behaviour is primarily associative. No improvements occur if the distractors 

repeat but with random target locations as per the “repeated search” literature (Kunar, 

Flusberg, & Wolfe, 2008). Cuing exhibits a large capacity, as people are capable of learning 

60 individual configurations over 5 days (Jiang, Song, & Rigas, 2005). There have been 

reports that a cuing benefit asymptotes after 30 exposures (Tseng & Lleras, 2012; Zellin et 

al., 2014), although this requires further investigation.  

A number of studies show that memory for spatial context tends to be implicit. When 

participants were asked to recognize the repeating displays, either by forced-choice (e.g., 

Chun & Jiang, 2003) or by target-location generation tests (e.g., Smyth & Shanks, 2008), 

observers perform at chance (Assumpção, Shi, Zang, Müller, & Geyer, 2015; Chua & Chun, 

2003; Chun & Jiang, 1998; Colagiuri & Livesey, 2016; Goujon et al., 2015; Pollmann & 

Manginelli, 2009; Zellin et al., 2014). There is some evidence of above chance recognition 

when using extended exposure (Smyth & Shanks, 2008) or real world displays (Brockmole & 

Henderson, 2010; Brockmole, Castelhano & Henderson 2006; Rosenbaum & Jiang, 2013), 

and the nature of implicit memory has been disputed by some (Conci & Muhlenen, 2009; 

Geyer, Baumgartner, Müller, & Pollmann, 2012; Rosenbaum & Jiang, 2013). One aspect of 

this debate concerns the nature of recognition tests themselves and how they may lack 

sensitivity as a measure of awareness (Schlagbauer, Muller, Zehetleitner, & Geyer, 2012). 

Another element is the nature of variability in recognition across individual displays and 

individuals (Schlagbauer et al., 2012). These exceptions encourage some authors to focus on 

the incidental nature of learning per se rather than the involvement of implicit memories itself. 

Overwhelmingly, the collective evidence suggests that contextual cuing with abstract T and L 

displays occurs without awareness.  
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Figure 6. Variations of contextual cuing paradigms. (A) Spatial contextual cuing, where the location of distractors 

cues the location of a target in the configuration. Reproduced with permission from Chun, 2000. (B) Identity 

cuing, where the idendity of distractors cues the target identity, while the location of items remains random. 

Reproduced with permissions from Chun & Jiang, 1999. (C) Semantic cuing, where category knowledge, such 

as the distractors being mammal words, serves as the context to cue the location of a target word, either ‘Blouse’ 

or ‘Chalet’. Reproduced with permissions by Goujon, Didierjean & Marmeche, 2009. (D) Real world scenes as 

context for locating a white dot target. Reproduced with permissons from Brockmole & Le-Hoa Vo, 2010. (E) 

Dynamic context where the trajectories of distractor items cued a target trajectory. Reproduced with permissions 

from Chun & Jiang, 1999. (F) Numerical contextual cuing where the category of odd numbers (57 and 11), 

regardless of their location, cued the location of a target number (either 13 or 28). Reproduced with permission 

from Goujon, Didierjean & Marmeche, 2007.  (G) Cuing task used to test children and older adults where cartoon 

characters cued a target character, jimeny cricket. Reproduced with permissions from Merrill et al., 2013.  

 

A substantial portion of the contextual cuing literature has focused on the nature of the 

representations being learned. It is generally agreed that associative mechanisms are 

responsible, but different hypotheses on the ‘how’ make distinct predictions regarding the 

level at which the associations are formed. As with other forms of statistical learning, a 

dominant hypothesis has been chunking. This reduces cuing to a bottom-up learning effect, 
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driven mostly by local features around the target. There is some evidence in support of this 

idea, since cuing is sensitive to perceptual grouping principles (Olson & Chun, 2002), and 

local items near the target seem to be more important for learning than distractor items distant 

from the target (Brady & Chun, 2007). What is more clear is that subjects learn a number of 

different associations that include: item associations that make up a context, target-distractor 

associations, and target-context associations  (Beesley, Vadillo, Pearson, & Shanks, 2016; 

Brady & Chun, 2007; Ogawa & Kumada, 2008). Studies that show a target needs to be 

recognized within the global context to facilitate learning run counter to the bottom-up 

chunking accounts (Tseng & Li, 2004; Zhao et al., 2012). Thus, statistical learning in 

contextual cuing most likely involves representing multiple statistical cues. 

An ongoing debate concerns the role of attentional guidance or decision-making in 

producing the RT benefit for repeat displays. The two leading accounts postulate that the RT 

effect is due to: (1) faster or more efficient visual search for the target (Chun & Jiang, 1998); 

or (2) a reduced response threshold when selecting the appropriate motor response once the 

target has been acquired (Kunar, Flusberg, Horowitz, & Wolfe, 2007). These accounts differ 

whether they implicate effects at the level of decisional processes (i.e., the left or right 

judgment), or non-decision components (i.e., locating the target during visual search). The 

debate is alive and well, with a recent review being published this year (see Sisk, Remington, 

& Jiang, 2019).   

The attentional guidance account holds that the effect of regularities speeds attention 

towards the likely target location, meaning it affects processing before the target is found. 

Support for the attentional guidance account largely comes from studies using search slopes 

(Wolfe, 1998) which measure RT across different set sizes to index the efficiency of locating 

the target. The original Chun and Jiang (1998) study observed reduced search slopes for 

repeat arrays; evidence of increased attentional guidance to the target. This was challenged 

in a study by Kunar and colleagues (2008) that showed contextual cuing effect when the 

search process was already optimal by using pop-out targets. Additionally, the same group 

pooled data across 10 experiments and failed to show a reliable slope effect (Kunar, 

Flusberg, Horowitz, & Wolfe, 2007). The evidence on search slopes has remained mixed 

since then, with three studies showing a slope effect and eight failing to show such an effect 

(Kunar et al., 2007; Sisk et al., 2019). These inconsistencies may reflect how the 

representation of a repeated configuration is not equal across distractor items (as modelled 
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by Brady & Chun, 2007) and so may not scale with set size in a linear fashion. And so, it 

appears the evidence is not yet definitive regarding whether context repetition influences 

attentional guidance.  

Response-related accounts offer a disparate view. They suggest the benefit to 

processing occurs after the target has been located, at the decision and response stage. This 

stems from two key lines of enquiry. The earliest support came from a finding that contextual 

cuing interacted with response congruency (Kunar et al., 2007). For colour-singleton targets 

that were either an A or an R, when the identity of the target was congruent with the 

distractors (e.g., a red ‘A’ among green ‘A’s), contextual cuing was observed. But cuing was 

not observed when targets were incongruent with distractors (e.g., a red A among green Rs). 

However, this task altered the demand characteristics from traditional cuing in that the search 

was for a colour singleton rather than a conjunction search, as used in Ts and Ls displays. 

Also, the motor response to the target (A or R) was confounded with the identity of the target 

itself, rather than being a decision about a target feature. Thus, it is difficult to integrate this 

congruency effect with the broader instantiation of the contextual cuing phenomena.  For 

statistical learning more broadly, studies of motor skill learning using the SRT task have used 

congruency effects for a different purpose. After learning a sequence, items were inserted 

that were incongruent with the predicted sequence and the resulting congruency effect was 

used to infer the degree of learning that occurred across individuals. When encoded 

regularities predict a motor response, congruency effects are expected, but when the 

regularities guide a cognitive process, such as in visual search, the picture is more complex. 

A third approach has recently shed light on the conflict between the attentional –related 

and response-related accounts. By adopting a computational approach, the different theories 

about how cuing affected behaviour could be directly compared (Sewell et al., 2017; Weigard 

& Huang-Pollock, 2014). In response-time modelling (also known as sequential sampling 

models), the raw response-time data (or “reaction times”) are used to separate the time taken 

for the decision process from the time taken to perceive the stimulus and execute a response; 

termed non-decision time (Figure 7). Conceptually, the decision stage is modelled as a 

process of continuously sampling evidence from a noisy input until a threshold is reached for 

making a decision, at which time the motor output is initiated (Ratcliff & Rouder, 1998). The 

decision process may in terms of the speed at which evidence is accumulated over time (i.e., 

drift rate). It can vary in terms of the amount of evidence needed to reach a decision (i.e., 
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threshold). This is conceptually similar to the criterion in signal detection theory. Finally, 

decisions can vary in terms of the bias in the system prior to the decision starting (i.e., start 

point). These parameters of accumulation of evidence, threshold and bias can be compared 

between experimental conditions or population groups to describe the characteristics of the 

underlying cognitive mechanism. Models such as these have been validated in a number of 

theoretical papers. And biologically plausible models of behavior and neural activity are now 

emerging 

When a diffusion modelling approach was applied to contextual cuing data (Sewell et 

al., 2017), is was used to distinguish between the three theoretical accounts of cuing 

behavior. These were: (a) the attentional account, (b) the response threshold account, (c) and 

a new perceptual evidence account. The attentional account was modelled as a change in the 

non-decision time parameter for repeat relative to novel trials. This was because attentional 

shifts occur before the target is fixated on, and the RT reflects a decision about a target 

orientation. The response threshold account was modelled as a change in decision thresholds 

for repeat displays. A reduced threshold would produce a RT faster with more errors; thereby 

changing the distribution of RT responses. Finally, the perceptual account was mapped to the 

evidence accumulation parameter, since predictive information speeds processing.  Put 

differently, they compared a non-decision account (attention) to two decision-related accounts 

(perceptual evidence and threshold) of cuing behavior. When the models were fit to data, they 

could compare a goodness-of-fit measure for each of the three models, to evaluate evidence 

for the three theoretical accounts. The results, foremost, showed that all three mechanisms 

were present across individuals. However, the majority of individual data was best 

characterized by a decision-making account, either the evidence accumulation model or the 

response threshold model (Sewell et al., 2017). A similar effect on the decision parameters 

over the non-decision time was observed in other data (Weigard & Huang-Pollock, 2014), 

providing converging evidence against a purely attentional account of cuing. It is most likely 

multiple mechanisms (for a review see Sisk, Remington, Jiang, 2019).  
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Figure 7. (A) Schematic representation of the diffusion model of the decision process (i.e., Ratcliff and Rouder, 

1998). ((B) Annotated schematic representation with parametres colour coded for decision-time (red) and non-

decision time (grey). 

 

One caveat when relating the modelling results (Sewell et al., 2017) to implicit learning 

more generally is that the learning was most-likely explicit in their paradigm. They used a 

large number of trials (required for modelling) and only eight repeat configurations and eight 

novel configurations. It is therefore likely that individuals recognized the repeat displays on 

some level by the end. No data on recognition was collected. Whether different mechanisms 

would be observed for implicit cuing is yet to be empirically tested. A strength of the method 

was that it did not require altering the nature of the search task (such as using target absent 

search) or manipulating set size (to measure slope effects). Noting the caveat, the application 

of response-time modelling to contextual cuing provided the first and most direct test of 

different mechanisms that support incidental learning of regularities.  

Visual search is a multifaceted process. It is probable that implicit cuing involves 

multiple mechanisms that unfold over different time scales in a continuous manner. Some 

mechanisms are to do with attentional selection, some are to do with speeding a decision, 

and some are to do with the response process. Conceptualizing cuing as a shift in a decision-

process, and not solely a shift in pre-target attention or post-target response, is helpful on 

many accounts. In the service of parsimony, it avoids getting bogged down in the mechanistic 

details of a paradigm, especially when those details are hotly debated (e.g. attention vs 
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threshold accounts). Theoretically, it would predict the findings of a search benefit when 

attention is already optimal (e.g., Harris & Remington, 2017; Ogawa & Kumada, 2008; Kunar 

et al., 2007). Adopting a decision-making framework can unify theory across paradigms to 

better understand how statistical encoding contributes to adaptive behaviours through implicit 

learning. Modelling research will therefore be highly important for investigating the domain-

general theory of an incidental statistical learning process in the brain. One of the significant 

challenges will be to obtain sufficient trial data from an individual while keeping the learning 

implicit. While evidence from electroencephalography shows that attention does shift in 

contextual cuing tasks (e.g., Johnson et al., 2007), the involvement of attention is not 

incompatible with the decision-making framework. Rather, when the time before the eyes land 

on the target (i.e., attention) is not measured using eye-tracking or inferred using search 

slopes, we can reason that the cumulative effect of attention (before the target is found) and 

the decision process (including information processing and response selection) are 

encapsulated in the RT data. Moving forward, this thesis will refer to cuing as an effect on 

attention and decision-making moving forward. At the level of measured behavior, the cuing 

effect is an RT benefit that emerges over time.  

 

Summary of Behavioural Literature 
 

The psychophysics research reviewed thus far demonstrates how the statistical 

learning process is pervasive throughout the brain, being observed across multiple levels of 

the information processing hierarchy, from perception to cognition. Visual statistical learning 

phenomena have clear functions linked to representing complex scenes. This mechanism is 

capable of binding features into objects (Turk-Browne, Isola, Scholl, & Treat, 2008a), objects 

into scenes (Fiser & Aslin, 2005; Orbán et al., 2008), scenes into contexts (Chun & Turk-

Browne, 2007) and abstracting these into broader categories (Brady & Oliva, 2008). In 

particular, I have illustrated how passively extracting structure from visual input helps define 

objects in time and/or space; and that this contributes to a degree of visual familiarity to such 

objects in recognition tests. I have also discussed how knowledge about regularities can be 

used adaptively by the system to inform the what, where and when of visual events and 

contribute to incidental learning behaviour. I explained that visual statistical learning (e.g., 

Fiser & Aslin, 2001) and contextual cuing (e.g., Chun and Jiang, 1998) are two prominent 
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examples of the same underlying process manifest at different levels of information 

processing. As per the work of Fiser, the building blocks are automatic and hierarchical, and 

may be explained by Bayesian learning principles (Orbán et al., 2008).  

While the models of statistical learning for visual perception have been well 

characterised; models to describe how regularities are utilised by the cognitive system, such 

as in cuing tasks, are an active area of investigation. As described, there is current debate 

about whether incidental cuing tasks involve a shift in attention (e.g., Chun & Jiang, 1999) or 

a shift in response-selection (e.g., Kunar, 2007), and likely affects both (e.g., Sisk et al., 

2019). I described how clarity can been gleaned by adopting a unifying decision-making 

framework (e.g., Ratcliffe, 2008; Sewell et al., 2019) to describe adaptive changes in choice 

behaviour tasks. It can sidestep tedious mechanistic questions. It avoids demarcating search 

behaviour into pre- and post-target operations using adapted paradigms. After-all, the nature 

of cognition is that of a cascade of operations. By viewing the target decision as a read-out of 

a decision process, is more consistent with a construct that embraces how cognition is a 

cascade of operations, represented as the black box between input and outputs. 

Theoretically, statistical learning is purported to be a domain-general black box between 

structured input and many types of outputs (e.g., Reber, 2018). Yet despite the considerable 

empirical and theoretical work, important questions remained unanswered about how 

statistical learning is formed in the brain. I turn next to this question. 

 

Neural Models of Statistical Learning  
 

Statistical learning is pervasive, and the mechanisms are complex. To date, a cohesive 

understanding of the systems-level neural architecture is largely missing. Much of the early 

neuroscience was motivated by a desire to map statistical learning abilities on to the known 

systems for learning and memory. That is, they wished to known whether the neural activity 

better aligned with a slow capacity-limited learning system governed by the cortex or a fast 

flexible system supported by the hippocampus and surrounding medial temporal lobe 

structures (O’Reilly, Bhattacharyya, Howard, & Ketz, 2014). Later, studies of the neural 

correlates unearthed a broad functional network including both systems (Batterink et al., 

2019; Giesbrecht, Sy, & Guerin, 2013; Hall et al., 2018b; Karuza et al., 2017). Yet much of the 

neuroimaging work has taken a modular view, looking at hippocampal activation rather than 
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network wide activation. There has also been a focus on sequential learning and how this 

relates to procedural learning supported by frontal-striatal networks. Far less imaging work 

has been done with spatial regularities and a more central cognitive process. In order to 

understand how the brain learns regularities, at any level of cognition, one must consider 

memory. 

Learning and memory are inherently linked; and all types of learning, including the 

statistical and incidental forms, can be understood in terms of the underlying contributions 

made by two classically distinct memory systems in the brain. A declarative (or explicit) 

system for facts and events that is consciously accessible. And a non-declarative (implicit) 

system for procedures and information that is automatic or unconscious. The seminal report 

was nearly 60 years ago. Patient H.M. (Scoville & Milner, 1957) suffered damage to his 

medial temporal lobe (MTL) including bilateral hippocampus, and was unable to remember 

new facts and events. H.M. was able to remember new information via implicit learning; 

evident in performance measures, such as in faster responses to items in a sequence (see 

Clark & Maguire, 2016). This curious profile of impaired explicit memory but intact implicit 

memory was soon corroborated by evidence from hippocampal-amnesia patients and animal 

studies (Squire, 1992). We now know that hippocampal amnesia patients have normal 

performance on a range of implicit learning tasks, including artificial grammar learning, 

probabilistic category learning, perceptual skill learning, and some priming tasks (Clark & 

Maguire, 2016). Yet show impairments on a range of explicit tasks. The classification of 

memory systems in the brain has forked into two distinct faculties: an explicit system that 

depends on the MTL, and an implicit system that does not and instead recruits cortical areas.  

Aside from the anatomy, explicit and implicit learning are distinguished by other features, 

such as the speed of learning and the reportability (McClelland, McNaughton & O’Reilly, 

1995). The implicit/explicit dissociation in memory was foundational for the field of cognitive 

neuroscience because it provided the first indication that memory was not a unitary process, 

but rather memory incorporated functionally specialized sub-processes. However, one cannot 

make generalisations from the patient work alone. Many findings relied on failing to find a 

difference in the preserved abilities (like implicit learning) but using null hypothesis 

significance testing (NHST; such as Bayesian analysis) was not routinely done. The degree of 

reorganization after damage is difficult to characterise, as is the degree to which behaviour 

may reflect compensation by intact regions. Nevertheless, the impact of this work can be still 
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felt today in the neuroscience models that have been applied to study statistical learning 

today. 

The Complementary Learning Systems theory (McClelland, McNaughton & O’Reilly, 

1995) summarizes the idea of separate memory systems for MTL and a slow cortically-based 

mechanism. It provides a computational framework to understand the tradeoff between 

functions that require memorizing distinct experiences (e.g., where I parked my car today 

versus yesterday), and memorizing regularities across multiple experiences (e.g., where is a 

good place to park my car generally). It posits distinct roles of the hippocampus and cortex in 

representing each type of memory. It also distinguishes these types of memory based on 

explicit or implicit representations and the speed of acquiring the knowledge. However, this 

literature has not had a focus on statistical learning, and it falls short of being able to explain 

the finding of impaired contextual cuing with MTL damage (Chun & Phelps, 1999). On a 

conceptual level, behavioural studies show that both implicit and explicit memory are often 

acquired alongside one another during statistical learning (Batterink, Reber, Neville, & Paller, 

2015; Preston & Gabrieli, 2008; Taylor, Krakauer, & Ivry, 2014) which means that isolating 

implicit behaviours may be problematic. As such, these memory models have evoked 

controversy by some (e.g., Shanks, David & John, 1994), and others have proposed 

abandoning the terms entirely in favour of a model based on learning characteristics (see 

Reber, 2013 for a review).   

One such alternative framework was proposed by Paul Reber, who frames statistical 

learning as a principle of the brain, rather than a system in the brain, thereby rejecting the 

dissociation between explicit and implicit memory. Instead, statistical learning is framed as an 

emergent property of a general and pervasive plasticity (Reber, 2013). This posits that all 

neural circuits lead to adaptive reshaping of function to match experience. This framework is 

useful to understanding domain-generality since it integrates the results from a variety of 

statistical learning phenomena, based on how the learning proceeds (i.e., as a result of 

structured experience). According to this framework, encoded statistics reflect changes in 

brain activity that are intrinsic to the retrieval process. Further, this type of storage could be 

operating via a neurobiologically simpler mechanism than the one presented in the 

complementary systems theory. Specifically, it does so by allowing for implicit learning that 

operates on the representations formed by the MTL memory system via a distributed system. 

This ties back to the distinction made between what is learned and how it is used by the 
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system.  Critically to the field of statistical learning, it explains how contextual cuing without 

awareness may still involve the MTL, whereas the Complementary Learning Systems theory 

disallows MTL involvement in implicit contextual cuing.  

 

Neural Correlates in fMRI Studies 
 

These learning and memory systems have been observed directly in healthy individuals 

using functional-MRI (fMRI). This approach assesses fine-grained spatial dynamics of neural 

activity via measuring blood-oxygen-level-dependent (BOLD) activation patterns within 

different regions of interest. Across the statistical learning literature, different authors have 

focused on different neural regions, but there are consistently widespread patterns of 

activation across the brain. Integrating across neuroimaging studies of implicit and statistical 

learning, processing structure relative to random or unlearned input is associated with 

activation of the following areas: sensory cortex; MTL and hippocampus; striatum and basal 

ganglia; the prefrontal cortex; and the posterior parietal cortex. There is some evidence that 

sensory areas are recruited in a domain-specific manner (see Conway & Christiansen, 2006; 

Frost, Armstrong, Siegelman, & Christiansen, 2015), with visual tasks recruiting higher visual 

areas (e.g., Karuza et al., 2017; Pollmann & Manginelli, 2010; Turk-Browne, Scholl, Chun, & 

Johnson, 2009) and language tasks recruiting linguistic areas, such as Broca’s area in the left 

Inferior Frontal Gyrus (IFG: Karuza, 2014; McNealy, Mazziotta, & Dapretto, 2006). However, 

a number of cortical and subcortical brain areas are commonly activated across a range of 

tasks that have included: artificial grammar learning (AGL), serial reaction time (SRT) tasks, 

probabilistic classification, and visual statistical learning (see Batterink et al., 2019) in line with 

the notion of a domain-general mechanism.  

The neuroimaging findings generally agree that the hippocampus is involved, and 

particularly for spatial relationships. For example, changes in hippocampal activity are 

associated with viewing repeat vs. non-repeat arrays in contextual cuing (Geyer et al., 2012; 

Giesbrecht et al., 2013; Greene, Gross, Elsinger, & Rao, 2007; Preston & Gabrieli, 2008; 

Westerberg, Miller, Reber, Cohen, & Paller, 2011). Convergent evidence has been observed 

across a number of statistical learning paradigms, such as for viewing scenes with embedded 

probabilities between shapes (Karuza et al., 2017), learning covariation in visual sequences 

(Turk-Browne, Scholl, Johnson, & Chun, 2010b), and in complex versions of the SRT task 
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(Albouy et al., 2015; Rieckmann et al., 2010). Thus, MTL involvement is consistent with the 

patient work, and appears somewhat domain-general but with the hippocampus being 

recruited for spatial regularities and the striatum recruited for sequential regularities in motor 

learning (Goldfarb, Chun, & Phelps, 2016; Rieckmann et al., 2010).  

The time course of hippocampal activation tends to follow an early-to-late pattern 

where activations are often observed early on during exposure then reduce over time (Geyer, 

Baumgartner, Müller, & Pollmann, 2012; Giesbrecht, Sy, & Guerin, 2013; Greene, Gross, 

Elsinger, & Rao, 2007). In some studies, the magnitude of learning positively related to early 

hippocampal activation, though the sample sizes were small for conducting correlation 

analyses (Giesbrecht et al., 2013; Karuza et al., 2017; Turk-Browne, Scholl, Johnson, & 

Chun, 2010b). This pattern was also observed for sequence learning in the SRT task (Albouy 

et al., 2015; Rieckmann et al., 2010).  One explanation of the disengagement of the 

hippocampus with exposure is that it reflects competition between the striatal and MTL 

systems. This is discussed in relation to models of habit or skill learning that propose practice 

(or exposure) leads to increased processing efficiency and reduced reliance on the MTL 

system. This evidence paints a nuanced picture of a domain-general statistical learning 

mechanism that is supported by interactions between the declarative and non-declarative 

systems (Batterink et al., 2019; Reber, 2013). 

Beyond subcortical structures, the neuroimaging evidence points to a contribution from 

higher-order cortical regions, notably within dorsal prefrontal and parietal regions. While these 

areas are well-described in models of voluntary attention and memory retrieval (Corbetta, 

1998; Summerfield et al., 2006) and explicit learning (Fuster, 2001), their involvement in 

implicit memory and attention is less clear. Importantly, fMRI studies show increased activity 

in dorsal frontoparietal networks during implicit learning tasks (summarized in Figure 8). The 

involvement of DLPFC and PPC has been linked to domain-general information processing 

for attention and memory that is biased by encountered regularities. For example, activation 

of cortical control regions has been observed in spatial statistical learning tasks (Giesbrecht et 

al., 2013; Karuza et al., 2017; Manginelli, Baumgartner, & Pollmann, 2013a), probabilistic 

sequence learning tasks (Turk-Browne et al., 2009), and artificial grammar tasks (Forkstam, 

Hagoort, Fernández, Ingvar, & Petersson, 2006).  The ubiquitous involvement over a range of 

types of tasks, structures and inputs would be consistent with a domain-general mechanism. 

A number of studies have focused on the contextual cuing paradigm. These tend to show 
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increased BOLD activation to repeat displays; particularly in areas such as the temporal 

parietal junction (TPJ), inferior parietal sulcus (IPS), superior parietal lobe (SPL), medial 

prefrontal (mPFC), and IFG (Giesbrecht et al., 2013; Manginelli, Baumgartner, & Pollmann, 

2013a; Pollmann, 2012).  

 

Figure 8. Summary of fMRI findings showing activation in cortical areas, such as the TPJ, IPS and SPL within 

the left posterior parietal respond to structure or regularities in spatial statistical learning tasks. Contrasts show 

activity for predictive structured displays compared to novel, non-predictive displays. Red indicates increased 

activity to structure. Blue indicated reduced activity.  

 

An early and often cited study by Manginelli and colleagues (2013a) focused on the 

cortical areas that are linked to working memory functions. They used a localizer task to map 

brain areas that responded to capacity limits in a working memory.  In the same participants, 

functional activity was recorded during spatial contextual cuing and the regions of overlapping 

activity were identified. These were a number of regions including the temporal parietal 

junction (TPJ) and inferior parietal sulcus (IPS). To investigate the time course of learning 

there were two groups: An fMRI-last group was scanned after six epochs of cuing, and an 

fMRI-first group was scanned at the beginning of the first epoch before learning had occurred. 

For the fMRI-first group, there was no activation during initial learning (in epoch 1) that related 
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to cuing behaviour later on. In the fMRI-last group, repeat displays were associated with 

increased BOLD signal in the left IPS, and this correlated with the magnitude of cuing across 

individuals (Manginelli et al., 2013a). The authors related this finding to the role of the PPC in 

memory maintenance where information retrieved from long-term memory to guide top-down 

attentional by retrieval (Manginelli et al., 2013a). Also, in the fMRI-last group, the right TPJ 

and ventral occipital areas had greater activity for repeat than novels - the opposite pattern to 

IPS. But since TPJ activity was not modulated by the change in cuing magnitude over time, 

the authors proposed it may have reflected bottom-up processes to do with memory-cue 

detection that were constant across time (Manginelli, Langer, Klose, & Pollmann, 2013b). The 

correlations between evoked activity and cuing magnitude may be spurious, due to a small 

sample size. Also, the failure to detect activity changes in the fMRI first group could suggest a 

lack of sensitivity of BOLD signal early in learning, or that working memory areas are only 

recruited later in the learning phase, during exploitation rather than formation of implicit 

context memories. Regardless of these caveats, other work corroborates a pattern of 

increased activity in posterior parietal cortex for repeat displays compared to novel displays 

(Giesbrecht et al., 2013; Kasper, Grafton, Eckstein, & Giesbrecht, 2012; 2015). En masse, 

this work collapses over all epochs, and so does not capture the temporal dynamics of 

learning in contextual cuing.  

Only a limited number of fMRI studies have examined how repeats and novel 

conditions relate to patterns of brain activity across time. These show increasing IPS activity 

to repeat displays with exposure (Giesbrecht et al., 2013; Preston & Gabrieli, 2008). Other 

studies show activation in prefrontal areas, when using the contextual cuing task (Manelis & 

Reder, 2012; Pollmann, 2009) or the Visual Statistical Learning task (i.e., Fiser and Aslin, 

1991) to tap statistical learning (Karuza et al., 2017). Moving beyond BOLD activation, a 

recent study measured functional connectivity during passive exposure to visual structure 

(Karuza et al., 2017). A network involving the precuneus and the frontal cortex was identified, 

which reduced connectivity during exposure, and this reduction predicted recognition of the 

pair structure at test. Together, this work highlights the importance of dynamic changes in 

brain activity during statistical learning, consistent with the suggestion frontoparietal circuits 

interact with one another in a time-varying manner to adapt brain function in support of 

behaviour (Bassett & Mattar, 2017; Bassett, Yang, Wymbs, & Grafton, 2015).   
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As a whole, the neuroimaging work has been successful in providing fundamental 

knowledge about patterns of brain activity evoked by statistical learning in healthy individuals. 

The findings point to a role of the hippocampus and sensory cortices, along with downstream 

association regions within the prefrontal and parietal cortices (also known as cognitive control 

regions). The work is important because it extended on early competition models of memory 

(McClelland, McNaughton & O’Reilly, 1995) to implicate a distributed network that involves 

both cortical and subcortical processing regions shared by explicit and implicit forms of 

learning (Frost et al., 2015; Reber, 2013). An early notion was frontal and parietal activation 

during implicit learning related to working memory circuits that were recruited to retrieve 

memories for voluntary behaviour; consistent with the account of a domain-general system 

that operates across a variety of tasks and inputs.  However, the fMRI work has not 

conclusively identified a cortical mechanism that directly interferes with the statistical learning 

process. Across the brain, the activity changes associated with processing learned displays 

have not reflected a signal signature, in terms of the temporal dynamics (early or late, and 

static or dynamic over time) or the direction of activity change (increase or decrease in key 

areas). Some studies reported increased activity to structure, and some report repetition 

suppression effects (see Westburger et al., 2011). Some activity appears to be fixed across 

time, such as in the right TPJ (Manginelli et al., 2013a), and some activity appears to be 

associated with the dynamics of learning (i.e., the interaction in the left IPL). Whether the 

activity predicts learning behaviour across individuals is short on definitive evidence. To date, 

the direct contribution of cortical activity for learning is an open question.  

The positive evidence for frontal and parietal activation raises the question: Does the 

activation of cortical control regions play a causal role in the statistical learning process, or 

does it reflect concurrent processes that operate on the learned material, or the task more 

generally, that are not critical for learning itself? The evidence provided by fMRI studies is 

correlational. Therefore, it remains possible that the frontal and parietal activation was 

produced by changes in attention and working memory operations that were not central to the 

emergence of incidental learning about regularities. This was especially unclear in the many 

studies that averaged brain activity over conditions or were not designed to measure changes 

over time (low power to assess the interaction or to compare early and late stages). As a 

technique, fMRI has poor temporal resolution and so it is not well suited to questions about 

learning dynamics. The few studies that did characterize the time course of neural changes 
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(either via the interaction or by splitting the data into stages) may have observed changes to 

do with explicit practice on the task or operations that tracked exposure, like attentional 

engagement, but did not contribute to statistical learning directly. Of note is that the changes 

in frontal activation may reflect procedural learning of motor responses, which are correlated 

with the structure in SRT tasks and category learning tasks. Causal evidence is now needed 

to advance our understanding of cortical involvement in implicit statistical learning.  

 

Causal Methods for Understanding Brain Activity  
 

With its ability to influence neural activity directly, non-invasive brain stimulation is well-

placed to help elucidate the cortical locus of implicit statistical learning. Brain stimulation 

approaches can provide novel insights into the causal brain-behaviour links that govern an 

underlying cognitive process (Bestmann, de Berker, & Bonaiuto, 2015; Filmer, Dux, & 

Mattingley, 2014). Techniques such as transcranial magnetic stimulation (TMS) or 

transcranial direct-current stimulation (tDCS) can be used to modulate or perturb a target 

brain region and the resulting changes can be measured at different levels of activation; 

spanning from local changes in neural activity to larger networks and effects on cognition and 

behaviour directly). The effects are painless and temporary, and direct current stimulation has 

been used in human research for over 40 years now. Delivering TMS involves a coil held 

against the scalp that uses the fast switching of a magnetic pulse on and off to produce an 

electrical current that elicits action potentials in the targeted cortical tissue.  For example, with 

the TMS coil placed over the motor cortex, a single pulse over the thumb area will elicit a 

finger twitch 25 ms later or a leg twitch 80 ms later. The timing and intensity of the pulses can 

be manipulated to produce changes to synaptic plasticity.  A common example is repetitive 

TMS (rTMS) which is used to disrupt neural excitability in a given region for up to 60 minutes.  

Another popular technique is transcranial direct current stimulation (tDCS). This type of 

stimulation also affects cortical excitability and function (Filmer et al., 2014), but without 

directly producing action potentials (Nitsche et al., 2008). Instead, tDCS changes the 

likelihood that neurons will fire, which in turn has a measurable effect on excitability, firing 

rates, and other indices of neural activity (Filmer et al., 2014). It works by delivering a weak 

electrical current, usually between .5 to 2 mA, through the brain tissue via electrode pads 

attached to the scalp. Conventional tDCS involves two electrodes: an anode and a cathode.  
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Figure 9. Neurobiological mechanisms of tDCS. (A) Schematic of the application of tDCS via two electrodes on 

the scalp and the induced current flow from the anode (red) to the cathode (blue). (B) Modulation of neuronal 

spike-timing by tDCS. (C) Inhibitory effect of tDCS by increasing GABA receptors. (D) Excitatory effect of tDCS 

via an increase in Glutamate. Adapted with permissions from Filmer et al., 2014. 

 

One electrode is placed over the site of interest and another electrode used as a 

reference; although other electrode arrays have also been used (Datta et al., 2009). The 

effects of tDCS can be measured online, during active stimulation, or offline, such as with a 

pre-post design. And stimulation can have either a depolarising (excitatory) or hyperpolarising 

(inhibitory) effect on excitability depending on type of stimulation being used. For example, 

placing the anode over a targeted motor area caused an increase in excitability (Nitsche & 

Paulus, 2000); and reversing the direction of current flow by placing the cathode over the 

target region (cathodal tDCS) caused a decrease in excitability (Wagner et al., 2007). 

However, such polarity-dependent effects are not guaranteed, and other patterns are 

increasingly being observed in the literature (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 

2013; Esmaeilpour et al., 2017; Monte-Silva, Kuo, Liebetanz, Paulus, & Nitsche, 2010; Ohn et 

al., 2008). Yet by delivering bidirectional currents to the cortex (Figure 5), one can infer 

involvement of a target brain area in a measured process (Bestmann et al., 2015).  
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Compared to TMS which is relatively focal, tDCS can influence activity in large cortical 

areas. For this reason, along with its affordability and low risk profile (Nitsche, Liebetanz, et 

al., 2003a), the methodology has proven useful as a therapeutic technique in the treatment of 

neurological and psychiatric conditions (e.g., depression; Fregni et al., 2006). The technique 

has also gained momentum as a way to augment cognitive training, with evidence that 

combined tDCS and training improves outcomes over training or tDCS alone (e.g., Filmer et 

al., 2017a; 2017b). In a research context more broadly, tDCS is being used to investigate the 

interfering roles of key neural circuits in a given cognitive process. These have included 

processes related to motor learning (Nitsche, Schauenburg, et al., 2003c; Stagg, Jayaram, et 

al., 2011b), visual perception (Antal, Nitsche, & Paulus, 2001), attention and working memory 

(Fregni et al., 2005; Jacobson, Koslowsky, & Lavidor, 2012; Kang & Paik, 2011), and 

decision-making context (Filmer, Varghese, Hawkins, Mattingley, & Dux, 2017). As a 

foundational step, the results of these studies provide causal evidence that a given brain 

region is involved in a given cognitive process. Further to this, when designed well, they can 

expose the relationship between a neural mechanism, such as consolidation, and a cognitive 

process, such as motor learning.  

Precisely how tDCS is able to alter performance across a variety of tasks is not yet fully 

understood, although there are theories about its underlying mechanisms. A dominant 

perspective is that tDCS changes the resting membrane potential of neurons near the 

stimulation site which leads to an increase or decrease in the likelihood of an action potential 

firing (e.g., Nitsche et al., 2003; 2008). Supporting evidence comes from in vitro animal 

studies showing that tDCS altered the firing rates of neurons (Bikson et al., 2004; Bindman, 

Lippold, & Redfearn, 1964). Much of what we know about tDCS in humans comes from 

studies of the motor cortex, which used TMS-evoked potentials as an index of neural 

excitability (Nitsche & Paulus, 2000; Nitsche et al., 2004). A recent meta-analysis found that 

the polarity-dependent effect whereby anodal tDCS leads to excitation and cathodal produces 

inhibition was reliable in the motor cortex (Jacobson, Koslowsky, & Lavidor, 2011). But that 

effects were far more heterogeneous outside the motor domain.  

At a cellular level, tDCS mechanisms have been investigated in pharmacological 

studies. These suggest that the online effects of tDCS depend on sodium and calcium 

channels (Nitsche, et al., 2003b), since sodium channel-blocking drugs prevented the anodal 

excitability increase in humans (Liebetanz, 2002). Both the online and offline effects appear to 
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be mediated by N-methyl-D-aspartate (NMDA) receptors, which respond to the excitatory 

neurotransmitter glutamate (Luft, Pereda, Banissy, & Bhattacharya, 2014; Nitsche et al., 

2008). When drugs that block NMDA receptors were administered before stimulation, tDCS 

was less effective at modulating MEP amplitudes (Nitsche et al., 2003), and the long-term 

effects were reduced (Liebetanz et al., 2002). These NMDA receptor-dependent changes are 

believed to be a key mechanism that may explain learning effects observed with tDCS (Clark, 

Coffman, Trumbo, & Gasparovic, 2011; Hunter et al., 2015). There is also evidence that 

GABA receptors are involved; a major inhibitory neurotransmitter (Stagg, Bestmann, et al., 

2011a; Stagg et al., 2009). And emerging evidence suggests the balance between excitation 

and inhibition, mediated by these neurochemicals, may provide a more meaningful 

explanation of tDCS effects across individuals.  

 

Figure 10. Levels of action for understanding tDCS effects on behaviour. Used with permissions from Bestmann, 

et al., 2014. 
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The totality of tDCS-effects on the brain can be classified into different levels of action 

(Figure 10). Modulation of membrane excitability in a target region produce net changes to 

population activity, which can be heterogeneous and may not be in the same direction as the 

induced current. Reviews have shown that outside the motor cortex, the anodal-

excitation/cathodal-inhibition account is varied (Batsikadze et al., 2013; Rosenkranz, Nitsche, 

Tergau, & Paulus, 2000), which has led authors to argue for a ‘perturbation’ account of tDCS-

effects (Bestmann et al., 2015) in place of the earlier excitation/inhibition framework. 

According to the perturbation view, tDCS is a method for disrupting normal brain function by 

leveraging bi-directional currents applied to target regions and measuring resulting changes 

to cognition or behaviour. This means that having appropriate active control conditions is key 

when using tDCS to understand aspects of cognitive function. Unfortunately, such levels of 

control have not been consistent across the literature, as you will see in the section below. 

Put in the context of statistical learning, tDCS can provide a much-needed test of the idea that 

cognitive control regions tied to explicit operations are also important for implicit statistical 

learning. Given the large number of regions that have been linked to statistical learning in 

spatial vision, tDCS is better suited to modulate behaviour compared to TMS, that may be too 

focal. Finally, the constant current delivered by tDCS modulates excitability in an activity-

dependent manner. This means one can measure behaviour online, during the stimulation, 

and know that changes reflect an interaction between the induced electrical current and the 

endogenous task-evoked activity. 

 

Using tDCS to Understand Cognition 
 

The modulation of cortical activity by tDCS can influence performance measures that 

pertain to learning. This has been extensively studied in relation to motor learning, where 

tDCS targeting functional regions in primary motor and parietal cortex was found to improve 

performance on sequence learning tasks (Reis & Fritsch, 2011; Stagg, Jayaram, et al., 

2011b). This effect was also found with implicit motor learning (Nitsche, Schauenburg, et al., 

2003c), therefore showing the ability of tDCS to modulate behaviours not privy to awareness. 

Scaling up from sensory areas, research has shown facilitation of knowledge acquisition 

following stimulation of the PFC. For example, learning novel vocabulary was improved by 

five consecutive days of anodal tDCS targeting the left TPJ compared with sham (Meinzer et 
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al., 2014), and by one session of anodal tDCS targeting Wernicke’s area compared to 

cathodal and sham (Flöel, Rösser, Michka, Knecht, & Breitenstein, 2008). Training effects on 

a decision-making task were disrupted by online stimulation (anodal or cathodal) over the 

dorsolateral prefrontal cortex (DLPFC) compared to a region control, and to a montage 

targeting DLPFC with a different reference location (Filmer et al., 2013). In line with the role of 

the PPC in directing spatial attention, cathodal tDCS to the right PPC impaired visual search 

(Ball, Lane, Smith, & Ellison, 2013). These studies demonstrate the efficacy of tDCS for 

modulating explicit operations to do with learning, decision-making and attention.  

There has been only limited work on implicit operations. In this domain, tDCS was 

found to alter implicit associations in language tasks. For example, cathodal stimulation of left 

post temporal gyrus, over Wernicke’s area during a categorsation task led to reliance on high-

dimensional solutions over low-dimension solutions, compared to stimulation over the vertex 

(Perry & Lupyan, 2014). Similarly, repetitive-TMS (rTMS) targeting the left inferior frontal 

gyrus (Broca’s area) selectively altered accuracy in low- but not high-dimensional 

categorization (Lupyan, 2012). In probabilistic learning, rTMS over left DLPFC improved 

performance on weather prediction tasks compared to stimulating the vertex or visual cortex 

(Cho, Yoon, Lee, & Kim, 2012; Kincses, Antal, Nitsche, Bártfai, & Paulus, 2004; Vercammen 

et al., 2011). Anodal stimulation to the right but not left DLPFC affected complex sequence 

learning in the SART task (Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015). This work 

implicated activity in the targeted cortical areas during incidental learning. One of the major 

drawbacks of this work is that these types of implicit tasks often conflate learning with motor 

output. Similar to the imaging work on spatial regularity learning, these results do not 

differentiate between procedural learning in the task, believed to alter frontal-striatal networks, 

and statistical information processing that may be distinct from this. So, while parietal areas 

may be involved in explicit attentional operations, frontal areas have been implicated in 

explicit and implicit learning tasks to differing degrees. 

To date, no studies have used tDCS to investigate statistical learning outside the 

sensory domain. Indeed, the efficacy for using tDCS to understand MTL supported learning 

processes remains unclear given the depth of these structures. An account of statistical 

learning that suggests a cortically-mediated learning mechanism would predict an effect of 

tDCS delivered to these regions. Based on the current idea that tDCS modulates the resting 

membrane potential of neurons (e.g., Nitsche’s et al. (2008) theory), stimulation will be most 
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effective when it is paired with an action or task that involves the brain area being stimulated, 

so that an action potential is initiated by that task. That means that a difference in statistical 

learning during active brain stimulation (either anodal or cathodal) compared to a sham-

control would indicate causal involvement of that network. Substantiating cortical involvement 

across different paradigms will be important to provide causal evidence in line with a 

mechanism for extracting structure beyond task-specific effects. Thus, combining a brain 

stimulation technique that is suited to perturbing large cortical areas with behavioural 

measures of statistical learning may garner a deeper understanding of the neural substrates 

that are critically important for statistical learning in the context of cognition. 
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Project Motivations and Aims 
 

The purpose of this thesis is to examine the causal role of frontoparietal activity in the 

statistical learning process. Based on the key themes that emerged from a review of the 

relevant literature, the central question was distilled into three research aims: (1) Explore 

whether causal modulation of the cortex by tDCS has an effect on forms of statistical learning 

that occur outside the motor domain (i.e., SRT tasks); (2) Investigate whether the associated 

activation of the left frontoparietal cortex observed by fMRI directly contributes to the 

emergence of learning dynamics produced by exposure to regularities, with a focus on 

behavioural change over time; (3) Interrogate the degree to which cortical involvement may 

generalises across tasks that tap the same statistical learning process, consistent with the 

evidence of a domain-general mechanism for extracting regularities with experience that 

operates across a variety of stimuli, structure and task domains.  

The first aim will be achieved by leveraging recent technological advances in causal 

brain stimulation methods. The use of electrical brain stimulation in cognitive neuroscience 

has already been successful in shedding light on the neural networks that support explicit 

forms of learning, such as cognitive training (Filmer et al., 2013; 2017) and deliberate skill 

learning (Reis et al., 2009). The prefrontal cortex and the parietal cortex are higher-up in the 

information processing hierarchy (Treisman and Gelade, 1980), and are believed to represent 

information in a domain-general way that is abstracted from the lower-level sensory inputs 

that are domain-specific. Therefore, by directly modulating brain activity during the formation 

of statistical learning, we can investigate whether frontal brain areas are also important for 

implicit, memory-guided learning. Unlike rTMS or cTBS protocols that are delivered offline, 

prior to a behaviour being assessed, tDCS allows for measuring behavior online. This aspect 

of the methodology is helpful to avoid the contamination offline consolidation processes on 

measured learning behaviour. Critically, the direct current method allows us to look for causal 

evidence regarding activity in frontoparietal regions and the dynamics of statistical learning. 

Since fMRI cannot provide evidence that PFC and PPC regions are necessary, and the stroke 

work cannot rule out compensatory networks due to plasticity after brain damage, brain 

stimulation evidence is best suited to investigate the role of cortical regions in statistical 

learning.  Issues in tDCS research, such as a lack of experimental controls, use of small 

sample sizes, and generalizations being made without testing a variety of tasks, have 
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contributed to setbacks in the field (see Filmer et al, 2014 and Bestmann et al., 2014). Thus, 

the second aim will be achieved by following best-practice brain stimulation design by using 

large samples, bidirectional currents, active control regions (not simply the vertex or visual 

cortex) where appropriate. The third aim will be achieved by using a variety of tasks to tap the 

same underlying statistical learning process. Together, these will advance our understanding 

of the cortical contribution to a general statistical learning process in the brain. 

 

Thesis Outline 
 

Inherent to these long term-goals was using a paradigm that separated motor output 

from the learned regularities, namely the well-known contextual cuing paradigm. The first step 

was to determine the conditions under which robust contextual cuing behaviour would be 

observed. Specifically, Chapter 2 presents a behavioural study that assessed the role of 

visual exposure duration and context capacity in producing robust cuing behaviour. In 

Chapter 3, we turn to the key focus of causal neural substrates of statistical learning and 

present the first brain stimulation study investigating frontoparietal involvement in spatial 

statistical learning assessed via contextual cuing. Chapter 4 explored the issue of a domain-

general mechanism of statistical learning and found that cortical involvement generalised to 

another well-known statistical learning task that used passive exposure, namely the Fiser 

task. Specifically, after failing to observe a tDCS effect with this exposure-test measure, we 

investigated online cuing again, but with identity-based regularities. To do so, a new task was 

developed that harnessed the strengths of a cuing task combined with the transitional 

probability structure that defined identities of distractor items, while controlling for spatial 

regularity. This last experiment did converge on causal cortical involvement early in learning 

across different types of structure and stimuli. The final discussion in Chapter 5 summarizes 

the key findings across all experiments and elaborates on the impact of the work as a whole 

by examining the broader implications and considering extensions of the work that could be 

beneficial to the field.  
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Abstract 
Past experience with invariant visual information plays an important role in statistical learning 

that affects the visual search process. This is captured by the contextual cuing where 

repeating spatial configurations produce a response time benefit to targets that is greater than 

the benefit when searching through novel configurations (e.g., Chun & Jiang, 1998). We 

investigated how rapidly these spatial regularities are extracted by the system to produce 

adaptive cuing behaviour that evolves over time.  Typically, observers can process displays 

until a response is made, with up to 2000ms of visual processing time. We employed 

backward masking to limit processing to 300 ms, enough time for one fixation. Previous work 

had shown intact cuing with short presentations, but that was after learning had taken place. 

We showed that the formation of contextual cuing can occur with briefly presented displays. 

However, this was only for a situation where there were 12 configurations to learn, but not 

when there were 30 configurations to learn. In light of this surprising finding, we conducted 

two successful replications of the effects, and ruled out the possibility of latent learning being 

blocked by the mask. Our results highlight a powerful statistical learning mechanism that can 

rapidly extract predictive spatial information and use this to guide ongoing behaviour in under 

300ms. The results dovetail with work showing rapid, high-capacity, gist extraction in real-

world scenes.  
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Statistical learning plays a key role in many aspects of complex cognition. This includes 

those to do with language (Reber, 1989; Saffran, Aslin, & Newport, 1996), procedural skills 

(Howard & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013; Simor & Nemeth, 2019), 

abstract categorization (Ashby & Maddox, 2005; Brady & Oliva, 2008; Kruschke & Johansen, 

1999), and processing visual scenes (Aslin & Newport, 2012; Fiser & Aslin, 2001; Turk-

Browne, Jungé, & Scholl, 2005). One of the most intriguing areas in the current statistical 

learning literature concerns the relationship between contextual regularities and spatial 

search. After only a few repetitions of a complex visual scene, the human brain extracts 

contextual information based on regularities in the layout of objects. When the regularities are 

associated with a target during visual search, target responses improve relative to conditions 

that don not contain regularities. This phenomenon is known as contextual cuing (Chun & 

Jiang, 1998; 1999; 2003) and research has shown it emerges rapidly (Chun & Jiang, 1998; 

Jiang & Chun, 2001; Jiang & Wagner, 2004), is robust to noise (Jungé, Scholl, & Chun, 2007; 

Zellin, Mühlenen, Müller, & Conci, 2014) and exhibits a high-capacity (Jiang, Song, & Rigas, 

2005), all of which helps to position it in a broader framework of statistical learning abilities.  

However, there is little empirical work examining temporal exposure parameters that produce 

robust contextual cuing. A key issue is the speed with which observers can extract the 

regularities from a display to promote learning, and to date, direct manipulations of exposure 

duration remain limited.  This study aims to investigate the emergence of learning in 

contextual cuing when backward masking is used to control viewing times. 

A number of lines of research highlight how contextual cuing is both rapid and powerful. 

For example, the response time benefit to repeat arrays is reliable by the third set of 

repetitions (Chun & Jiang, 1998; Jiang & Chun, 2001; Jiang & Wagner, 2004; Zellin et al., 

2014), and is preserved even if only half the items are repeated (Song & Jiang, 2005). At 

least 60 individual configurations can be learned across multiple days (Jiang et al., 2005), and 

contexts acquired on later days do not interfere with cuing for contexts learned earlier, 

indicating the learning is relatively unrestricted across time. The rapid cuing benefit is met by 

early differences in processing time as indexed by eye-tracking measures of first fixations 

(Peterson & Kramer, 2001), and scalp recordings in EEG (Johnson, Woodman, Braun, & 

Luck, 2007) and MEG (Chaumon, Drouet, & Tallon-Baudry, 2008) that show effects as within 

300ms of display onset. Together, this work suggests a rapid and high-capacity mechanism 

for statistical learning. However, the learning conditions in these studies are limited only by 
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how quickly the observer finds and responds to a target.  So, while learning may induce 

differences early on, the time taken to process a display is often longer. This leaves open the 

question of how temporally efficient the incidental learning mechanism is itself.  

Sufficient processing time appears important for robust cuing behaviour. This comes 

from evidence that longer display durations are associated with larger cuing magnitudes, 

defined as the difference between repeat and novel displays (Geyer, Shi, & Müller, 2010a; 

Kunar, Flusberg, & Wolfe, 2008; Ogawa & Kumada, 2008). This observation has been related 

to the role of eye movements in successful memory retrieval (Geringswald, Baumgartner, & 

Pollmann, 2012).  

Further to this, some have suggested cuing cannot emerge without search, based on 

findings of no benefit for repeat arrays when using target-absent displays (Jiang, Sigstad, & 

Swallow, 2012; Kunar et al., 2008). However, that work has faced criticism from some who 

believe search without a target produces a different decision strategy which explains the 

failure to observe cuing in no-target designs. Eye tracking work has shown that cuing has little 

effect on the early stages of search, namely the initial fixation to the target (Zhao et al., 2012), 

whereas later stages of search benefit more from repeated configurations. Together, these 

observations have led to an argument that the cuing effect is relatively sluggish (Schlagbauer, 

Mink, Müller, & Geyer, 2016) and requires additional time beyond a single fixation to produce 

behavioural changes that indicate learning. Yet a more nuanced picture emerges when 

reviewing other ways observers can engage with repeating configurations across different 

task demands. 

Early evidence that repeated spatial configurations are processed quickly came from 

the initial studies published by Chun and Jiang (1998). In the standard version of the search 

task observers could move their eyes freely to locate and identify the target, being a rotated 

“T” among rotated “L” distractors. Later, in Experiment 5, the authors employed shorter 

display durations of 200 ms to investigate the role of eye movements in producing the 

response time benefit for repeated contexts. Contexts were learned with the typical long 

exposure duration (around 2000 ms) and then in a subsequent test phase using the short 

duration, intact cuing was observed via an accuracy effect, with higher accuracy for repeat 

displays. The authors concluded that the eye movements afforded by longer display durations 

may not be necessary to produce cuing by a learned context, in line with their broader 

argument that subjects learn the global spatial layout that can be matched within the time of 
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an initial fixation.  However, it must be noted that since encoding in this experiment took place 

using the long durations Chun and Jiang’s results do not speak to whether the short displays 

are sufficient to produce incidental learning themselves. Only that the process of matching a 

learned configuration to the current display may occur rapidly.  The authors also noted that 

without masking the displays, visual processing beyond the display duration may have 

contributed to the cuing observed at test. This was based on the seminal visual persistence 

work showing that information about a visual stimulus persists beyond its physical offset 

(Coltheart, 1980). By presenting a second stimulus shortly after the first, known as backward 

masking, the persistent processing can be disrupted (Bachmann, Luiga, & Põder, 2016).  

Thus, without using masking, direct evidence of rapid context processing has remained 

elusive. 

Another line of evidence that can speak to processing speed comes from modified 

versions of the cuing paradigm that use task demands that limit processing. For example, 

spatial configural learning was observed with a change detection task that used brief 

presentations of 400 ms (Jiang & Song, 2005; Experiment 2). Subjects were exposed to dot 

arrays that contained repeating spatial arrangements and had to detect a change in a target 

dot from a subsequent probe array. After training on 20 repetitions of 18 arrays, change 

detection was found to be more accurate for the repeat arrays compared to novel arrays, 

which were added at test. This indicated humans can encode context using brief 

presentations, at least for simple dot arrays. The set size of 11 items was comparable to 

standard T and L displays that typically use 12 items. Without masking the displays, this task 

was not a direct manipulation of exposure duration. In a similar design, cuing effects were 

observed in a test phase after training that used 500ms presentations and the Ts and Ls 

search task (Makovski & Jiang, 2011). Once again, only repeat displays were presented 

during training, and so there was no measurement of the learning process online. These 

authors also reported a cuing effect after using 150ms presentations, however it required 

changing display items to make the target more salient. Together, these findings imply that 

humans can form knowledge about a visual context using 400-500ms presentations. Although 

they fall short of testing this directly. 

Rapid learning of context is also evident in studies that used pop-out search tasks to 

impose processing limits (Geyer, Zehetleitner, & Muller, 2010b; Kunar, Flusberg, Horowitz, & 

Wolfe, 2007; Ogawa & Kumada, 2008). Ogawa and Kumada (2008) employed the standard T 
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and L displays but made the target a feature singleton; a white T among black Ls, thereby 

enabling efficient search. In a training phase, participants were exposed to repeat and novel 

arrays. Their response times were within 600 ms on average; indeed faster than serial 

search. In a test phase, the T was changed back to the same colour as the distractors, 

producing the standard search task. The researchers reasoned that transfer of learning from 

training to test would indicate that search without requiring attending to individual array items 

was sufficient for encoding context. Indeed, across three experiments they found evidence of 

learning at test after efficient (pop-out) search with context regularities. Unfortunately, 

analysis of the online training data was not reported. No visible difference was evident 

between repeat and novel contexts in the figures, therefore whether pop-out search could 

produce robust cuing behaviour itself remained unclear. Interestingly, they went on to 

investigate what type of information was learned by assessing transfer to recombined 

displays made from two repeat contexts that cued the same target.  These preserved 

individual associations between items but created a new global layout. Using this method, 

they did not observe transfer, and concluded that the cuing afforded by an efficient search 

task was driven by configural learning of the global layout rather than non-configural learning 

of individual items. This supported Chun and Jiang’s hypothesis that contextual processing is 

driven by encoding the global layout and may provide a mechanistic explanation as to how 

rapid context processing may occur.  

The work reviewed above hints that contextual information processing can occur 

rapidly; possibly within the first few hundred milliseconds of viewing and may not require eye 

movements or attention to individual items. Yet, the rapid cuing benefit was often tested after 

training with longer presentation durations and so cannot speak to the learning process 

directly. Furthermore, the work on rapid cue utilization does not differentiate between direct 

visual processing of the display and indirect processing of an internal representation that 

survived beyond display offset. In their original paper, Chun and Jiang noted that without 

masking the 200ms displays, processing time beyond the presentation duration could have 

contributed to cuing at test. They cited seminal work on visual persistence that shows how 

information about a visual stimulus persists beyond its physical offset (Coltheart, 1980) and 

this contributes significantly to perception and cognition. Thus, the previous observations of 

cue learning with 300-500ms presentations (e.g., Makovski et al., 2011) may have been due 

to iconic persistence.  But by presenting a second stimulus shortly after the first, known as 
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backward masking, the persistent processing can be disrupted (Bachmann, Luiga, & Põder, 

2016; Breitmeyer & Öğmen, 2006). To date, no studies have used masking to control 

processing time during the formation of context knowledge itself (i.e.., learning).  

In the present study, we investigated how masking affects the temporal dynamics of 

statistical learning in spatial scenes. Our goal was to isolate the rapid components of 

information processing that may be associated with statistical learning (i.e., the emergence of 

a cuing benefit) by using brief visual exposure that was controlled by masking. The contextual 

cuing task followed the method of Chun and Jiang (1998) with a random presentation of 

repeat and novel displays across a number of blocks of a visual search task. Except that 

displays were presented briefly for only 300ms then backward masked using a random line 

array. Random patterns such as this are highly effective for masking visual stimuli (Coltheart 

& Arthur, 1972). Previous work has shown that contextual cuing is effective when using 12 

repeat configurations and 12 novel (control) configurations (Chun & Jiang, 1998), as well as 

when using larger numbers of configurations such as 32 repeat configurations (Makovski et 

al., 2011; Ogawa & Kumada, 2008), and up 60 repeat configurations with extended training 

(Song & Jiang, 2005). To test the capacity limits of a rapid statistical learning process, we opted 

for a mid-point of 30 repeat and 30 novel configurations for Experiment 1a and 1b. Based on 

the previous observation of an accuracy benefit when using 300ms presentation durations at 

test (Chun & Jiang, 1998), we predicted that a contextual cuing effect during masking would 

similarly present as an accuracy benefit for repeat displays relative to novel displays over 

time.  

Experiment 1a 
Participants 

Twenty participants (µ = 21.3 years, σ = 2.61, 11 female) from The University of 

Queensland community completed Experiment 1a.  This sample size was determined based 

on an a priori power calculation that, given a medium effect size (d = .5), we could observe a 

within-subjects Cuing × Epoch effect with 85% power and an alpha level of .05. Participants 

were  

18 – 35 years, had normal or corrected-to-normal vision and were psychiatrically and 

neurologically healthy. They were paid AU$20 for attending a one-hour session. The 

University of Queensland Human Research Ethics committee granted study approval.  
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Apparatus 

Participants sat unrestricted approximately 63 cm from a 19ʺ CRT monitor (resolution 

1024 × 768; 100 Hz refresh rate) connected to an Apple iMac-mini computer and a Macintosh 

keyboard.  The experiment was programmed with MATLAB 2015b using the Psychophysics 

Toolbox 3 extension (Brainard 1997; Kleiner et al. 2007; Pelli 1997).  

Stimuli 
Search displays contained T and L shapes (.5° visual angle) presented in white against 

a grey background (RGB: 80, 80, 80).  Participants searched for a target ‘T’ (rotated 90° to 

the right or 90° to the left) among 11 distractor Ls (rotated 0°, 90°, 180° or 270°). Items 

appeared in an invisible 13 × 13 grid (16° visual angle). The items were allowed to jitter in 

their cell upon each repetition of a given display so as to minimise perceptual learning effects 

to the grid and to item locations. Items were equally distributed across the four visual 

quadrants of the screen to avoid clustering that might make a given display more salient than 

another. To avoid biases for searching in a given quadrant, the target locations were evenly 

distributed across quadrants in the repeat and novel conditions.  

Mask stimuli were created using a pattern array that contained 200 rectangular shapes 

(each subtending .5° × .1° visual angle) with a random orientation (0°, 15°, 45°, 75°, 90°, 

105°, 135°, 165°). The locations of the T and Ls, which are composed of vertical and 

horizontal elements, were masked with lines of oblique orientations. The remaining mask 

lines were randomly determined. This kind of backward stimulus had produced effective 

masking in other work (Turvey, 1973). 

Search Task 
In the search task (Figure 1a) each trial began with a fixation cross for 500 ms, followed 

by the display for 300 ms, which was backward-masked with the line-array for 500 ms. There 

was a prompt screen (“?”) until response for 2000ms, followed by a blank inter-trial-interval 

(ITI) for 500 ms. Participants responded to the orientation of the target ‘T’ using the ‘z’ and ‘m’ 

keys with index fingers on each hand as quickly and as accurately as possible. They received 

summary feedback about their performance after each block.  

Each block contained two types of displays (Figure 1b). There were 30 repeat displays 

in where a given target location (but not the orientation) was associated with a particular 

distractor configuration (location and orientation) and this was fixed across block. In novel 
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displays, the same number of target locations were used (30), but the targets appeared with 

ever-changing distractor configurations – participants were not informed of this manipulation. 

On any given trial, the orientation of the target, which was the decision-relevant feature, was 

random. This meant repeat displays did not cue the motor response, only the target’s position 

in the display. Repeat and novel displays appeared once per block in a randomized order. 

Displays were generated at the beginning of each session and were not the same across 

individuals. Participants completed 12 blocks of 60 trials (720 trials in total), in which repeat 

displays and novel displays were presented in a random order, and the key dependent 

variable was accuracy.  

Data Analysis 
For all experiments, data were collapsed into epochs with four blocks in each and RTs 

were restricted to correct responses only. RTs were trimmed for outliers > 3SD above the 

mean, calculated for each condition. Trimmed or missing data did not exceed 5% for any 

individual participant. Frequentist statistics are reported using an alpha level of .05 and two 

tailed tests. The data were also examined by calculating Bayes Factors for each of the 

dependent variables (accuracy and RT). A Bayes Factor provides an index of the fit of the 

data under the alternative hypothesis (i.e., a cuing benefit), relative to that under the null 

hypothesis (i.e., no difference between repeat and novel responses). Bayes Factors above 1 

represent more evidence in favour of the alternative relative to the null hypothesis, whilst 

Bayes Factors below 1 suggest relative evidence in favour of the null hypothesis. Whilst 

Bayes Factors represent a continuum of evidence favouring the null and alternative 

hypotheses, we adopted the Jeffrey’s scheme (1961) cut-offs to facilitate their interpretation. 

A Bayes Factor above 3 or under 1/3 provides substantial evidence for the alternate 

hypothesis or null hypothesis, respectively, and a Bayes Factor between 1/3 and 3 provide 

only anecdotal evidence suggesting the data are insensitive. 
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Figure 1. (A) A schematic illustration of the trial sequence used in the masked contextual cuing paradigm. (B) A schematic 

illustration of the repeat and novel display conditions. In novel displays, the target location was fixed, but the distractor 

configuration changed each block. In repeat display, both the target location and the distractor configuration were fixed 

across blocks, only the target orientation was random. Items are not drawn to scale. 

 
Results  

In Experiment 1a, there was no evidence to support contextual cuing from brief (300 

ms) masked displays (Figure 2a). A repeated-measured ANOVA on accuracy with factors 

Display Type (repeat and novel) and Epoch (1 to 3) revealed a main effect of Epoch, F2,38 = 

5.273, p = .009, ηp
2 = .217, indicating a general practice effect over time. But no main effect of 

Display Type, F1,19 = .455, p = .508, and no Display Type × Epoch interaction, F2,38 = .329, p 

= .722.  For the Bayesian ANOVA, we compared a model that included the main effect of 

Epoch (null model) to a model that also included the main effect of Display (single effect 

model), and to a model that included both the Display effect and the Display × Epoch 

interaction (interaction model). Since the models have a transitive relationship, the null model 

was compared to these two models by division. When looking at the accuracy data, the null 

model was preferred. The data were 4.1 × against the single effect model compared to the 

null model, and 148 × against the interaction model (Display × Epoch) compared to the null 

model. Counter to our prediction, the results support the null hypothesis whereby accuracy 

increased overall, but there was no cuing benefit.  
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Looking at the response time data, we observed the same pattern. A main effect of 

Epoch, F2,38 = 32.737, p < .001, ηp
2 = .633, but no effect of Display Type, F1,19 = 1.925, p = 

.181, and no Display × Epoch interaction, F2,38 = .068, p = .935. However, in this case, the null 

model was only preferred by a factor of 2.7 compared to the single effect model, and by a 

factor of 13 against the interaction model. It seems the RT data were insensitive to overall 

differences between repeat and novel displays that would indicate a robust cuing effect. 

Taken together, the results indicate that visual search performance was not influenced by 

embedded configural regularities that predicted the target location. Thus, by truncating visual 

exposure duration via the use of a mask, we were unable to produce the typical statistical 

learning effect. 

Experiment 1b 
In Experiment 1a, we used 30 repeat configurations and 30 control (novel) 

configurations each that were encountered 12 times by the participants. This design was 

based on evidence of a high-capacity statistical learning mechanism that underpins 

contextual cuing. However, it is more common to use fewer configurations. Indeed, Chun and 

Jiang (1998) presented 12 configurations encountered over 24 blocks in the original 

contextual cueing demonstration. Thus, perhaps the larger number of displays in our design 

in our first experiment exceeded the capacity of the system to produce a cuing benefit. 

However, it must be acknowledged, that counter to this, other studies have found a cuing 

benefit with 32 configurations encountered 20 times (Makovski & Jiang, 2011) or 60 

configurations encountered 300 times over 5 days, (Song & Jiang, 2005). So, an alternative 

explanation is that the conditions of exposure with brief, masked presentations were 

insufficient to produce learning. To test this, we removed the mask and used the standard 

presentation time of 2000ms to investigate whether a cuing benefit would be observed using 

30 repeat configurations encountered 12 times. 

Method 
All methods were identical to Experiment 1a except that the mask stimulus was 

removed, and search displays were shown for 2000 ms. Under these conditions, accuracy 

was expected to be near ceiling so, now response time was the key dependent measure.  

Participants were 20 first-year psychology students who received course credit. One was 
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excluded due poor accuracy (below 75% cutoff) leaving a final sample of 19 participants (µ = 

21 years, σ = 2.55, 12 female).    

Results 
Using this typical presentation time, we observed a robust cuing effect with the classic 

response time benefit for repeat displays relative to novel displays over time (Figure 1b). As 

expected, accuracy was close to ceiling with the mask was removed (94.77% ± 2.04). There 

was a main effect of Epoch, F2,361,18 = 5.888, p = .006, ηp
2 = .246, indicating accuracy 

improved over time. Bayes factors support the null (Epoch) effect model over the Display 

effect model (BF10 = .216) and the Display × Epoch Interaction (BF10 = .038) in the accuracy 

data. All other ps > .67.  

In the RT data, there was no main effect of Display Type, F1,18 = 2.437, p = .136, but 

there was a significant Display Type × Epoch interaction, F2,361,18 = 4.145, p = .024, ηp
2 = 

.187, and a main effect of Epoch, F2,361,18 = 45.284, p < .001, ηp
2 = .716. Bayes Factors for 

the model effects were inconclusive regarding the Display effect model (BF10 = .707) and the 

Interaction model (BF10 = .707) compared to the null Epoch model. However, planned 

contrasts did shed light on the interaction. There was no cuing benefit in Epoch 1, t18 = .875, p 

= .393, BF10 = .139, with the data supporting the null effect. A reliable cuing benefit emerged 

in Epoch 2, t18 = -2.386, p =.028 (BF10 = 4.37), with support for the alternative hypothesis. In 

epoch 3, the data was trending in that direction, t18 = -2.019, p =.059, but the Bayes Factor 

was only anecdotal (BF10 = 2.409). This indicates that cuing did emerge when using 30 repeat 

displays with response-terminated presentations. 

Experiment 2 
The results of Experiment 1b confirmed we could observe contextual cuing in our 

paradigm when longer exposure durations (2000ms) were employed. Under the standard 

viewing conditions, we observed the typical response time benefit that indicated statistical 

learning about spatial context. This was consistent with previous research which found 

humans can learn target-context associations using a larger number of individual 

configurations. In that sense, the results argue against the idea that the number of 

configurations used in Experiment 1a exceeded the capacity of the system. A remaining 

possibility is that the number of configurations combined with the briefly presented displays in 

Experiment 1a was too taxing for context learning to occur. Experiment 2 returned to the main 
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question of whether a contextual cuing effect could be observed using controlled brief 

exposure. We repeated the design with 300ms masked displays but used 12 repeat and 12 

novel displays encountered in 24 blocks. This design reflects the most common 

implementation of the contextual cuing paradigm (i.e., Chun & Jiang, 1998). We expected a 

cuing benefit to emerge in accuracy and be robust by the end of exposure. 

Method 
All methods were identical to Experiment 1a except there were 24 trials each block (12 

repeat and 12 novel) shown in a random order for 24 blocks. Twenty participants took part (µ 

= 19.1 years, σ = 2.29, 13 female); recruited from a first-year psychology pool receiving 

course credit. Note that reducing the number of configurations from 30 to 12 meant there 

were 48 trials per cell in the epoch-level analysis for Experiment 2 (12 trials per condition × 4 

blocks per epoch) compared to 120 per cell for Experiment 1a (30 trials × 4 blocks).  

Results 
Here accuracy was affected by display type (Figure 1c). The critical Display Type × 

Epoch interaction was significant, F5,381,19 = 2.595, p = .030, ηp
2 = .120, however, the main 

effects of Display Type and Epoch were not significant, F1,19 = 1.419, p = .248 and F5,38 = 

1.363, p = .245, respectively. Planned contrasts revealed the interaction was driven by 

crossover effects indicating the cuing effect was variable across epochs. In epoch 1, there 

was no cuing benefit, with 10 × support for the null hypothesis (repeat = novel) over the 

alternate (repeat > novel; BF10 = .097). In epoch 2 there were suggestions of an accuracy 

benefit, but the data were unreliable (BF10 = 1.96). By epoch 5, the cuing benefit was reliable, 

with 3 × support for the alternate hypothesis over the null (BF10 = 3.81). However, the benefit 

was unstable, and not maintained in epoch 6 where the data were unreliable (BF10 = .413). 

This pattern may reflect task fatigue. Looking at the model effects in the ANOVA, the data 

was unreliable in terms of supporting the single effect model (Display × Epoch) relative to the 

null model (Epoch alone), BF10 = 1.559.  

For RTs, there was no speed benefit for Repeat displays. Response times did become 

generally faster over time, F5,38 = 32.75, p < .001, ηp
2 = .633, but there was no main effect of 

Display Type, F1,19 = .556, p = .465, and no interaction F5,38 = .745, p = .592. Planned 

comparisons revealed no reliable effects across epoch (BF10 range .258 - .932). Overall, the 

data provided weak support for a cuing benefit that took time to emerge. When using 12 
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repeat and 12 novel displays, there was a reliable accuracy benefit in Epoch 5, but the data 

was not reliable when looking over all epochs. Thus, we decided to attempt to replicate this 

result. 

 

Figure 2. Response time and accuracy data for Experiments 1a, 1b and 2. (A) Experiment 1a used 300 ms 

masked presentations and found no accuracy advantage for repeat displays. (B) Experiment 1b used standard 

2000 ms presentations and no mask and found a contextual cuing effect whereby correct response times 

increased for repeats displays over time compared to novel displays. (C) Experiment 2 reduced the number of 

repeat and novel configurations per block from 30 to 24 and reimstated the brief masked displays.  Here, an 

accuracy advantage was observed for repeat displays, indicating statistical learning of the repeating contexts 

with brief presentations.   

 

Experiment 3 
The results of Experiment 2 showed that by reducing the number of individual 

configurations and increasing the number of exposures, we began to observe a statistical 

learning effect with brief masked presentations, but overall the data were somewhat 

insensitive to our key manipulation. Experiment 3 was an attempt to replicate the result in new 
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data. Experiment 3 used the same design as Experiment 2 except that we increased the 

number of exposures from 24 blocks to 32 blocks. Given the previous benefit only appeared 

in Epoch 5, we hoped this change would allow time for learning to stabilize and be 

maintained.  

Method 

Twenty participants took part in Experiment 3 (µ = 22.21 years, σ = 2.74, 55 % female) 

from The University of Queensland. They attended a single 1-hour session and were paid $10 

for their time. The task was displayed on a 23ʺ LCD monitor (ASUS, resolution = 1920 × 

1080; refresh rate = 60 Hz). All other methods were the same as Experiments 1a and 2.  

Visual Search Task 
During the training phase, participants completed 32 blocks of the visual search task 

where 30 repeat displays and 30 novel displays were intermixed in a random order. The 

displays were presented for 300ms followed by the line mask for 500ms. The key outcome 

measure was accuracy on the search task as a function of display type across epoch. 

Results 
 The results of Experiment 3 replicated the key findings of Experiment 2 (Figure 2). 

There was an overall accuracy benefit for repeat displays compared to novel displays (Main 

effect of Display Type, F1,19 = 6.27, p = .022, ηp
2 = .25). There was also the expected main 

effect of Epoch, F7,133 = 4.86, p < .001, ηp
2 = .20. The Display × Epoch interaction was not 

significant, F7,133 = 1.02, p = .48, in line with the common finding that contextual cuing 

emerges within the first epoch of the experiment (Chun & Jiang, 1998; Peterson & Kramer, 

2001). When comparing the null model (Epoch effect) to the single effect model (Display 

Effect), Bayes Factor values were 305 × in favour of the main effect model, and were 22 × 

against including the interaction (Display + Display Type × Epoch), providing extremely strong 

evidence that an accuracy benefit best characterized the data.  

To ensure the large accuracy benefit was not based on pre-existing differences 

between the conditions, we ran a paired-sampled t-test on the block 1 data. This revealed no 

difference between Repeat and Novel displays prior to learning, t19 = .328, p = .373, BF10 = 

.135, with the data 4.4 × in favour of the null hypothesis over the alternate. Thus, the accuracy 

cuing effect was not present initially, but emerged over time with exposure to regularities 

during the search task. Planned contrasts revealed the accuracy benefit in Epochs 4, 6, and 
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8, where Bayes Factors > 3 supported the alternate hypothesis (i.e., repeat > novel) over the 

null (Supplementary Table 1).  

In the RT data, there was also a cuing benefit, evident in the main effect of Display 

Type, F1,19 =  7.65, p = .012, ηp
2 = .29, and Epoch, F1,7 =  13.67, p < .001, ηp

2 = .42, with no 

Display × Epoch interaction, F7,133 =  1.87, p = .080. Again, the single effect model (Display 

Type) was favoured 4.3 times over the null model (Epoch alone), and there was no support 

for the interaction model (BF10 = .072). Planned contrasts confirmed the speed benefit 

emerged early on, in Epoch 2, and was maintained over Epochs 4,5,6,7 and 8 (Table 2). 

These results are consistent with a robust cuing effect that emerged in both accuracy and RT. 

 

Figure 3. Results for Experiment 3 that replicated the cuing effect with brief presentations. Accuracy and 

Response time data are plotted as a function of display type and epoch. There was an accuracy benefit for 

repeat displays overall (BF10 = 305), which replicated Experiment 2. The cuing benefit emerged in Epochs 4, 6 

and 8 where Bayes Factors > 3 are marked with an asterisk.  
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Comparing the Replication to the Original  
Experiment 3 sought to replicate the cuing effect observed with brief displays in 

Experiment 2, using a reduced number of configurations (12) and more encounters (32). To 

allow a more a direct comparison with the original design (Experiment 2) we repeated the 

analysis on the first 24 encounters only. This revealed the same pattern of robust contextual 

cuing.  Namely, there was a significant main effect of Display Type on Accuracy (p = .025, 

BF10 = 22.11), which was reliable.  In the RT data, there were significant main effects of 

Display Type and Epoch (ps < .018, BF10 = 2.2). These results indicated that the data in the 

replication attempt were sensitive to differences between repeat and novel conditions when 

matching the number of encounters, and so support the alternate hypothesis that the 

replication data (Experiment 3) were consistent with the effect observed in Experiment 2. 

Discussion 
The results clearly demonstrated that incidental learning of spatial regularities can 

appear using brief, masked presentations. The results of Experiment 3 converge with those 

found in Experiment 2, showing that humans can benefit from regularities in the visual scene 

even when only afforded 300ms to view the stimuli. This is consistent with accounts of a rapid 

statistical learning mechanism that underpins contextual cuing effects. Previous research had 

observed the cuing benefit was intact when displays were presented for only 300ms after 

learning with longer display presentations (Chun & Jiang, 1998). This finding demonstrated 

that, after learning, subjects can match the current display to a learned display within the time 

of an initial fixation and supports the proposal that the global spatial layout is important for 

contextual cuing. The results of Experiments 2 and 3 build on this evidence to show that 

subjects can acquire and use the statistical spatial layout of a scene rapidly, even when 

additional processing is blocked by a visual mask. This suggests the statistical learning 

mechanism itself may be supported by an information processing system that is similarly 

rapid; able to encode and utilize regularities in a glance. 

Experiment 4 
As it stands, we have observed rapid context learning with 12 configurations 

(Experiments 2 and 3) but not with 30 configurations (Experiment 1a). One outstanding issue 

from the 30 configuration set up was that participants had fewer encounters in this experiment 

than in those that employed 12-configurations. Specifically, only 12 blocks were used, 

compared to 24 blocks in Experiment 2 and 32 blocks in Experiment 3. In Experiment 4, we 
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upped the number of encounters to be 24. If the number of encounters explained our previous 

failure to observe cuing with 30-configurations, we expected an accuracy benefit to emerge 

here (alternate hypothesis). This would show the rapid statistical learning underpinning these 

effects has a high capacity.  

Another reason why we might have failed to observe contextual cuing in Experiment 1a 

is because learning did, in fact, occur but the mask blocked learning from being expressed. 

This idea comes from earlier work that shows cuing is not expressed in some cases where 

resources are taxed by a demanding secondary task (e.g., Annac et al., 2013; Manginelli et 

al., 2013; Jiang et al., 2001). In these studies, latent learning (or encoding) is evident in the 

spontaneous emergence of a cuing benefit once the secondary-task manipulations are 

removed. For example, when working memory resources were taxed by a concurrent delay-

match-to-sample task (e.g., Manginelli et al., 2011), no contextual cuing benefit was 

observed. When the memory task was removed in a test phase, an RT benefit spontaneously 

appeared for the repeat displays that were used during training. Similar latent learning effects 

were observed after training with an attention manipulation (Jiang & Song, 2005). When 

selective attention was directed to subset of items during search, no cuing was observed for 

the unattended items. But when attention was re-directed to the previously unattended items 

at test, cuing was immediately evident, suggesting learning did occur for the unattended items 

but was not being expressed. Both lines of work have been used to argue for a latent learning 

mechanism underlying contextual cuing, and that the ability to use regularities depends on 

attention and working memory resources (see also Annac et al., 2019).  

Applying this idea to our experiments, it may be possible that latent learning occurred in 

the original 30-configuration experiment, but that the ability to express learning (via a cuing 

benefit) was impeded by the mask. If this were the case, a cuing benefit should be observed 

when the disruptive effects of the mask are removed. To investigate such a possibility, we 

included an unmasked test phase after training in Experiment 4. To limit additional learning 

that could take place once the mask was removed, we only measured 4 test blocks, 

consistent with the designs in previous work. This was collapsed into 1 epoch for analysis. 

We predicted that if latent learning occurred, we should see a cuing effect in the test phase. 

This could be either via an accuracy benefit or a speed benefit.  These predictions, along with 

the analysis plan, were registered on the open science framework prior to data collection and 

have been made available here: https://osf.io/h38a9/.  
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Method 
Twenty participants from the paid-participant pool at The University of Queensland took 

part in the study (µ = 23.15 years, σ = 3.17, 60 % female). The apparatus and stimuli were 

identical to Experiment 3, except there were 30 repeat and 30 novel displays intermixed over 

24 blocks. For the training phase, displays were presented, as before, for 300ms followed by 

the mask for 500ms. For the test phase, we removed the mask and participants completed 

four blocks with the same repeat and novel configurations. Given that learning was 

successfully expressed within 300ms in a previous study (Chun & Jiang, 1998), we kept the 

displays duration to be 300ms, and just followed it with a blank screen for response. 

Considering properties of iconic persistence, it is highly likely that information about the 

displays would have remained accessible to the processing hierarchy after stimulus offset.  

The four test blocks were collapsed into one epoch for analysis, consistent with the design of 

previous literature. Accuracy and correct RTs were assessed as a function of display type. 

Responses beyond 2000ms were not recorded. Missing data did not exceed 5% for any 

individual. 

Training Phase Results 
As predicted, no reliable learning was detected in accuracy or RTs in Experiment 4 

(Figure 4). For accuracy, there was a main effect of Epoch, F1,5 = 6.78, p < .001, ηp
2 = .26, but 

no main effect of Display Type, F1,19 = 1.26, p = .275, nor a Display × Epoch interaction, F5,95 

= .26, p = .932. Bayes Factors were 3.8 × in support of the null model (incl. Epoch) relative to 

the cuing model (Display type effect).  

For correct RTs, there was likewise a main effect of Epoch, F1,5 =19.34, p < .001, ηp
2 = 

.50, with no main effect of Display Type, F1,19 = 1.98, p = .176. But the Display × Epoch 

interaction was significant, F5,95 = 2.80, p = .021, ηp
2 = .13. On further inspection, this was due 

to inconsistent effects across epochs (see Supplementary Table 2). Specifically, the null 

effect (repeat ≠ novel) was favoured in Epochs 1 and 3, signifying no RT differences, and the 

data was unreliable in Epochs 4 and 6. There was, however, evidence of an RT benefit for 

repeat displays in Epochs 2 and 5 where the alternate hypothesis (repeat < novel) was 

favoured over the null. Looking at the omnibus effects in the ANOVA, the null model (Epoch) 

was supported 71 times over the interaction model (BF10 = .014) and 5 times over the main 

effect model (BF10 = .188). This suggests that when matching the number of encounters 
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across experiments, we still failed to observe a contextual cuing effect with 30 configurations. 

The RT pattern looked similar to the unreliable accuracy benefit observed in Experiment 2 

with 12-configurations, in that a benefit emerged occasionally but was not maintained. 

 
Figure 4. Schematic of the method used in Experiment 4. (A) During the training phase, there was strong 

support for the null hypothesis over the alternate. This was consistent with Experiment 1a showing 

statistical learning with brief presentations does not occur when using 30 configurations repeated over the 

same number of encounters. (B) In the unmasked test phase, there was no evidence of cuing, with strong 

support for the null hypothesis over the alternate.  
 

Test Phase Results 
The key question in the test phase was whether the typical response time benefit would 

emerge once the mask was removed (Figure 4b). Contrary to this prediction, a paired 
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samples t-test supported the null effect of cuing on RTs, BF10 = .246. At the end of training, 

the RT benefit to repeat displays decreased from 20ms in Epoch 6 to 4ms in the test epoch, 

and this change was reliable, BF10 = 9.233. Thus, instead of the spontaneous cuing that was 

predicted, this pattern indicates that any speed benefit gained in training was not identifiable 

when the mask was removed.  

In the accuracy data, neither the null nor the alternate hypothesis was favoured at test 

(BF10 = .976). Thus, we observed no evidence of latent learning in accuracy or RT after 

removing the mask in a test phase. Collectively, these results suggest a capacity limit for 

statistical learning under rapid viewing conditions that is not explained by the failure to 

express latent learning due to a mask being present. 

General Discussion 
We examined the processing dynamics of contextual cuing by masking visual displays 

to control processing time during search with repeating configurations. We observed evidence 

of a rapid contextual cuing process that occurred within 300 ms and produced greater 

accuracy when identifying targets embedded in configurations that repeated compared to 

novel configurations. This accuracy cuing effect was observed with a set of 12 repeating 

configurations but not when there were 30 repeating configurations. This larger set-size 

required longer processing times that allowed search to be complete and produced learning 

via a response time benefit. Taken together, these results indicate that contextual information 

based on spatial regularities can be processed rapidly in order to assist ongoing cognition. 

But it appears that the most robust cuing behaviour comes from longer durations.  The set-

size difference with short and long durations suggests that exposure time interacts with 

memory capacity during statistical learning of spatial configurations.  

The rapid cuing we observed in Experiment 2 cannot be attributed to procedural 

learning of target locations alone, because the same number of target locations were used in 

the novels and repeat conditions, and the distribution of locations across quadrants was 

matched. This meant attentional prioritization of the target locations (Ferrante et al., 2017) 

would have been uniform across the display area for both conditions. Instead, the cuing 

benefit for repeat displays was a result of learned associations between a given configuration 

of items and a target location. And so, the distractor items needed to be processed in order to 

create the cuing benefit. We were similarly careful to match the distribution of distractors 

items across conditions, in terms of the number of items in each quadrant. Thus, learning is 
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unlikely to be driven by conscious knowledge of one or more salient configurations in the 

repeat condition.  Rather, our results tell of an associative, statistical learning mechanism that 

operated on a rapid timescale.  

This finding builds on the previous work by showing that learning in contextual cuing 

can operate in 300ms of exposure. Experiment 5 in Chun and Jiang’s initial study (1998) had 

shown that the cuing benefit could operate using 200ms exposure, but that was after learning 

had already occurred. It suggested the process of retrieving a learned display and matching it 

to the current display occurred rapidly, likely without eye movements, to produce an accuracy 

benefit. But it was not designed to investigate the formation of context learning directly. 

Similarly, the electroencephalography studies had observed the N2pc response, an indicator 

of selective attention to the target, differentiated repeat from novel displays at around 250ms 

after stimulus onset (Johnson et al., 2007; Olson, 2001), but learning occurred with longer, 

response-terminated displays and since the analyses averaged over the entire learning 

session, they could not distinguish rapid recognition of displays from rapid learning. Our 

findings are consistent with the hypotheses of Chun and Jiang (1998) that eye movements 

are not required for cuing to occur. But they add that the formation of spatial context 

memories may also not require in-depth visual processing. Instead, the evolution of learning 

itself, indexed by increasingly more accurate responses to repeat displays over time, can 

operate on a rapid timescale, and with minimal eye movements.  

To the best of our knowledge, this is the first study to show contextual cuing with visual 

masking. Unlike the previous studies, the cuing benefit cannot be explained by iconic 

persistence of the displays after stimulus offset. We used visual masked to control processing 

time, yet the results have implications for theories of how cuing may rely on working memory 

resources. Working memory is often decomposed into stages, with Iconic memory being the 

retention or manipulation of information within 100ms, followed by visual short-term memory, 

and longer more robust forms of memory. Masking is known to disrupt iconic memory. Thus, 

observing cuing behaviour with 300ms masked exposure reveals two things.  Firstly, that 

information about spatial context must be encoded rapidly in a way that survives iconic 

disruption. Secondly, that the cognitive system can use that encoded information to guide 

downstream attention and decision-making operations within that same timescale. This 

suggests that the integration of top-down operations (e.g., attention to a target) and bottom-up 

information (distractor information, potentially stored in memory) can occur within 300ms. 
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While other work has investigated the integration of top-down and bottom-up processes in this 

way (e.g., Sitwell & Vecera, 2020), the timescale of such integration has largely been 

overlooked.  

If contextual information can be processed to affect decisions rapidly, the next question 

is how this behaviour may be distilled into different operations that play out over time. Based 

on first principals, the learning must first entail encoding of the displays, shown to occur 

through repetition. Encoding no doubt involves visual representations and some form of 

memory storage. Once stored, in order to benefit from the regularities, one must match the 

stored knowledge to the current display and generate predictions relevant to goal-directed 

behaviour. Attempts to distill the encoding from retrieval in incidental learning tasks are 

ongoing (see Batterink, Paller, & Reber, 2019; Thiessen, Kronstein, & Hufnagle, 2013). The 

sub-processes have also been referred to as the “learning” and “use” of implicit knowledge 

(Simor & Nemeth, 2019; Travis, Mattingley, & Dux, 2013). It appears the two components 

may be dissociable in terms of their reliance on working memory and selective attention. 

Learning (or encoding) can occur in the absence of an observable cuing benefit (Jiang & 

Chun, 2001; Jiang & Leung, 2005; Manginelli, Langer, Klose, & Pollmann, 2013; Travis et al., 

2013).  In these studies, a concurrent task was used to tax working memory or divide 

attention during exposure to repeat and novel displays. No cuing benefit was evident during 

dual-task mode. But a cuing effect emerged when the concurrent task was removed, 

suggesting the regularities were learned but not used (or acquired but not retrieved) during 

working memory load or divided attention. In a similar vein, we investigated whether the null 

effect with 30 configurations was explained by masking having an effect on the use of 

regularities rather than the underlying learning. Our results supported the latter; that no 

learning occurred with the larger set of configurations. It remains possible that learning may 

have emerged given additional exposure through more repetitions. So, an alternative 

explanation is that learning with a larger capacity was not completely abolished, but was 

rather slowed down, requiring more repetitions to see a benefit. For now, it is clear that when 

equating the exposure time (300ms), and the number of repetitions (24 blocks), statistical 

learning emerged with 12 configurations, but not 30 configurations. And this indicates a 

capacity limit. 

Contextual information about the environment has been conceptualized in a number of 

ways.  Another way that contextual information is represented is known as gist, which refers 
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to generalizable information about a scene in terms of category and layout (Larson, Freeman, 

Ringer, & Loschky, 2014). Gist is most commonly investigated using real-world scenes, such 

as an office setting or a landscape, that are to be categorized as indoor or outdoor. A wealth 

of research has demonstrated that gist is extracted at incredible speeds. For example, using 

rapid serial visual presentations (RSVP), studies have observed gist extraction within a single 

fixation and as fast as 13 ms (Biederman, Mezzanotte, & Rabinowitz, 1982; Potter, Wyble, 

Hagmann, & McCourt, 2013; Rousselet, Joubert, & Fabre-Thorpe, 2005). Gist processing 

also exhibits a substantial capacity; capable of storing information about hundreds even 

thousands of individual scenes (Konkle, Brady, Alvarez, & Oliva, 2010; Standing, 1973). The 

majority of this work has measured simple categorization judgments to tap familiarity or 

recognition after exposure. Further, rates of visual processing in RSVP streams say little 

about absolute evaluation time, because there is no decision on each scene. More recently, 

gist extraction was found to impact downstream operations to do with attention and object 

recognition (Larson et al., 2014), suggesting the early processing of a scene may support 

adaptive functions of the visual system as they relate to learning from experience. The 

present results dovetail with this work to show that different types of context, either for gist or 

abstract regularities, may be processed rapidly to affect higher-level cognition. This has 

important consequences for theories about the temporal scale over which higher-level 

cognitive operations may benefit from implicit spatial predictions. 

Unlike gist processing and typical contextual cuing, which both exhibit a large capacity, 

rapid contextual cuing was capacity limited. When using the same presentation duration 

(300ms), number of exposures (24 blocks) and opportunity to learn (based on 60% accuracy), 

we observed learning with 12-configurations but not with 30 configurations. The failure to 

learn with 30 configurations was not explained by latent learning that was blocked by the 

mask. A number of explanations for the capacity limit to learning with rapid exposure have 

been considered. The first pertains to the associative nature of learning. Studies show that 

cuing behaviour is driven by learning both the overall configuration and item-level 

associations, and this interacts with the type of exposure afforded by the task (Jiang & 

Wagner, 2004; Ogawa & Kumada, 2008; Song & Jiang, 2005).  For example, in a pop-out 

search task, only configural learning was observed, but with typical exposure, both item-

based and configural learning was observed (Ogawa & Kumada, 2008; Song & Jiang, 2005). 
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This is consistent with the notion that subjects learn multiple relationships between distractor-

distractor items, target-distractor items and target-configuration elements during response-

terminated search (Beesley, Vadillo, Pearson, & Shanks, 2016; Brady & Chun, 2007). The 

types of learning that occur in rapid viewing tasks has not been investigated. Thus, typical 

longer search appears to allow for processing multiple cues in concert, both local and global, 

to produce robust, high-capacity learning behaviour. Related is the way local and global 

learning may contribute to RT and accuracy effects. Since local items near the target 

constitute the largest contribution to the RT benefit (Brady & Chun, 2007), it is possible that 

global processing with rapid displays afforded an accuracy benefit more so than the typical 

RT effect.  Furthermore, while repeating only local items near the target were enough to 

trigger retrieval once learned, repeating local items was not sufficient to establish a strong 

memory trace early in learning (Song & Jiang, 2005).  This work implies that the formation of 

context learning requires both local and global elements to be encoded, but that some 

learning may be occur with incomplete encoding. In our study, the brief exposure duration and 

backward masking may have meant not all relational elements in a repeat display were 

processed (quantitative change). Or it might have meant that only global information was 

processed but not local (quantitative change). This change in what was being learned may 

explain the capacity limit. Future studies could investigate this by masking either local or 

global information during learning and use re-combined displays at test to see if configural or 

non-configural learning occurred (circa: Ogawa & Kumada, 2008; Song & Jiang, 2005). 

A final possibility is that the capacity limit represented a slowing or delay in the 

emergence of learning, rather than abolishing it altogether. This is intuitive when considering 

there may have been less opportunity to learn given the lower accuracy in the masked 

experiments compared to a typical response-terminated experiment. Accuracy was 60% with 

brief presentations but is near ceiling at 90% or higher with longer exposures. With brief 

exposures, the number of trials where individuals did not locate the target was much higher 

than typical cuing tasks. This would explain the capacity limit as being related to a failure to 

locate the target. However, it cannot explain the capacity difference seen for the 12-

configuration and 30-configurations experiments, because accuracy was comparable at 60% 

in each. So, the explanation about there being less opportunity to learn when using a higher 

number of configurations seems unlikely. More plausible is an explanation to do with 
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opportunity to process distractors. Given enough repetition of a display, it becomes 

statistically more likely that any given subset of elements will be processed, including 

distractors and the target. Therefore, increasing the exposure, either in terms of presentation 

time or number of encounters over time, would provide an increased opportunity to learn, 

based on the statistics of experience.  
Conclusions 

We observed a contextual cuing effect with short, masked exposure. This reveals that 

spatial statistical learning can be effective even when information processing is truncated in a 

way that limits eye movements and processing beyond offset. The findings are consistent with 

the hypothesis that contextual processing is driven by encoding the global layout in a way that 

does not require eye movements, which may provide a mechanistic explanation as to how 

rapid context processing can occur. Unlike contextual cuing with longer processing times, this 

rapid processing of context regularities was capacity limited. The fast processing of context in 

terms of abstract spatial regularities dovetails with work on rapid, high-capacity gist extraction 

in real-world scenes.  Understanding the rapid speed by which statistical learning can be 

formed contributes to a broader understanding of information processing in the human brain, 

and its capacity limits. Incidental learning about past experience supports many adaptive 

behaviours in humans and non-human animals. So characterizing ways that the brain can 

efficiently utilize past experience for behaviour is important for global theories of brain 

function. 
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Supplementary Table 1. Planned contrasts for the Accuracy benefit across epoch. Bayes 

factor values for paired samples t-tests comparing the alternate hypothesis (Repeat > Novel) 

to the null hypothesis across all experiments. 

 Original  Replication  

  30-configuration 
(Exp 1a) 

12-Configuration 
(Exp 2) 

12-Configuration  
(Exp 3) 

30-configuration  
(Exp 4) 

Epoch 1 .250* .10 1.20 .203* 

Epoch 2 .364 1.97 1.37 .427 

Epoch 3 .232* .19 .28 .585 

Epoch 4 - .38 23.95 .373 

Epoch 5 - 3.82 0.36 .467 
Epoch 6 - .42 4.78* .901 

Epoch 7 - - .384 - 

Epoch 8 - - 6.08* - 
Note: Bayes Factors in favour of the alternate hypothesis (> 3) are marked in Bold. Bayes Factors in favour of the null 
hypothesis (< 1/3) are marked by an asterisk. All tests used an uninformative Cauchly prior of .707. 

 

Supplementary Table 2. Planned contrasts for the Response Time benefit across epoch. 

Bayes factor values for paired samples t-tests comparing the alternate hypothesis (Repeat < 

Novel) to the null hypothesis across all experiments. 

 Original  Replication  

  30-configuration 
(Exp 1a) 

12-Configuration 
(Exp 2) 

12-Configuration  
(Exp 3) 

30-configuration  
(Exp 4) 

Epoch 1 .574 .279* .233* .108* 

Epoch 2 .310 2.474 4.085 4.774 

Epoch 3 .396 .474 .999 .256* 

Epoch 4 - .788 3.904 .617 

Epoch 5 - 3.978 25.589 6.887 

Epoch 6 - .836 6.778 .538 

Epoch 7 - - 3.522 - 

Epoch 8 - - 3.009 - 
Note: Bayes Factors in favour of the alternate hypothesis (> 3) are marked in Bold. Bayes Factors in favour of the null 
hypothesis (< 1/3) are marked by an asterisk. All tests used an uninformative Cauchly prior of .707. 
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Abstract  
 

Attentional performance is facilitated by exploiting regularities and redundancies in the 

environment by way of incidental statistical learning. For example, during visual search, 

response times to a target are reduced by repeating distractor configurations – a 

phenomenon known as contextual cueing (Chun & Jiang, 1998). A range of neuroscientific 

methods have provided evidence that incidental statistical learning relies on subcortical neural 

structures associated with long-term memory, such as the hippocampus. Functional 

neuroimaging studies have also implicated the prefrontal cortex (PFC) and posterior parietal 

cortex (PPC) in contextual cueing. However, the extent to which these cortical regions are 

causally involved in statistical learning remains unclear. Here, we delivered anodal, cathodal, 

or sham transcranial direct current stimulation (tDCS) to the left PFC and left PPC online 

while participants performed a contextual cueing task. Cathodal stimulation of both PFC and 

PPC disrupted the early cueing effect, relative to sham and anodal stimulation. These findings 

causally implicate frontoparietal regions in incidental statistical learning that acts on visual 

configural information. We speculate that contextual cueing may rely on the availability of 

cognitive control resources in frontal and parietal regions. 
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Learning refers to a change in behaviour that occurs over time. There is converging 

evidence from neuroanatomical, neuroimaging, and lesion methodologies to show that the 

prefrontal cortex (PFC) is a critical neural substrate for many high-level functions that support 

advanced skill acquisition (e.g., when learning a language or musical instrument; Fuster, 

2001). The PFC is also recruited for more basic forms of learning, such as when associating a 

visual stimulus with a particular button-press response (Fuster, 2001). Recent work using the 

non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS), has 

begun to provide causal evidence regarding the prefrontal locus of learning and the effects of 

training on performance (Filmer et al., 2016; Filmer, Mattingley, & Dux, 2013a; Filmer, 

Mattingley, Marois, & Dux, 2013b). Yet it remains unclear whether other forms of learning that 

are believed to operate in a more automatic and incidental manner may also be modulated by 

brain stimulation. 

During tDCS a subthreshold electrical current is passed from two electrodes – one 

anode and one cathode – through the scalp, and the resulting electric field is used to 

modulate neural activity. At the microscopic level, tDCS is believed to modulate cell 

membrane potentials. Anodal currents typically shift activity towards depolarization, whereas 

cathodal currents lead to hyperpolarization and a shift toward reduced overall activity 

(Bindman, Lippold, & Redfearn, 1964; Filmer, Dux, & Mattingley, 2014). While this polarity-

dependent dichotomy appears to hold for stimulation targeting the motor cortex (Nitsche & 

Paulus, 2000; 2001; Rosenkranz, Nitsche, Tergau, & Paulus, 2000), tDCS induced changes 

to larger neural circuits are more complicated. In these cases tDCS effects depend on the 

stimulation parameters used (Bestmann, de Berker, & Bonaiuto, 2015); namely duration and 

intensity (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013) but also whether or not it is 

paired with a concurrent task. For this reason, attempts to predict the direction of behavioural 

changes can be challenging. Nevertheless, by exploiting the capacity of tDCS to exert a bi-

directional influence on a neural system, one can perturb a target region and explore the 

resulting influence on measured behaviour. 

Previous research has predominantly examined explicit or intentional forms of learning. 

These are cases where participants are aware that information must be retained for later use 

(e.g., specific items or response mappings). Under such conditions tDCS to functional regions 

has been shown to influence both the time course and outcomes of learning. For example, in 

language learning tasks, online anodal and bilateral tDCS to temporal regions increased the 
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rate of acquisition and led to more successful outcomes (Boggio et al., 2009; Flöel, Rösser, 

Michka, Knecht, & Breitenstein, 2008). In a concealed-object detection task, anodal tDCS 

delivered to the right inferior frontal cortex or the right posterior parietal cortex (PPC) also 

increased the learning rate and improved overall performance, compared to sham and to a 

lower intensity control (Clark et al., 2012). Conversely, Filmer et al. (2013b) found that the 

typical performance gains produced by sensory-motor training were disrupted by offline tDCS 

to the left PFC. This occurred for both anodal and cathodal stimulation, compared to an active 

control region (right PFC) and to sham (Filmer et al., 2013b). Using computational modelling, 

these authors also demonstrated that stimulating the left PFC during training influenced the 

efficiency of information processing for decision-making (Filmer et al., 2016), or put differently, 

the rate of evidence accumulation as formally characterised using the Linear Ballistic 

Accumulator model (Brown & Heathcote, 2008). In the context of evidence accumulation 

models of choice behaviour, decision-making refers to the process of selecting an outcome 

from a given set of alternatives based on the available evidence (Gold & Shadlen, 2007). 

Unlike the mechanisms that support sensory input or motor output, which are largely 

immediate, decisions evolve over time (Forstmann, Ratcliff, & Wagenmakers, 2016) by 

repeatedly sampling evidence from a stimulus and accruing information towards a given 

outcome until an internal decision threshold is reached (Ratcliff & Rouder, 1998).   

While this work is important for understanding brain regions that support intentional 

learning, much of knowledge and skill acquisition occurs in an incidental manner by way of 

adapting to statistical regularities in the environment (Goujon et al., 2015; Perruchet & 

Pacton, 2006). Indeed, this notion of prediction leading to the optimization of cognition is 

central to the Bayesian brain hypothesis and the free energy principle (Friston, 2010). When 

learning about the environment in this way, some work has proposed that cognitive control 

mechanisms, supported by the PFC, preference certain aspects of learning at the expense of 

others (Thompson-Schill, Ramscar, & Chrysikou, 2009). This has been demonstrated in the 

domains of language categorization (Lupyan, Mirman, Hamilton, & Thompson-Schill, 2012) 

and creativity (Chrysikou et al., 2013) where disrupting PFC function, via cathodal stimulation 

(but see discussion above regarding enhancement/inhibition in tDCS), benefited the incidental 

components of learning. Thus, contrary to the work of Filmer et al. (2013) on explicit sensory-

motor learning, this line of work suggests that PFC involvement impairs learning (we return to 

this issue in the discussion). Nevertheless, collectively, the aforementioned work highlights 
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the critical role of frontal and associated brain regions in an array of learning related 

operations. How these regions might contribute to uninstructed learning that affects other 

processes, such as visual attention and decision-making, remains an open question.   

Statistical learning (Reber, 1967) and implicit learning (Saffran, Aslin, & Newport, 

1996) both describe how exposure to regularities in the environment can produce sensitivity 

to the structured material as measured in behaviour, but without clear awareness or an ability 

to overtly express what has been learned (Conway & Christiansen, 2006; Perruchet & Pacton, 

2006). Here, we use the term “incidental” to refer to the uninstructed property of the tasks, 

without making specific claims as to the “implicit” nature of the process or resulting 

knowledge. Incidental statistical learning is considered a domain-general learning mechanism 

(Perruchet & Pacton, 2006), and so it can exert effects at many stages of the processing 

hierarchy. For example, Visual Statistical Learning (Fiser & Aslin, 2001) refers to the 

facilitation of perceptual operations by passive exposure to object co-occurrences (see also 

Turk-Browne, Isola, Scholl, & Treat, 2008). Whereas, sequence learning affects motor 

processing, and is commonly assessed by the Serial Reaction Time (SRT) task (Nissen & 

Bullemer, 1987). In addition, functions such as attention and decision-making can also be 

influenced by incidental statistical learning. This is commonly demonstrated via contextual 

cueing in visual search paradigms (Chun & Jiang, 1998).  

In visual search, typically, observers must locate a target item amongst an array of 

spatially dispersed distractors and make a decision about a given target feature (e.g., left or 

right orientation). Contextual cueing (Chun & Jiang, 1998) refers to the facilitation of 

Response Times (RTs) as a result of learned associations between a target’s location and the 

visual context created by the distractor configurations. In spatial contextual cueing, several 

target-distractor configurations are repeated during the experiment, and RTs reduce for these 

repeat displays compared to those with novel distractor configurations. Critically, the target 

identity (which maps on to the motor response) is not predicted by the context. Only the 

target’s location in the search display is predicted. Thus, contextual cueing does not reflect 

motor learning (e.g., Nissen & Bullemer, 1987; Nitsche, Schauenburg, et al., 2003b).  

The contextual cueing effect describes the RT difference between repeat and novel 

displays (typically 100 ms), and the timecourse of learning is measured by the change in the 

contextual cueing effect across blocks or epochs (Chun, 2000). This means that learning can 

be measured online, rather than in a subsequent test phase, which is the case for other 
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statistical learning paradigms. Observers are typically not instructed as to the existence of the 

regularities, and so the learning is deemed incidental. Several cognitive mechanisms have 

been put forward to account for the benefit in RTs observed for repeated contexts. Taken en 

masse, associative mechanisms are believed to influence both attention (Chun & Jiang, 1998) 

and decision related processes (Chun & Jiang, 1998; Kunar, Flusberg, & Wolfe, 2008; Kunar, 

Flusberg, Horowitz, & Wolfe, 2007; Zhao et al., 2012). A recent computational modelling 

study directly tested these accounts and found that cuing largely influenced the components 

of decision related processing (Sewell, Colagiuri, & Livesey, 2017). 

At a neural level, incidental statistical learning is believed to rely on medial temporal 

lobe (MTL) structures and, specifically, the hippocampus. This was based on studies of 

amnesic patients who had intact perceptual and skill learning but impaired contextual cueing 

(Giesbrecht, Sy, & Guerin, 2013). This early work has found further support in neuroimaging 

findings that show hippocampal BOLD activity is related to performance in contextual cueing 

tasks (Geyer, Baumgartner, Müller, & Pollmann, 2012; Greene, Gross, Elsinger, & Rao, 2007; 

Preston & Gabrieli, 2008). The subcortical involvement links learning in contextual cueing to 

the storage of representations in long-term memory. Yet the same fMRI studies consistently 

report activation in cortical areas. In one study, BOLD activity for the repeat-novel contrast in 

the left inferior parietal sulcus (IPS) correlated with the final magnitude of the contextual 

cueing effect (Manginelli, Baumgartner, & Pollmann, 2013a). Activity relating to learning, 

assessed via BOLD contrasts for the context by epoch interaction, has also been 

demonstrated in the dorsolateral PFC (Manginelli et al., 2013a) and bilateral PPC (Giesbrecht 

et al., 2013). Given the correlational nature of these imaging results, it is possible that the 

frontal and parietal activation seen in these studies reflect concurrent processes that occur 

during contextual cueing, or act on the material as a consequence of cuing, without being 

directly related to the statistical learning per se.  

Frontoparietal involvement is consistent with other forms of statistical learning 

(Janacsek & Nemeth, 2013; Rieckmann, Fischer, & Bäckman, 2010). Together, these brain 

regions may operate as part of a larger cortical-hippocampal network responsible for 

integrating sensory information into memory (Sestieri, Shulman, & Corbetta, 2017; Staresina, 

Cooper, & Henson, 2013). Indeed recently, Wang and colleagues (2014)  delivered an 

excitatory transcranial magnetic stimulation (TMS) protocol to lateral parietal cortex during an 

overt associative learning memory task and found that stimulation improved memory 
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performance and increased functional connectivity between parietal cortex and the 

hippocampus.  

To date, no study has investigated the causal involvement of cortical regions in 

incidental statistical learning assessed via contextual cueing. Based on fMRI reports of 

increased PFC and PPC activity associated with learned repeat displays, here, we used tDCS 

to investigate the extent to which perturbing these brain regions may directly influence 

contextual cueing. Thus, the present work seeks to establish whether activity in PFC and PPC 

is causally involved in incidental statistical learning for visual configural information that 

comes to affect decision-making. Given the purported role of the DLPFC and PPC in various 

intentional learning and decision-making processes, tDCS to one or both regions may 

modulate learning. Alternatively, there may be a dissociation between tDCS effects for the 

frontal and parietal regions, based on their involvement in potentially interacting learning 

systems (i.e., Thompson-Schill et al., 2009).  
Method 

Participants 
One hundred and twenty individuals participated in the study; 60 in the frontal region 

condition (mean age = 21 years, SD = 1.93 years, 17 male), and a different 60 individuals in 

the parietal region condition (mean age = 21 years, SD = 3.65 years, 16 male). For each brain 

region, participants were pseudo-randomly allocated to receive either anodal, cathodal or 

sham stimulation, with 20 participants in each group. The sample size was determined a priori 

based on an effect size (η2
p = 0.175) taken from a previous single session tDCS study 

conducted by our group (Filmer, Mattingley, Marois, & Dux, 2013b). A power analysis using 

G-Power (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that 18 participants per group 

would be required to achieve 80% power with an alpha level of .05. An additional two 

participants from the frontal condition and seven participants from the parietal condition were 

excluded for the following reasons: six for not responding on more than 5% of trials; two for 

failing to follow instructions; and one for performance below the minimum average accuracy 

cut off of 85% (determined pre–study). 

Participants were screened for history of any neurological conditions or trauma; family 

history of epilepsy; metal in the body; and the current use of neuroactive medication. All 

participants met the tDCS safety criteria (Nitsche, Liebetanz, et al., 2003a), and had normal or 

corrected-to-normal vision. According to the Edinburgh Handedness Inventory (Oldfield, 
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1971) there were 49 right-handed, five left-handed, and six ambidextrous participants in the 

frontal condition. There were 57 right-handed, zero left-handed and three ambidextrous 

participants in the parietal condition. Participants gave informed written consent prior to the 

experiment and received $10 compensation for their involvement. The study was approved by 

The University of Queensland Human Research Ethics Committee. 

 

Figure 1. Experimental design. Electrode placement for the target electrodes (red) and reference electrode 

(blue) for the (A) frontal and (B) parietal regions. Each region was stimulated with anodal, cathodal and sham 

current types in a between-subjects design. (C) Stimuli and trial outline for the contextual cueing task. For repeat 

displays, the location and orientation of distractors, as well as the target location, was held constant across 

blocks, with only the target orientation changing randomly from trial to trial. For novel displays, all items in the 

display varied randomly. Note that displays were not response terminated. 

 
Transcranial Direct Current Stimulation  

Stimulation was delivered via a Neuro-Conn stimulator attached to two 5 × 5 cm 

electrodes. The electrodes were secured to the scalp using Ten20 electrode paste. In the 

frontal condition, the target electrode was placed over the left PFC, which corresponded to 1 

cm posterior to the F3 site (see Figure 1b) according to the 10-20 Electroencephalography 

(EEG) system (Jasper, 1958). Previous work has shown F3 corresponds to the left DLPFC 

(Coffman, Clark, & Parasuraman, 2014; Herwig, Satrapi, & Schönfeldt-Lecuona, 2003; Utz, 

Dimova, Oppenländer, & Kerkhoff, 2010). In the parietal condition, the target electrode was  
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placed over the left parietal cortex corresponding with the P3 site (see Figure 1a). This site 

has commonly been used to target the posterior parietal cortex (Sparing et al., 2009; Stone & 

Tesche, 2009), with proximity to the inferior parietal sulcus (IPS; Herwig et al., 2003).  For 

both region conditions, the reference electrode was located over the contralateral (right) 

mastoid. This sought to minimise any confounding activation differences caused by the 

reference electrode. Current flow modelling was conducted a priori using HD-Explore 

software (Soterix Medical). As shown in Figure 2, the montages resulted in current flow 

localized to the target regions, being the left dorsolateral frontal lobe and left lateral parietal 

lobe. 

During active stimulation constant currents (anodal and cathodal) were applied at an 

intensity of 0.7mA for 15 minutes (including a 30 second ramp up/ramp down). This protocol 

had been used in previous studies by our group investigating the modulation of learning with 

tDCS (e.g., Filmer et al., 2013a, 2013b, 2016). For sham stimulation, the electrodes were left 

in place for the full 15 minutes, however stimulation was turned off after 90 seconds (30 

seconds constant current with a 30 second ramp up/ramp down). This procedure has been 

shown to reliably blind participants to the stimulation manipulation (Gandiga, Hummel, & 

Cohen, 2006). Current densities for all sessions were kept below the safety limit of 0.04 

mA/cm2 (Kessler, Turkeltaub, Benson, & Hamilton, 2012; Nitsche et al., 2008). In order to 

ensure adequate contact of the electrodes with the scalp, impedances were kept below 20 Ω 

prior to commencing stimulation. 

Contextual Cuing Task  
The contextual cueing task was adapted from Chun and Jiang (1998), and was 

programmed in Matlab 2015b using the Psychophysics toolbox extension (Brainard, 1997; 

Kleiner, Brainard, Pelli, Ingling, & Murray, 2007). The computer was connected to a 19” CRT 

monitor which had a resolution of 1024 × 768, and a refresh rate of 100 Hz. Participants were 

seated unrestrained approximately 63 cm from the monitor. Items were coloured white 

against a grey background (RGB: 80, 80, 80), and could appear within an invisible 15 × 15 

grid that extended 10° × 10° visual angle. Displays consisted of one target stimulus, a T-

shaped item, among a set of 12 distractor stimuli, L-shaped items. The orientation of 

distractors was determined randomly for each element and could be either 0°, 90°, 180° or 

270° clockwise relative to vertical. Targets could be either 90° (‘right oriented’) or 270° (‘left 

oriented'). For each participant, a unique set of 12 configurations was generated in which the 
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target location (but not its orientation), and the distractor locations and orientations were to 

remain constant across blocks – these we refer to as ‘repeat’ displays. For ‘novel’ displays, 

the target and distractor locations varied randomly across blocks. 

On each trial, participants reported the orientation of the target T using the ‘m’ key for 

right oriented (90°) targets and the ‘z’ key for left oriented 270° targets. Responses were 

made via an Apple Macintosh keyboard, and participants were instructed to use their index 

fingers on both hands to respond. Each trial began with a white fixation cross (2.5° visual 

angle) presented for 500 ms, followed by the visual search display for 2000 ms, followed by a 

blank grey screen for 500 ms. The display time was held constant to ensure all participants 

viewed the configurations for the same duration, regardless of individual RTs. If no response 

was made during the display window it was recorded as a missed response and the program 

moved on to the next trial. Correct/incorrect feedback was provided during a practice block 

that comprised 12 trials of novel displays. The main task consisted of 10 blocks of 24 trials, 

with each block containing 12 repeat displays and 12 novel displays. Display type (repeat or 

novel), configuration (1 to 12) and target orientation (left or right) was pseudo-randomised for 

each block. After each block the program paused, and participants were required to press a 

key to continue. There was no feedback during the main task. 

Self-Report Awareness  
In keeping with previous contextual cueing paradigms, we probed for awareness any 

repetition in the task using computer administered questions immediately after the contextual 

cueing task. The questions followed the recommended procedure (Smyth & Shanks, 2008). 

Question one asked, “During the experiment, did you think any of the particular configurations 

of Ls were repeated?”  Participants who responded ‘yes’ received two follow-up questions. 

Question two: “Approximately, when did you begin to notice this repetition?” Participants 

indicated a block number (being from 1 to 10) using the number keys on the keyboard. 

Question three: “After you realized particular configurations of Ls were being repeated, did 

you try to memorize these displays?” This required a yes/no response. 

Recognition Test  
Following the awareness questions, all participants were informed about the repetition 

of a portion of displays in the task, and that the next section would probe their ability to detect 

these regularities. The recognition test consisted of 4 blocks of 24 trials with each block 

containing the 12 repeated displays from the contextual cueing task, and 12 completely novel 
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displays. The instructions were to respond as to whether a display was one that had 

previously been repeated (press ‘R’) or one that was new (press ‘N’). Participants were told 

that speed was not important, and to try to be as accurate as possible.  

General Procedure 
After completing the tDCS safety screening and filling out the pre-tDCS adverse effects 

questionnaire, participants’ heads were measured, and the stimulation pads were secured. 

Following the practice trials, stimulation was switched on and allowed to ramp up for 30 

seconds before participants began the main contextual cueing task. Participants completed 

the task in 12 min on average, meaning that the stimulation was active for the entire task 

duration. Once the stimulation ended, the pads were removed, and the program proceeded to 

the awareness questions followed by the recognition test. Participants were monitored for 45 

minutes following the end of stimulation as recommended by safety guidelines. 

Data Analysis 

Individual mean RTs were calculated for correct responses only. Outliers greater or less than 

3 SDs from an individual’s mean RT were excluded for each display type condition 

separately. The mean number of discarded trials per participant was 1% in the frontal 

condition, and 0.9% in the parietal condition. The overall error rates for these groups were 

low, at 3.47% and 3.74%, respectively. In order to investigate how stimulation may have been 

influencing learning in contextual cueing, we investigated the contextual cueing effect at two 

stages of the task. Previous research has indicated that the contextual cueing effect emerges 

early, typically within the first three blocks (Chun & Jiang, 1998; Jiang & Chun, 2001; Jiang & 

Wagner, 2004), after which time the learning benefit stabilizes. We therefore defined two 

stages of learning: an early stage being blocks 1 to 3, and a late stage being blocks 4 to 10. 

Results 
Response Time Data 

Response times decreased over the blocks and were faster for repeat displays 

compared to novel displays (Figure 2). To assess the effects of tDCS on contextual cueing, 

block data was collapsed into epochs (Table 1) and a 4-way ANOVA was run with factors: 

Display Type (repeat vs novel; within-subjects), Epoch (early vs late; within-subjects), 

Stimulation Type (sham, anodal and cathodal; between-subjects), and Stimulation Region 
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(frontal vs parietal; between-subjects) on the RT data (see Table 1). There was an effect of 

Display Type (F1,114 = 43.05, p < .001) and Epoch (F1,114 = 200.94, p < .001); along with a  

 

 

Figure 2. Current flow modelling and tDCS effects on behaviour. A) tDCS montage targeting the frontal region 

with the target electrode (red) 1 cm posterior to F3. Modelling shows the strongest field intensity localized to the 
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anterior prefrontal region in the left hemisphere. B) tDCS montage targeting the parietal region with the target 

electrode over P3 (red). The strongest field intensity was localized to the lateral parietal region in the left 

hemisphere. RT data for the contextual cueing task as a function of display type, block, and stimulation type 

(Sham, Anodal and Cathodal), with data shown separately panels for the (C) frontal and (D) parietal regions. 

Error bars reflect within-subjects confidence intervals (Loftus & Masson, 1994). 

 

Table 1. Group response times (ms) by epoch for the contextual cueing task. 

 

  Early Epoch Late Epoch 

  Repeat Novel Repeat Novel 

Frontal       

 Anodal 868.83 (142.09) 914.35 (159.74) 786.86 (124.72) 837.03 (132.66) 

 Sham 888.13 (155.68) 937.52 (140.01) 824.47 (158.38) 874.84 (143.12) 

 Cathodal 900.67 (141.67) 907.25 (133.35) 808.65 (132.07) 848.56 (131.37) 

Parietal      

 Anodal 899.06 (150.68) 928.59 (152.44) 815.76 (124.58) 857.82 (121.54) 

 Sham 892.80 (145.50) 941.31 (143.73) 817.02 (120.80) 868.74 (125.27) 

 Cathodal 947.41 (171.98) 938.95 (123.95) 829.26 (110.57) 884.71 (120.04) 

Note: Values represent Means (SDs).  
 

significant Display Type × Epoch interaction (F1,114 = 7.64, p = .007), demonstrating robust 

contextual cueing at the omnibus level. Importantly, the 3-way interaction – Display Type × 

Epoch × Stimulation Type – was significant (F2,114 = 4.135, p = .018), indicating that the 

contextual cueing effect was modulated by the stimulation. There was no effect or interacts 

with Stimulation Region (F2,114 = .37, p = .693). All other ps > .168. We therefore collapsed 

across Region for the following analyses. 

Our comparisons of interest regarding tDCS effects were the two active stimulation 

conditions (anodal and cathodal), compared to our sham control, and compared to each 

other. To follow up the 3-way interaction, we conducted separate 3-way ANOVAs with factors 

Display Type, Epoch and Stimulation Type to assess the following comparisons: cathodal vs. 

sham, anodal vs. sham, and anodal vs. cathodal. The critical interaction – Display Type × 

Epoch × Stimulation Type – was significant for cathodal compared to sham (F1,78 = 7.85, p = 

.012) and cathodal compared to anodal stimulation (F1,78 = 4.93, p = .039), but not for anodal 

stimulation compared to sham (F1,78 = 0.16, p = .678). This indicated that cathodal stimulation 
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to frontoparietal regions interfered with contextual cueing in the early stages of learning 

compared to anodal and sham stimulation.  

Error Rates   
Errors were low across all conditions (Table 2). There was a significant effect of 

Display Type (F1,114 = 11.89, p = .001) and Epoch (F1,114 = 9.62, p = .002), such that 

participants made fewer errors overall for repeated displays (3.31%) compared to novel 

displays (4.18%), and made more errors in the early epoch (4.15%) compared to the late 

epoch (3.33%). Repeated displays were therefore associated with both faster and more 

accurate responses over time. Collectively this indicates there were no speed/accuracy 

tradeoffs for learning related to contextual cueing. In terms of stimulation effects on errors, 

there was a significant interaction between Epoch, Stimulation Type and Stimulation Region 

(F2,114 = 5.17, p = .007). Importantly, there were no main effects of Stimulation Type or 

Region, suggesting tDCS did not alter the ability to perform accurately. Lastly, there were no 

interactions between Stimulation Type or Region with Display Type (F2,114 = .87, p = .421), 

indicating stimulation did not modulate errors related to our learning measure of interest, 

being the contextual cueing effect. (All other ps > .067.)  

Table 2. Group percentage errors by epoch for the contextual cueing task. 

 

  Early Epoch Late Epoch 
  Repeat Novel Repeat Novel 
Frontal       
 Anodal 5.00% (7.48) 5.69% (9.35) 2.14% (4.23) 3.39% (5.59) 
 Sham 3.06% (4.49) 4.44% (5.72) 2.98% (5.28) 3.99% (6.12) 
 Cathodal 2.08% (4.35) 3.75% (6.00) 3.27% (5.48) 3.69% (5.75) 
Parietal      
 Anodal 3.75% (4.91) 4.44% (5.62) 3.15% (5.34) 3.51% (5.19) 
 Sham 3.75% (5.39) 3.33% (6.45) 2.80% (4.78) 4.05% (6.08) 
 Cathodal 4.72% (6.09) 5.83% (5.75) 3.04% (5.25) 3.99% (6.86) 
Note: Values represent Means (SDs) 

 

No Group Differences in Awareness or Recognition  
Around half the participants reported being aware of some form of repetition (Figure 3). 

Pearson’s chi-squared test indicated there were no significant differences in the frequency of 

reported awareness between the stimulation types as assessed for each stimulation region 



 

 

 95 

separately (Frontal: χ2 = 2.83, p = .243; Parietal: χ2 = .53, p = .63), nor were there differences 

between overall (χ2 = .53, p = .47).  

Accuracy in the recognition test was around chance, ranging between 48% and 59% 

across groups. To assess participants’ sensitivity when distinguishing repeated displays from 

novel displays, d’ (d-prime) was computed for each of the four blocks in the recognition test 

(shown in Figure 3B).  

 

 

Figure 3. Reported awareness and recognition test results across stimulation groups. A) Percentage of 

participants who subjectively reported being aware of repetition following the contextual cueing task. This was 

approximately 50% of participants across all groups. B) Behavioural results from recognition test. Data 

represents mean d’ for each recognition block, and error bars represent SEM. 

 

A 3-way ANOVA with factors Recognition Block (1 to 4), Stimulation Type (anodal, 

sham, cathodal), Stimulation Region (frontal vs parietal) was conducted on the d’ data. There 

were no significant effects of Recognition Block (F3,342 = .226, p = .878), Stimulation Type 
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(F3,114 = .744, p = .477), or Stimulation Region (F1,114 = .069, p = .794), and no significant 

interactions (all other ps > .115). 
While this indicates that recognition was not affected by stimulation, it may be worth 

noting that d’ overall was reliably different from zero. A one-sample t-test on d’ collapsed 

across the four Recognition blocks was significant, (t119 = 6.924, p < .001, Mean d’ = 0.203). 

This is not surprising as it may reflect the ability of participants to learn the repetitions over the 

course of the four blocks once they have been made aware of the regularities. There was no 

difference in overall d’ between those who reported being aware (n = 58) and those who were 

classified as unaware (n = 62), based on the probe awareness question after the contextual 

cueing task. An independent samples t-test on d’ scores revealed no reliable difference in 

recognition performance between the groups (t118 = 1.519, p = .131). 

Discussion  
We sought to determine whether frontal and parietal brain regions are causally 

involved in statistical learning that occurs in spatial contextual cueing. We applied anodal, 

cathodal or sham tDCS online, either to the left PFC or left PPC. The contextual cueing effect, 

which is characterised by faster RTs for repeated relative to novel search displays, was 

disrupted in the early epoch by cathodal stimulation, relative to sham and anodal stimulation, 

for both the frontal and parietal conditions.  

The current results extend previous neuroimaging findings regarding the cortical locus 

of learning during contextual cueing. Early investigations into the neural structures 

responsible for incidental statistical learning highlighted the importance of subcortical brain 

regions such as the hippocampus (Chun & Phelps, 1999) and striatum (Rieckmann, Fischer, 

& Bäckman, 2010). Since then, fMRI studies of contextual cueing corroborated the 

involvement of the hippocampus and its relation to learning performance (i.e., the typical 

interaction observed between display type and epoch/block). In addition, these studies 

consistently reported activity in cortical areas such as the dorsolateral PFC and regions within 

Posterior Parietal Cortex (PPC) that was associated with the repeat-novel contrast 

(Giesbrecht et al., 2013; Manginelli et al., 2013a; Pollmann, 2012). These correlational 

findings did not allow inferences about whether such cortical activity was necessary for 

learning to occur or was a by-product of other cognitive process operating on the learned 

repeated displays.  



 

 

 97 

The present results provide the first causal evidence that both frontal and parietal 

regions are directly involved in the evolution of the contextual cueing effect, as evidenced by 

modulation of early learning observed here. Based on the functional and structural 

interconnectivity of these targeted regions with the hippocampus (Wang et al. 2014), one may 

question the contribution of hippocampal activity to the effects seen here. To comment on 

such dynamics would be speculative and is outside the scope of this study. Our tDCS 

modelling suggests that our stimulation protocol produced concentrated areas of current flow 

surrounding the left DLPFC and the left IPL. We therefore adopt the most parsimonious 

conclusion that frontal and parietal areas are critical for learning during contextual cueing.  

Our results do not appear to be due to baseline differences in RTs. The variation in 

RTs for the first block was not reliable across stimulation region, stimulation type, or display 

type (all ps > .129). These differences are most likely attributable to inter-participant noise, 

rather than systematic differences between conditions. Looking at the two sham groups, there 

appeared to be a visual difference in the size of the contextual cueing effect between the 

frontal and parietal groups. Once again, these differences were not reliable (all ps > .526). It 

also seems unlikely that the effect of cathodal stimulation can be explained by modulation of 

general performance or response speed. If this were the case, why would stimulation 

selectively affect performance for repeat displays? Here, the novel trials constituted a control 

task in the form of standard visual search. If we take mean RTs for the novel displays to 

indicate baseline task performance, and hence arousal, we see no effects of Stimulation Type 

or Region (all ps > 0.359). Put differently, stimulation only affected performance when we 

included the repeat versus novel contrast – i.e. the contextual cueing/learning effect. This 

deems it unlikely that general changes in attention or responding could account for the pattern 

of results observed here.  

Furthermore, while we argue that tDCS interrupted processes specifically related to the 

incidental learning of repeated configurations, one alternative explanation may be that tDCS 

affected generalized motor processes, rather than processes specific to statistical learning. 

We believe this is unlikely as any changes in motor processing should influence responses for 

repeat and novel displays to the same degree, as both display types required identical 

response mappings for the orientation judgment. Therefore, a purely motor account cannot 

readily explain the increasingly faster RTs seen for repeated contexts compared to novel 

contexts and the interaction with cathodal stimulation.  
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Given the apparent criticisms regarding the spatial specificity of tDCS, it is reasonable 

to question whether cathodal stimulation of any brain region might explain the modulation of 

contextual cueing seen here. We rebut this point based on the fact that we evaluated and 

selected our electrode configurations a priori using tDCS current-flow modelling software. The 

patterns of current flow were distinct for the two stimulation montages, and the areas of peak 

current density were located in the respective target regions. However, given the well-known 

structural and functional connectivity between the frontal lobe and parietal lobe as part of the 

frontoparietal network (Sestieri et al., 2017), it remains possible that targeting one region may 

have modulated activity in the other region, and these changing network dynamics may have 

contributed to the effects seen here rather than changes in a local brain region. Indeed, a 

study using resting-state fMRI found that anodal tDCS targeting the left prefrontal cortex 

increased coactivations between frontal and parietal regions (Keeser et al., 2011). Future 

studies should investigate how interactions between frontal and parietal regions may 

influence behaviours relating to incidental learning, and how these may be modulated by 

brain stimulation. For now, it seems plausible that frontoparietal regions may support 

statistical learning via activation of intervening cognitive control resources supplemented by 

these regions. 

Contextual Cuing typically emerges quickly, with evidence of learning after only three 

repetitions (Chun & Jiang, 1998; Jiang & Chun, 2001; Jiang & Wagner, 2004; Zellin, 

Mühlenen, Müller, & Conci, 2014). The key finding in our study was that cathodal tDCS 

disrupted this early learning. At first, it may seem surprising that stimulation at a constant 

intensity caused behavioural changes in a limited time window of the task. Yet this makes 

sense when considering the non-linear dynamics of tDCS (e.g., Batsikadze et al., 2013), and 

the complexity of associated behavioural outcomes (Bestmann et al., 2015; de Berker, 

Bikson, & Bestmann, 2013).  

We conceptualize our result as reflecting an impairment, or a delay in learning, rather than 

complete disruption of this process. Cathodal stimulation appears to make learning the 

repeating target-context associations more difficult to begin with, but does not render learning 

impossible, given sufficient exposure to the regularities. In behavioural studies of contextual 

cueing, there is evidence of delayed learning when concurrent WM tasks are administered 

during the early learning phase (Annac et al., 2013; Manginelli, Langer, Klose, & Pollmann, 
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2013b) and when displays are associated with certain types of feedback (Tseng & Lleras, 

2012). At the neural level, reports of tDCS affecting a network without preventing it from 

operating are also consistent with our findings. Using computational modelling, a recent study 

showed that tDCS to left DLPFC altered network dynamics, which affected behaviour, yet did 

not prevent transmission of task-related neural activity (Bonaiuto, de Berker, & Bestmann, 

2016). In our study, the temporal specificity of cathodal effects may have been due to the 

recruitment of other networks to compensate for the lost functioning. It is also possible that 

processing in the targeted regions was transient rather than sustained, and thus minimally 

affected. Alternatively, homeostatic mechanisms may have compensated for the effects of 

tDCS by returning network activity to its baseline levels after a sustained increase in 

excitability (Iyer, Schleper, & Wassermann, 2003; Turrigiano, Leslie, Desai, Rutherford, & 

Nelson, 1998; Wright & Krekelberg, 2014). 

It should also be noted, that our finding of PFC involvement in contextual cueing is 

consistent with stimulation studies of other statistical learning processes. Repetitive TMS 

(rTMS) delivered to contralateral DLPFC was found to disrupt sequence learning in the SRT 

task compared to ipsilateral DLPFC and SMA controls (Pascual-Leone, Wassermann, 

Grafman, & Hallett, 1996). A later study replicated this finding showing that rTMS to DLPFC 

abolished learning compared to a parietal target, and further stipulated that this was specific 

to learning of spatial information, compared to a colour or a combined version of the SRT task 

(Robertson, Tormos, Maeda, & Pascual-Leone, 2001). Using a probabilistic category learning 

task, anodal tDCS to left PFC improved incidental learning compared to cathodal and sham 

stimulation (Kincses, Antal, Nitsche, Bártfai, & Paulus, 2004). While the processing demands 

of these tasks may be quite different from those that underlie contextual cueing, it appears 

PFC involvement is common across forms of statistical learning.  

The present results must also be considered in relation to the proposed benefits of 

reduced frontal involvement for incidental learning. As described in the introduction, according 

to this work, reduced cognitive control, mediated by PFC disengagement, is advantageous for 

tasks that involve processing bottom-up stimulus-response information (Thompson-Schill et 

al., 2009). This account might predict that disrupting the left PFC with tDCS (either from 

anodal, cathodal, or both) would improve contextual cueing, whereas we found that cathodal 

stimulation disrupted learning by reducing the early cuing contextual cueing effect. The first 

point to make here, and as noted earlier, is that we cannot be sure that cathodal stimulation 
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actually reduced activity in the target region (Batsikadze et al., 2013). Even if it did, there is 

fMRI work showing that reduced activity does not always indicate reduced involvement of a 

region (see Garner & Dux, 2015; Kok, Jehee, & de Lange, 2012), as it can also reflect 

sharper neural coding in a brain area and enhanced representations. Another point of 

difference concerns the type of tasks used. The work on hypofrontality has employed high-

level conceptual or language-based tasks. These have involved generating verbal responses 

(Chrysikou et al., 2013) or categorizing stimuli based on abstract concepts (Lupyan et al., 

2012), and were predominantly accuracy based. These tasks, no doubt, exert quite distinct 

processing demands from those recruited during visual search with speeded responses. 

Finally, this literature emphasizes a dissociation between the brain regions that support 

performance in line with current goals (e.g., distinguishing targets from non-targets) and those 

that underpin learning about the environment (e.g., forming target-context associations). 

Thus, this hypothesis might predict different response strategies for target and distractor 

processing when PFC function is disrupted. We see this as an avenue for future research into 

the potential ways that incidental learning for target-context regularities may be acted upon by 

the system.  

Conclusions 
In summary, we found that the evolution of statistical learning for configural visual 

information relies on activity in frontoparietal brain regions. These findings show for the first 

time that cortical areas are directly involved in the early emergence of the contextual cueing 

effect, and perhaps incidental learning generally. This result provides a common link between 

the frontal networks involved in explicit forms of learning, such as goal-directed training and 

intentional skill learning, and those tapped during incidental statistical learning that acts on 

higher-level information processing. Understanding the causal brain-behaviour relationships 

that support incidental statistical learning is important for developing more comprehensive 

models of how the brain computes associations between stimuli and uses this information to 

inform decisions in an automatic manner.  
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Abstract 

Visual statistical learning describes the encoding of complex patterns found in sensory 

material, and it has important functional consequences for cognition. Higher-order brain 

regions within the prefrontal and posterior parietal cortices are consistently implicated in 

neuroimaging studies of statistical learning.  Yet causal evidence for this cortical contribution 

remains limited. In a recent study, we used transcranial direct current stimulation (tDCS) to 

perturb the left frontoparietal cortex while individuals learned location-based regularities in a 

spatial contextual cueing task.  Here, we examined if the same tDCS protocol influences 

statistical learning of identity-based, rather than spatial, structure.  Across two preregistered 

experiments using large samples (N = 150, and N = 80), we measured learning of shape co-

occurrences (i.e., Fiser and Aslin, 2001) while the left posterior parietal cortex was perturbed 

by cathodal tDCS.  In Experiment 1, we employed the standard recognition test to assess 

learning offline, after participants encoded the structure, but found no effect of parietal 

stimulation compared to a sham control or to an active control region.  In a second 

experiment we developed a new task using the same identity-based structure but now 

included an online measure, during exposure, in order to assess the timecourse of learning.  

Under these conditions, we observed a stimulation effect that influenced the learning of 

identity-structure in early blocks of trials.  This finding indicates that tDCS impacts statistical 

learning across distinct paradigms and stimulus dimensions. It adds to the imaging evidence 

that supports the hypothesis that there exists a domain-general neural mechanism, comprised 

of cortical areas, that underlies statistical learning that potentially works in concert with 

subcortical memory structures. 
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Through repeated experience the human brain can form incidental knowledge about 

complex patterns in the sensory environment (Fiser & Aslin, 2001; Turk-Browne, 2014). This 

ability, termed statistical learning, is believed to be supported by a neural mechanism that is 

domain-general; a mechanism that encodes structure-rich sensory input (Kirkham, Slemmer, & 

Johnson, 2002; Perruchet & Pacton, 2006; but see Conway & Christiansen, 2005).  In support 

of this, there appears to be a common-list of brain areas that are associated with viewing or 

retrieving structure across different tasks and inputs (Batterink, Paller, & Reber, 2019). Yet 

statistical learning goes beyond tracking and storing such relationships since it can also 

facilitate ongoing cognition to produce learning.  In vision, one of the key functions of statistical 

learning is to generate implicit predictions that can benefit decision-making in the context of 

visual search (Chun & Jiang, 1998; Goujon, Didierjean, & Thorpe, 2015).  How neural activity 

directly supports these functions of statistical learning remains largely unknown.  
A prime illustration of statistical learning in human vision concerns our ability to swiftly 

recognise scenes. After a single repetition, the way we recognise new objects will be based off 

incidental encoding of the underlying probabilities between the objects/features that constitute 

the scene (Biederman, Mezzanotte, & Rabinowitz, 1982; Friedman, 1979; Henderson, Weeks, 

& Hollingworth, 1999). In their seminal demonstration, Fiser and Aslin (2001) had participants 

view a series of arrays that contained shapes arranged side-by-side in a grid.  Unbeknownst to 

observers, each shape belonged to a base-pair that had a fixed spatial arrangement over the 

course of the experiment.  Each pair was shown alongside every other possible pair, and across 

multiple locations within the grid. The question was whether people encoded these higher-order 

statistics, in this case joint probabilities, that defined the base-pairs above the other shape-

shape combinations.  

In a forced-choice recognition test, participants did indeed reliably select the base-pairs 

over foil pairs, despite not being able to report the existence of any patterns.  This was taken 

as evidence that novel objects are encoded based on statistical characteristics beyond mere 

frequency.  In subsequent experiments (Fiser & Aslin, 2002a; 2005), these authors went on to 

show that humans extract multiple higher-order statistics in parallel and, critically, that they can 

do so without an active task or feedback, leading such learning to be described as “incidental”.  

This task been used repeatedly in other work (Conway, Goldstone, & Christiansen, 2007; 

Covington, Brown-Schmidt, & Duff, 2018; Karuza et al., 2017; Luo & Zhao, 2017; Roser, Aslin, 

McKenzie, Zahra, & Fiser, 2015; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 
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2014; Zhao, Ngo, McKendrick, & Turk-Browne, 2011), and remains a prominent tool for 

assessing visual statistical learning.  

Since this pioneering work, a number of paradigms have been developed to tap the 

extraction of different types of structure from visual arrays (Fiser & Aslin, 2002b; Orbán, Fiser, 

Aslin, & Lengyel, 2008; Turk-Browne, Johnson, Chun, & Scholl, 2008b).   Another highly used 

example is contextual cuing (e.g., Chun and Jiang, 1998).  Unlike the exposure-test format 

used in the Fiser and Aslin paradigm, contextual cuing makes use of implicit cuing behaviour; 

where learning is assessed online via a difference in response times (RT) for different types of 

arrays. In the standard version of the task, observers must locate a target (often a rotated “T”) 

among an array of distractor items (rotated “Ls”) and make a decision about how the target is 

oriented; either to the left or right. In half the arrays, the locations of distractors are random, 

and this forms a control condition that tracks typical visual search behaviour. In the other half 

of arrays, the distractor locations repeat and come to be associated with a given target location, 

though not the response associated with the decision, as target orientation varies randomly 

across trials.  Over the course of exposure, response times to the repeating distractor arrays 

are expedited compared to the control, and this forms an online index of statistical processing.  

It is generally agreed that this form of contextual cuing reflects statistical encoding of the spatial 

relationships between elements in an array (Chun & Turk-Browne, 2008; Goujon et al., 2015). 

Thus, both the Fiser & Aslin paradigm and contextual cuing represent two prominent but distinct 

ways to measure visual statistical learning; one that uses identity-based structure, and another 

that uses location-based regularities. Both tasks have also been employed in neuroimaging 

work to assess the neural substrates of statistical learning.  

The Neural Substrates of Visual Statistical Learning  
The evidence to date suggests there may be distinct neural substrates for statistical 

learning depending on the types of structures that are being encoded. Much of the functional 

neuroimaging work has focused on temporal regularities of sequential regularities, such as in 

the serial reaction time task (SRT) or in artificial grammar (AGL) tasks (Abla, Katahira, & 

Okanoya, 2008; Aly & Turk-Browne, 2016; Gheysen, Van Opstal, Roggeman, Van Waelvelde, 

& Fias, 2010; 2011; Turk-Browne et al., 2008b; Turk-Browne, Scholl, Johnson, & Chun, 2010).  

These studies tend to report activation in prefrontal, motor and striatal areas which are regions 

associated with procedural learning. Passive processing of spatial structure appears to involve 

cortical regions in the posterior parietal cortex (PPC) (see Karuza et al., 2017). Using spatial 
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structure for ongoing behaviour is also associated with these parietal regions as well as regions 

in the prefrontal cortex (PFC).  For example, in the contextual cuing paradigm viewing repeat 

displays has been associated with increased BOLD activity in the left inferior parietal sulcus, 

the superior parietal lobe, and the temporal parietal junction compared to novel displays 

(Giesbrecht, Sy, & Guerin, 2013; Hall, Naughtin, Mattingley, & Dux, 2018; Manginelli, 

Baumgartner, & Pollmann, 2013; Pollmann, 2012; Pollmann & Manginelli, 2010), reflecting 

spatial learning of target-distractor regularities.  In one study (Manginelli et al., 2013) this pattern 

of activity was also associated with larger cuing magnitudes across individuals, suggesting a 

functional relationship between the parietal activity and behaviour.  

Parietal activation was similarly observed in the Fiser & Aslin paradigm. A recent fMRI 

study measured BOLD activity across three runs during passive exposure to arrays containing 

embedded pairs (Karuza et al., 2017). The researchers observed activity in a distributed 

network of bilateral parietal, occipital and subcortical areas.  This converged with the imaging 

results mentioned above for contextual cuing and suggests a common neural mechanism for 

encoding structure from spatial arrays.  But unlike contextual cuing, these changes in BOLD 

activity during encoding were not related to later recognition of the pairs. However, when 

looking at connectivity measures using task-based interregional correlations, Karuza and 

colleagues found correlations with functional behavioural outcomes.  Specifically, they 

observed a functional change between the left superior parietal lobe and the right hippocampus 

during exposure that was predictive of stronger pair recognition at test. This network fits with 

the changes to frontoparietal and the parietohippocampal networks implicated in spatial 

contextual cuing (Manelis & Reder, 2012).  Collectively, the neuroimaging work builds a case 

for the involvement of higher-cortical areas in the functional aspects of statistical learning 

beyond merely visual processing or task adaptation yet fall short of testing this directly.  

Brain Stimulation Effects on Statistical Learning 
Experiments using tDCS can uncover causal brain-behaviour links that govern learning-

related operations (Filmer, Dux, & Mattingley, 2014).  This technique involves placing 

electrodes on the scalp to deliver a weak electrical current to a target region, which has been 

hypothesised to alter membrane potentials in that area and thus the likelihood of neural activity 

(Bikson, Name, & Rahman, 2013; Dayan, Censor, Buch, Sandrini, & Cohen, 2013; Filmer et al., 

2014; Nitsche & Paulus, 2000; Nitsche, Schauenburg, et al., 2003b), though it does not directly 

evoke action potentials (Ruhnau, Rufener, Heinze, & Zaehle, 2018). Therefore, combining 
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tDCS with a task can be used to gain understanding of the causal neural dynamics that support 

a given process.  The success of this technique is evident in the domains of cognitive training 

(Filmer, Lyons, Mattingley, & Dux, 2017a; Filmer, Mattingley, Marois, & Dux, 2013; Filmer, 

Varghese, Hawkins, Mattingley, & Dux, 2017b) and motor learning (Nitsche, Schauenburg, et 

al., 2003b; Reis et al., 2009) where targeting key processing regions influenced learning by 

altering processes related to consolidation in the case of motor learning, and evidence 

accumulation in the case of decision-making training.  Whether similar effects may be observed 

for a type of incidental learning that occurs outside the motor domain has undergone limited 

investigation.   

To this end, and in the first study of its kind, we previously employed online tDCS to 

investigate direct cortical involvement in visual statistical learning (Nydam, Sewell, & Dux, 2018).  

In this experiment, participants completed a standard contextual cuing task while we targeted 

the left posterior parietal cortex or the left prefrontal cortex with anodal, cathodal or sham tDCS. 

In the sham control, cuing manifested early and was maintained throughout the task.  However, 

under cathodal stimulation this early cuing effect was disrupted, indicating a delay to learning 

by stimulation.  This was interpreted as evidence of direct frontoparietal involvement in 

processing location-based regularities.  These results aligned with two other stimulation studies 

that looked at target-context processing in contextual cuing that argued for a direct role of the 

frontal cortex (Pergolizzi & Chua, 2017; Zinchenko, Conci, Taylor, Müller, & Geyer, 2019).  

However, those studies focused on operations to do with change detection after encoding the 

arrays, rather than the evolution of learning itself. Based on this evidence that parietal regions 

process structural redundancies in spatial arrays, here, we seek to investigate whether tDCS 

of these parietal structures influences statistical learning of identity information that is spatial 

variant. 

In two pre-registered experiments, we investigated whether perturbing neural activity 

with online tDCS influences visual statistical learning applied to identity-based contingencies 

(i.e., the Fiser & Aslin paradigm).  Given the recent finding of the superior parietal lobe being 

predictive of pair recognition in the Fiser & Aslin paradigm (Karuza et al., 2017), we focused on 

this as our target region.  In addition, based on our previous findings (Nydam et al., 2018) we 

compared cathodal currents to a sham control, and to an active control region; selected to be 

the left orbitofrontal cortex (OF) because it had not been associated with visual statistical 

learning in past fMRI work.  In Experiment 1, statistical learning was assessed using the 
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traditional Fiser & Aslin (2001) method. Brain stimulation was delivered online for 15 minutes 

during both exposure and test. If tDCS was affecting a common statistical learning process, we 

expected stimulation to influence learning regardless of the task used to measure it.  

Specifically, we predicted that pair learning, indexed by above-chance recognition, would be 

modulated by tDCS indicated by a difference between the group receiving active (cathodal) 

stimulation over the left posterior parietal cortex, when compared with the sham control group 

and with the region control group (over orbitofrontal cortex).  

Experiment 1 
Preregistration 

The method and analysis were registered prior to data collection at: osf.io/7hqxe. The 

materials and data have also been made available online. 

Participants 
We recruited 150 healthy participants aged 18 – 40 years from The University of 

Queensland community, and randomly assigned them to three stimulation groups: cathodal-

PPC, sham control, cathodal-OF (active control). All were right-handed, with normal or 

corrected-to-normal vision and were eligible to receive non-invasive brain stimulation based on 

the international safety guidelines (Nitsche et al., 2008).  The sample demographics were; 

mean age = 21.1 years, 63% female, 66% glasses or contact use and mean Oldfield 

handedness score = 86%.  Prior to commencing the stimulation, the average impedance was 

8.47 mA. The study was approved by The University of Queensland Human Research Ethics 

committee and participants were paid AU$20 for a one-hour session.  The sample size of 40 

was chosen from power calculations that indicated 38 participants would be sufficient to achieve 

a power of 85%, given a medium effect size (Cohen’s d = .5) for a between-subjects effect of 

group.   The sample size was later amended to 50 per group due to an error in our 

randomisation procedure where we over assigned to one group. This was logged in the project 

registration at the time of discovery.  
Visual Statistical Learning Task 

Participants were seated approximately 63cm from a 19ʺ CRT monitor (resolution 1024 

× 768; 100 Hz refresh rate) connected to an Apple iMac computer with a Macintosh keyboard.  

The experiment was run using custom code programmed in MATLAB 2015b using the 

Psychophysics Toolbox 3 (Brainard 1997; Kleiner et al. 2007; Pelli 1997).  Due to constraints 
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in lab availability and scheduling, a portion of participants were run in a different room with a 

24ʺ ASUS nVidia LCD monitor (resolution 1920 × 1080, 60 Hz refresh rate) connected to the 

same computer, and stimuli had the same visual angle.  There was no difference in learning 

based on monitor type or room. 

Exposure Phase 
The visual statistical learning task closely followed the exposure and test method 

developed by Fiser and Aslin (2001).   As shown in Figure 1, visual displays contained black 

shape-silhouettes (3.6° visual angle) arranged in an invisible 3 × 3 grid (16° visual angle) on a 

grey background (RGB: 80, 80, 80).  For each participant, 12 shapes were randomly selected 

from a pool of 24 shapes used previously (Fiser & Aslin, 2001; 2002b) and each shape was 

assigned to one of six base pairs that each had a fixed spatial arrangement; horizontal, vertical, 

or oblique (left or right oriented).  Each array contained three base-pairs that were recombined 

with the constraint of having one from each arrangement per array.  This formed eight possible 

pair combinations that appeared in different cell locations within the grid to create 144 trials.  

Exposure trials began with a fixation dot for 1000 ms (with up to 500 ms jitter) followed by the 

display for 2000 ms and lasted eight minutes.  There was a self-paced break at the half-way 

point where participants pressed the space bar to continue.  Since no responses were required 

during the exposure phase, participants were simply instructed to view the slideshow with eyes 

open and to be awake. 

Test Phase 
After exposure, there was a surprise two-interval forced choice recognition test.  On each 

trial two pairs were shown sequentially at fixation. Participants indicated whether the first pair 

or the second pair was more familiar using index fingers to press the ‘z’ and ‘m’ keys after the 

second pair was displayed.  Participants were instructed to focus on accuracy.  Each of the six 

base pairs (e.g., AB) were compared against two foil pairs (e.g., AC and DB; as per Experiment 

1, Fiser & Aslin, 2001) in a counterbalanced order. This produced four recognition trials for each 

of the six base pairs (24 test trials in total).  Test trials begin with a fixation dot for 1000 ms, 

followed by the first pair for 2000 ms, a blank ISI of 1000 ms, the second pair for 2000 ms, and 

a screen with the key prompts that terminated upon response.  It lasted two minutes on average, 

and critically, no participant finished before the stimulation was completed.    
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Figure 1: Visual statistical learning task following the method of Fiser and Aslin (2001; Experiment 2).  (a) Each 

spatial arrays contained three of the six base pairs. (b) Participants viewed 144 arrays over eight minutes with 

passive exposure. (c) In a surprise recognition test that followed, participants were shown two pairs, presented 

sequentially, and had to select the more familiar pair. Note the green shading included here was for emphasis 

and was not part of the stimulus.  
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Transcranial Direct Current Stimulation  
Stimulation Parameters 
Across three groups we manipulated: (1) the type of current; cathodal (active) or sham 

(placebo control); and (2) the target region; the left posterior parietal cortex (PPC) or the left 

orbital frontal cortex (OF: active control).  To target the left PPC, the cathodal electrode was 

placed over the CP3 location according to the international 10-20 EEG system and the 

reference was placed over the contralateral (right) mastoid bone.  To target the orbitofrontal 

(OF) control region, we used the same reference location, but positioned the cathodal electrode 

just above the left eyebrow in line with the outer edge of the eyebrow. 

Stimulation was delivered via a Neuro-Conn stimulator connected to 5cm × 5cm rubber 

electrodes secured to the scalp with Ten20 conductive paste.  For the active conditions, 

stimulation was delivered at .7 mA intensity for 15 minutes, plus an additional 30 second ramp 

up and ramp down (900 seconds total).  We chose this stimulation protocol based on Nydam 

et al. (2018). It produced a maximum current density of .028 mA/cm2 under each electrode, well 

within the safe limits (Nitsche, Liebetanz, et al., 2003a). Sham stimulation involved 30 seconds 

of constant current plus a 30 second ramp up and ramp down (90 seconds total).  To ensure 

adequate contact of the electrodes, the scalp was lightly abraded with alcohol wipes to remove 

oil and dirt, and stimulation only went ahead if an impedance below 20 µA/cm2 could be 

achieved.   

Current-flow modelling was conducted apriori using HD-Explore software (Soterix 

Medical) to confirm distinct cortical electrical fields were produced by our two electrode 

montages.  The estimated field-intensity was concentrated in the intra parietal sulcus (IPS) 

within the left posterior parietal region (Brodmann Area 7) with the current directing up and 

outward. This was distinct to our control montage that showed concentrated currents within the 

anterior frontal region (Ba9 and Ba10), as well as the ventromedial frontal (Ba25) and inferior 

frontal gyrus (Ba45 and Ba47).  

Procedure 
Participants attended a single one-hour session. Stimulation was left to ramp up for 30 

seconds before commencing the visual statistical learning task and never finished before a 

participant had completed all trials in the recognition test.  Afterwards, participants were asked 
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to self-report: (1) whether they recognised any shape patterns during the exposure phase, (2) 

whether they noticed the existence of shape pairs during exposure, (3) and to guess whether 

they were in the active stimulation condition or the placebo condition.  We also recorded 

demographics variables of age, gender, Edinburgh handedness score (Oldfield, 1971), and 

whether they wore glasses or contacts.  

Data Analysis  
Our primary DV was accuracy on the familiarity test, indexed as the mean proportion 

correct. All frequentist statistics were run as two-tailed tests with an alpha of .05.  Bayes factors 

were calculated using an uninformative prior, namely a zero-centered Cauchy distribution with 

a scale of .7.  We considered (a) a non-directional stimulation effect since active stimulation 

could produce either facilitation or disruption (Filmer et al., 2014); (b) tDCS effect sizes are 

typically small in the literature; (c) and since we could not estimate an effect size with much 

precision we permitted a large credible interval.  We interpreted the Bayes factors according to 

Jeffrey’s classification scheme (Wagenmakers et al., 2017) whereby values between 1/3 and 3 

indicate inconclusive evidence, and values greater than 3 (or less than 1/3) indicated moderate 

evidence.  Finally, to assess successful learning in each group separately, we built null 

distributions pertaining to chance performance and compared this to the 95th percentile.  The 

distributions were built by converting individuals’ accuracy at test to deviance scores from 

chance (i.e., 65% accuracy becomes +15% deviance), randomly assigned a sign (+ or -) and 

calculated the mean over 1000 samples.  

Results  
Planned Analyses 

Learning Across the Groups 
All three groups displayed above change accuracy on the recognition test (Figure 2), 

illustrating robust a visual statistical learning effect.  Accuracy was highest in the Cathodal-PPC 

group (µ = 62.90%, σ = 9.6, SEM = 0.14), followed by Sham (µ = 60.60%, σ = 13.3, SEM = 

0.19), and was lowest in the Cathodal-OF active control group (µ = 58.80%, σ = 12.9, SEM = 

0.18. The null distribution tests revealed performance well above the 95th percentile cutoff in all 

cases.  For consistency with the visual statistical learning literature, we ran one-sample t-tests 

comparing performance to chance (50%) in each group. All were significant, t (49) = 9.471, 5.631, 

and 4.854 for Cathodal-PPC, Sham and Cathodal-OF respectively. Since the sham group 
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consisted of half the participants having had the PPC montage and the other half having had 

the OF montage, we checked for baseline differences and observed evidence favouring the 

null, t (48) = .132, p = .896, BF10 = .287 (log BF10 = −1.248), and so the following analysis were 

performed on the sham group as a whole, across both montages.  

Stimulation Effects on Learning  
Having established recognition of the pairs in all three groups, we turned to our key 

hypothesis regarding stimulation effects on learning. Using three independent samples t-tests, 

we compared: Cathodal-PPC with Sham (to assess the cathodal PPC effect); Cathodal-OF with 

Sham (to assess the control region effect); and Cathodal-PPC with Cathodal-OF (to assess any 

region effects).  Overall, we found no group differences.  Pair recognition was not significantly 

different between the Cathodal-PPC group and the Sham group, t (98) = 1.00, p = .318, d = .201, 

BF10 = .330 (log BF10 = −1.1), with the data providing weak support for the null hypothesis over 

the alternate. Similarly, recognition in the region control group (Cathodal-OF) was not 

significantly different from the Sham group, t (98) = -0.669, p = .505, d = −.134; BF10 = .259 (log 

BF10 = −1.349); the data indicating weak support in favour of the null.  There data were 

uninformative regarding the region effect that compared Cathodal-PPC to Cathodal-OF, t (98) = 

1.795, p = .076, d = .359, BF10 = .897 (log BF10 = −0.129). Overall, the results favoured null 

effects of stimulation. 

 

Figure 2. Current flow modelling and Experiment 1 results. Modelling shown for the two electrode montages 

targeting the left PPC as the region of interest and the left OF region for the active control.  Sham stimulation 
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was used as a placebo control (not shown) applied to half the group using the PPC montage and half using the 

OF montage.  Accuracy on the recognition test for each stimulation group shown with the individual (dots) and 

means (bars) data. The dotted line represents chance performance (50%) and the error bars indicate the 

standard error of the mean. 

Exploratory Analyses 
Removal of Non-learners 

Despite robust learning at the group level, a portion of participants failed to recognise 

the pairs above chance, which was 14% of the total sample.  This was compatible the broader 

VSL literature in which roughly one third of people do not show recognition (Arciuli, Torkildsen, 

Stevens, & Simpson, 2014; Siegelman, Bogaerts, & Frost, 2017; Turk-Browne & Scholl, 2009; 

Turk-Browne, Jungé, & Scholl, 2005).  Some have argued that a more representative measure 

of learning would be the total number of individuals who exhibit above chance performance 

(Siegelman et al., 2017; Siegelman, Bogaerts, Christiansen, & Frost, 2016).  In our study, a chi-

squared test indicated no group differences on this measure (four in Cathodal-PPC, six in 

Sham, and 11 in Cathodal-OF), χ2 = 4.319, p = .115; BF10 = 1.699.  Since our main hypothesis 

concerned learning we removed these individuals and re-ran the one-way ANOVA on mean 

accuracy, since this test is robust to differences in sample size.  It was not significant, F (2, 126) 

= .108, p = .898, BF10 = .082 (means: Cathodal-PPC: 64.4% > Sham: 63.4% > Cathodal-OF: 

63.8%), and the data strongly favoured the null hypothesis over the alternative.  Therefore, 

constraining the analysis to learners did not change the pattern of null results but arguably led 

to proportionally stronger support for the null over the alternative.  

Awareness Questionnaire 
It is possible that tDCS may have affected awareness of the pairs. Upon questioning, 59 

individuals (39%) self-reported they were aware.  Fewer people were aware by this measure in 

the Cathodal-OF group (26%) than the Cathodal-PPC (42%) and Sham (50%) groups, 

according to a significant chi-squared test, χ2 = 6.258, p = .044, BF10 = 2.503. Awareness 

related to accuracy as expected, with higher accuracy in aware individuals (65.5%) than 

unaware (57.7%), t (148) = −4.084, p < .001, BF10 = 285.4.  Critically, when entered into a two-

way ANOVA on accuracy, awareness did not interact with group, F (2, 144) = .546, p = .580, BF10 

= .185, with strong support for the null over the alternate. While fewer people reported being 

aware in the orbitofrontal stimulation group, stimulation did not affect accuracy based on 

awareness.   
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Discussion 

Here we used the seminal paradigm developed by Fiser and Aslin (2001) to assess VSL, 

and observed robust learning of the pairs, but there was no influence of stimulation on this 

learning.  Thus, these results stand in contrast to the stimulation effect we observed for spatial 

contextual cueing (Nydam et al., 2018).  However, there are two reasons why we may have 

failed to observe a stimulation effect here, the most obvious pertaining to how learning was 

measured.  

By asking observers which pair was more familiar at test, the Fiser & Aslin paradigm 

involves an overt familiarity judgment. Some authors have noted limitations of using such 

explicit tests to gauge implicit knowledge (Turk-Browne et al., 2005) suggesting they may tap 

conscious knowledge that is stimulus-specific (Turk-Browne, 2014) and distinct from implicit 

knowledge which involves integrating information across stimuli (Thiessen, Kronstein, & 

Hufnagle, 2013). Experimental work has also demonstrated that statistical learning produces 

both implicit and/or explicit knowledge depending on how the task is implemented (Batterink, 

Reber, Neville, & Paller, 2015; Kim, Seitz, Feenstra, & Shams, 2009; Otsuka & Saiki, 2016). 

Perhaps the clearest support this is that in contextual cuing, explicit judgments about the 

repeating arrays are dissociated from cuing behaviour since observers typically do not perform 

above chance on recognition tests (Chun & Jiang, 1998; 2003), but see (Smyth & Shanks, 

2008).  Indeed, we previously observed that tDCS influenced contextual cuing but had no effect 

on recognition.  It is possible a testing method that instructs participants to recognise structure 

may tap a different aspect of statistical knowledge compared to cuing, and this may explain 

differences in stimulation effects across the two tasks.   

A second more parsimonious explanation is that the recognition test lacked sensitivity to 

changes in learning that evolve over time. The exposure–test format represents a persistent 

shortcoming in statistical learning paradigms across the visual, motor and language domains 

that has been noted by other authors (Siegelman et al., 2016; Turk-Browne, 2014).  When 

learning is only assessed once at the end of the trials, an offline measure may miss critical 

aspects of learning that are dynamic, operate earlier in time, or are transient. Indeed, Nydam 

et al. observed only transient disruption, with cuing eventually reaching the same magnitude 

across all stimulation conditions.  Therefore, it seems plausible that the recognition test may 

have missed an influence of tDCS on pair learning that occurred early during exposure and 

may have similarly reached an asymptote by the time learning was measured. Given our 
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primary interest in the functional consequences of visual statistical learning, we decided to 

create a new task using the same shape-pair stimuli but with an online measure of learning that 

would be sensitive to the potentially dynamic nature of tDCS effects.   

Experiment 2  
The second experiment set out to determine whether an online measure of learning of 

identity structure would reveal causal involvement of cortical areas where an offline measure 

could not. To do this, we borrowed from the contextual cuing paradigm since it provides an 

online index of learning that is dissociable from practice effects and motor 

learning.  Furthermore, the gap between cuing for spatial and identity structure has already 

been bridged by existing variations of the paradigm that used identities to define distractor 

and/or target features (Chun & Jiang, 1999; Endo & Takeda, 2004).  Thus, we married the 

probability structure from the Fiser & Aslin paradigm with an incidental cuing task to create 

our new online measure of VSL.   

The new task retained the same pair-structure from Experiment 1 by making the Fiser 

& Aslin arrays serve as distractors.  A target was added so that observers could perform a 

visual search task to provide a response time measure across 12 blocks (collapsed into 3 

epochs).  To measure how statistical learning affected ongoing behaviour, we associated the 

distractor identity arrays with a given target location. Each array was defined by a unique set 

of three base pairs that formed a subset of identities where the locations of the items was 

would change for each repetition. In this way, it was the identity of distractor items that was 

predictive, rather than their locations. From piloting, we observed robust cuing in epochs two 

and three that was approximately 80 ms in magnitude, comparable to spatial contextual cuing 

studies.  With tDCS, we targeted the same region, the left posterior parietal cortex, using 

cathodal currents applied with the same parameters and compared this to a sham control.  

Our primary hypothesis the same as in Experiment 1, namely that learning under active 

(cathodal) stimulation would differ from learning under sham; indicative of a stimulation effect. 

With our task now designed to be sensitive to a learning trajectory we also made a second 

hypothesis, informed by the results from contextual cuing: that the effect of tDCS would be 

different early on compared to later in the task.  
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Method 
Participants 
Once again, our design, hypotheses and analysis plan we registered prior to data 

collection [osf.io/7hqxe].  A total of 84 participants were recruited, but four were excluded prior 

to analysis: two failed to learn the appropriate key mappings; two experienced technical errors 

with the stimulator, one ran out of battery and the other could not achieve sufficient electrode 

contact on the scalp to begin stimulation.  This left a final sample of 80 participants (mean age 

= 20.43 years, 65% female, 36.25% glasses or contact use, mean Oldfield handedness score 

= 84.49%, mean Impedance = 16.95 mA). 

 

Figure 3. The online VSL task used in Experiment 2. (A) The stimuli were the same as Experiment 1 involving 

six distractor pairs (A, B, C, D, E, F) plus a seventh target-pair assigned to each individual. (B) Participants 

performed a visual search task where they had to locate the target-pair (shown circled in red or blue) and 

respond to its orientation using a 2AFC.  On each trial, the target pair appeared among three different distractor 

pairs, each presented twice, to form a distractor subset that was defined by item identities. (C) In the repeat 

condition, a given distractor subset (e.g., A, B, C) was consistently associated with a target location. In the novel 

condition, the association between subset (e.g., A, E, F) and target location was inconsistent meaning the 

subsets did not cue any information about the target. Note that while each shape item belonged to a single pair, 

each pair belonged to multiple subsets – meaning it was the specific combination of distractor pairs in a subset 

that was predictive (or non-predictive) of the target location. Red and blue circles and borders are for illustrative 

purposes and were not visible in the task.  
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Online Visual Statistical Learning Task 
Stimuli 
In order to make search appropriately difficult, we doubled the number of items in each 

array which required enlarging the grid from 3 × 3 to 5 × 5 cells. The visual displays contained 

back shape-silhouettes arranged into six distractor-pairs and one target-pair (Figure 3).  The 

shapes used across participants were randomly selected from a pool of 24 shapes. Because 

the shapes had different surface areas, it was important to prevent equate size for shape sin 

the target pair, so that one shape was not more salient than the other, which could produce a 

pop-out effect for one shape in the target. To address this, we sorted shapes based on total 

pixels before generating the target-pairs. The task was to find the target-pair and report the 

arrangement of shapes which was always on a diagonal with; either “shape A above B” or 

“shape B above A”, responding with the ‘z’ and ‘m’ keys using index fingers on each hand. 

(Note an observer could conceptualize this task as to report whether “shape A was above” or 

“Shape B was above” once they found the target pair. Regardless, task was to find two adjacent 

shapes and respond to a feature of that object pair (integrated across the space of two objects). 

Participants practiced the response-mapping across 24 practice trials. 

While searching for the target pairs, observers encountered sets of distractors that were 

comprised of the sets of three base-pairs on each array in the Fiser & Aslin paradigm used in 

Experiment 1). To make the display more crowded, each base-pair was shown twice. This 

formed 8 distractor sets for repeats, and 8 for novel. Over the course of blocks, the repeat sets 

appeared with the fixed identities, but in ever changing locations., and the set cued the location 

of the target pair. In non-predictive displays, the same sets repeated but varied in relation to 

the target position. The number of target locations used in the predictive and non-predictive 

conditions was matched.  

To create cuing, contingencies were embedded between the target’s location and the 

distractor identities.  As with the Fiser & Aslin task, each array contained one base-pair from 

each spatial arrangement - horizontal, vertical, diagonal - which were recombined to form 

sixteen possible subsets.  Eight of the subsets were assigned to the repeat condition, where 

they appeared with a fixed target location. The other half of subsets was assigned to the novel 

condition where the relationship between subset and target location was variable.  It is worth 

noting that the novel condition contained the same six base-pairs as in the repeat condition, it 

was the specific subset of pairs that defined a repeat or novel context. This meant that simply 
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learning the pair structure alone was not sufficient to produce cuing of the target location. 

Number of target locations was matched in repeat and novel conditions.  

Trials began with a fixation cross for 500 ms (jittered between 100 and 500 ms), followed 

by the search display for 3000 ms.  If participants had not responded in the allotted time, a 

prompt screen appeared until response, followed by a blank ITI for 500 ms. Trials were 

arranged into 16 blocks of 16 trials (eight repeat and novel per block).  The script would pause 

every second block for a break and provide accuracy feedback.  Participants were encouraged 

to maintain accuracy above 85%.  The apparatus was the same as Experiment 1: a 19ʺ CRT 

monitor (resolution 1024 × 768; refresh rate of 100 Hz) connected to an Apple iMac computer, 

with participants seated unrestrained approximately 63 cm from the screen.   

Brain Stimulation 
Given the null effect for orbitofrontal stimulation, we removed this group and focused on 

cathodal currents over the left posterior parietal cortex compared with sham stimulation. We 

used same stimulation montage and parameters from Experiment 1, namely .7mA for 15 

minutes delivered online.  This design with only one stimulation montage meant we could 

employ a double-blind procedure where the experimenter did not know the type of stimulation 

being delivered.  Participants were randomly assigned to receive cathodal or sham stimulation 

upon arrival using a custom MATLAB script that output a secret 5-digit code which the 

experimenter used to run the stimulator without having to know the group allocation.  

Procedure 
Participants attended a one-hour session where they completed a brief practice of 15 

search trials before commencing 16 blocks of the online statistical learning task with concurrent 

(online) stimulation for 15 minutes.  After the stimulation, the electrodes were removed from the 

scalp, and participants completed the same recognition test on the embedded pairs as in 

Experiment 1. Note that the familiarity test done was offline.  Finally, participants answered 

some open-ended questions that probed their awareness of the subset patterns, the stimulation 

type (sham control or active), then were debriefed and paid $20 for time and travel.  
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Figure 4. Experiment 2 results. Online visual statistical learning in the two stimulation groups with the data 

shown across (a) epoch and (B) block. (C) Cuing magnitude each across epoch for stimulation group. (D) 

Recognition of the base-pairs after stimulation was not affected by stimulation. Error bars indicate within-subjects 

standard error of the mean. 

 
Results 

Planned Analyses 
Stimulation Effects on Learning 
Looking across the blocks (Figure 4, panel B), we saw that response times became 

increasingly faster in the repeat condition relative to the novel condition. This pattern was 

observed in both the active (cathodal) stimulation group and the sham control group in line with 

the expected identity-cuing effect. As per our preregistration, the data were collapsed into 

epochs for analysis (Figure 4, panel A) and a 3-way ANOVA was run with the factors: Trial Type 

(Repeat or Novel), Epoch (1 to 3), and Stimulation (Active or Sham). There were main effects 

of Trial Type, F 1, 78 = 17.05, p < .001, ηp
2 = .18, BF10 = 2.47, and Epoch, F 2, 156 = 67.10, p < 

.001, ηp
2 = .46, BF10 = 1.29e+42 and, critically, the Trial Type × Epoch × Stimulation interaction 

was significant, F 1, 78 = 17.05, p < .001, ηp
2 = .18, BF10 = 12.67. This indicated an effect of 

stimulation on the temporal evolution of learning (i.e., the Trial Type × Epoch effect) as 
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predicted. To follow-up how stimulation was influencing learning, we ran planned 2-way 

ANOVAs with factors Trial Type and Epoch for each group separately.  

In the sham group, learning was characterised by a Trial Type × Epoch interaction, F 2, 

78 = 5.023, p = .009, ηp
2 =  .114, along with main effect of Trial Type, F 1, 39 = 8.473, p = .006, 

ηp
2 =  .178, a main effect of Epoch, F 2, 78 = 33.19, p < .001, ηp

2 =  .460.  The interaction reflected 

that cuing was not present in Epoch 1, t 39 = −.604, p = .549, BF10 = .291, but emerged later 

and was robust in Epoch 2, t39 = −3.531, p = .001, d2 = −.558, BF10 = 56.905, and Epoch 3, t 39 

= −3.459, p =.001, d2 = −.547, BF10 = 47.502. The magnitude of the cuing benefit was 61 ms 

for Epoch 2 and 78 ms for Epoch 3, and both were accompanied by Bayes Factors that strongly 

favoured this effect over the null.   

In comparison, learning in the active stimulation group followed a different pattern. There 

were main effects of Trial Type, F 1, 39 = 8.595, p < .001, ηp
2 = .181, and Epoch, F 2, 156 = 34.761, 

p < .001, ηp
2 = .471, but no Trial Type × Epoch interaction, F 2, 78 = .202, p = .817. Instead, 

identity-cuing was already robust by Epoch 1, t 39 = −2.571, p = .014, d2 = −.406, BF10 = 6.042, 

and remained so for Epoch 2, t 39 = −2.726, p = .010, d2 = −.431, BF10 = 8.424, and Epoch 3, t 

39 = −2.545, p = .015, d2 = −402, BF10 = 5.732. The magnitude of cuing was comparable to 

sham, being 65 ms, 50 ms and 58 ms across the epochs, and the Bayes Factors favoured a 

cuing effect over the null in all cases.  

In summary, the results show that there was an effect of stimulation on learning, and the 

effect was driven by earlier emergence of identity-cuing during active stimulation compared to 

the sham control.  

No baseline differences between groups 
There were no baseline differences between groups, either in terms of mean RTs in 

block 1, t 78 = .342, p = .733, or the cuing effect in block 1, t 78 = -.0007; p = .994. This 

suggests the tDCS effect cannot be explained by existing differences between the groups. 

No effect of stimulation on overall RTs 
When collapsing across Trial Type to look at overall RT effects, there was an increase 

across block, F 2, 78 = 25.563, p <.001, but no main effect of stimulation, F 1, 78 = .184, p =.669, 

nor an interaction with stimulation, F 2, 78 = .381, p =.683. This means the effect of tDCS on 

behaviour could not be explained by a general effect on procedural learning in the visual 

search task. Instead it was selective to statistical learning, being the difference between 
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predictive and random conditions. Furthermore, the overall RTs for Epoch 1 did not differ 

across the stimulation groups, t 78 = .342; p = .762, and so only the cuing magnitude was 

affected by stimulation in Epoch 1. 

No effect of stimulation on Errors  
Accuracy was at ceiling being consistently above 90%, and no individuals were below 

the 75% exclusion cutoff. There was a main effect of Trial Type, F 1, 78 = 8.021, p =.006, ηp
2 = 

.093, and Epoch, F 1, 78 = 5.670, p = .004, ηp
2 = .068, to show that performance became more 

accurate over time and was both faster and more accurate for Repeats than Novels. Stimulation 

did not affect accuracy, as no other effects were significant (all other ps > .215).  This confirmed 

there was no speed accuracy tradeoff with cuing or with the stimulation effect.  

General Discussion 
We investigated the causal involvement of cortical brain activity that had been 

associated with the process of statistical learning in spatial arrays. Across two experiments we 

used cathodal tDCS to perturb the left posterior parietal cortex while participants were exposed 

to visual arrays that contained an identity-based structure, while controlling for location-based 

regularities. When the learning was assessed offline, using a recognition test after passive 

exposure, we could not detect a cathodal tDCS effect compared with a sham control or an 

orbitofrontal region-control.  However, when statistical encoding was assessed online, over the 

course of exposure, tDCS did influence learning with identity-based structure. This 

demonstrated a generalisation of our previous tDCS effect observed using a different location-

based paradigm.   These results support the hypothesis that activity in the left PPC is causally 

involved in a functional visual statistical learning mechanism.  

Experiment 2 investigated whether the null finding in Experiment 1 related to the “one-

shot” test used at the end of exposure.  By creating an online measure, we observed that tDCS 

did influence the statistical learning process.  Specifically, cathodal stimulation over the left PPC 

produced an earlier cuing effect compared with sham. The effect of active stimulation cannot 

be explained by persisting differences in RTs or cuing between groups at block 1. Nor do they 

reflect a speed/accuracy tradeoff, since stimulation had no effect on accuracy. Our results do 

not reflect the impact of stimulation on general task performance, since tDCS did not affect 

overall RTs. Rather it specifically altered the difference between RTs to repeat and novel arrays 

and how this difference evolved over time.  We therefore conclude that administering tDCS 
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over the left PPC influences a general statistical learning process given a behavioural measure 

that is sensitive to behaviour over time.   

This result is consistent with the finding that frontopatietal areas were directly involved 

in statistical learning that was assessed by spatial contextual cuing (i.e., Nydam et al., 2019). 

Attempts by other authors to generalise findings about statistical learning across different tasks 

and testing methods have been criticised in the literature largely because such aspects may 

change what is being learned about an underlying structure (Bays, Turk-Browne, & Seitz, 2016; 

Turk-Browne et al., 2005; Turk-Browne, Isola, Scholl, & Treat, 2008a).  Considering these 

criticisms, it was important to empirically examine whether tDCS would influence statistical 

learning using a different measure. The combination of both results strengthens the causal 

evidence that cortical activity is directly implicated in a general visual statistical learning 

process.  Such evidence supports claims from the imaging literature that higher-order cortical 

regions in the posterior parietal lobe process information in a way that directly contributes to 

the functional aspects of incidental learning.  The current work also extends on this by 

suggesting a critical time window for when such perturbing activity may have the greatest 

impact on behaviour. 

Stimulation affected learning early on. This mirrored the early time window observed for 

contextual cuing (Nydam et al., 2018), although the finding was in the opposite direction here 

(i.e., benefit vs. disruption).  It is worth considering how such a selective or a dynamic effect 

may arise when tDCS delivers a constant current throughout. Despite this fixed parameter, 

tDCS effects on excitability measures, such as motor evoked potentials using TMS, tend to be 

non-linear across time (Bonaiuto, de Berker, & Bestmann, 2016). So one explanation for the 

present results is that they reflect changes to excitability that were dynamic in the relevant 

regions. Such changes may also be produced by task-based activity related to the encoding of 

statistical structure itself. Functional connectivity measures in fMRI identified a hippocampal-

parietal network that had a similar profile. Compared to baseline, there was an early increase 

in connectivity, followed by a later decreased, and this was reported independently for two 

different statistical learning tasks (Karuza et al., 2017; Manelis & Reder, 2012).  A similar 

network dynamic has been reported using temporal regularities (Turk-Browne et al., 2010), 

possibly as part of a domain-general mechanism (Batterink, Paller, & Reber, 2019). Moreover, 

in one study, learning behaviour was more strongly related to the early activity change 

(Manginelli et al., 2013), pointing to the functional role that would be in line with the present 
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result. What do these early dynamics mean for statistical learning more generally? There are 

two models of statistical learning that could explain such a dynamic trajectory. The two-stage 

model offers a potential explanation based on a role of selective attention (Turk-Browne et al., 

2005) which has been found to have a decreasing role over time. A more recent but related 

framework proposes that statistical learning can be decomposed into an early extraction stage 

followed by a later integration stage (Thiessen et al., 2013).  Relating these ideas back to the 

present work, stimulation may have produced the most noticeable changes during such an 

early active stage. This could be manipulated experimentally in future work, by commencing 

tDCS after different amounts of learning have been allowed to see if stimulation still exerts an 

early effect after which time an active stage should be completed.  

Despite both contextual cuing and identity-structure showing an early effect, the direction 

of the effect was opposite. Cathodal stimulation reduced or delayed contextual cuing but 

facilitated or expedited learning in Experiment 2 of this study. Such variability is consistent with 

the broader tDCS literature since cathodal currents may produce both facilitation and 

impairment. For example, studies have reported enhancements for cathodal tDCS in the 

domains of visuospatial attention (Bolognini et al., 2010; Sparing et al., 2009), language 

acquisition (Flöel et al., 2008; Meinzer et al., 2012), working memory (Fregni et al., 2005; Ohn 

et al., 2008; Zaehle et al., 2011), and recognition (Luo, 2017). Meanwhile, disruption has been 

shown for decision-making tasks (Filmer et al., 2013). Adding to this complexity is the fact that 

tDCS-induced changes interact with task-generated activity.  Meaning the task-based activity 

recruited by spatial-structure versus identity features may be distinct. Broadly speaking, the 

difference in directionality embodies active and open debate concerning how to relate tDCS 

effects to measured behaviour (Bestmann, de Berker, & Bonaiuto, 2015) that is beyond the 

scope of the present study.  

So far, we have pitched visual statistical learning as an umbrella term for how encoded 

statistical characteristics come to alter cognition in meaningful ways (Conway & Christiansen, 

2006; Perruchet & Pacton, 2006; Thiessen et al., 2013).  Yet we acknowledge there is ongoing 

deliberation about whether statistical learning represents as a single, unitary construct 

(Erickson, Kaschak, Thiessen, & Berry, 2016) or one involves multiple, independent operations 

(Bays et al., 2016; Frost, Armstrong, Siegelman, & Christiansen, 2015).  What has become 

apparent is that statistical encoding draws on a range of cognitive processes and associated 

neural mechanisms.  In search displays, statistical encoding has been found to be modulated 
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by selective attention (Turk-Browne et al., 2005), top-down control of eye movements (Ball, 

Lane, Smith, & Ellison, 2013; Bardi, Kanai, Mapelli, & Walsh, 2013), factors relating to grouping  

(Baker, Olson, & Behrmann, 2004; Olson & Chun, 2002) and working-memory (Berryhill, Wencil, 

Branch Coslett, & Olson, 2010; Marián, Szőllősi, & Racsmány, 2018). Whether or not 

stimulation was exerting its influence via such moderators remains unclear.  Alternatively, 

stimulation may alter explicit goal-directed behaviours that interact with statistical encoding. In 

line with this, cathodal stimulation of the right parietal cortex has been found to influence visual 

search (Ball et al., 2013; Ellison et al., 2014). We see these as avenues for additional enquiry. 

Experiment 2 employed a double-blind procedure for the stimulation intervention. This 

meant we could be confident that the results were not due to extraneous systematic differences 

between active stimulation sessions and the sham control sessions. That being said, we cannot 

yet make definitive conclusions about the specificity of the parietal region without an active 

regional control. One possible alternative explanation may be that anodal currents from the 

reference electrode were producing the increased cuing compared to sham. We find this 

unlikely for the following reasons.  Firstly, the mastoid is considered an appropriate non-brain 

reference in tDCS studies as it sits over a thick bony part of the skull where fewer currents may 

penetrate. Indeed, our current flow modeling supports this since the areas with the most 

concentrated current were under the cathodal electrode not the anodal reference. Also, a 

selective influence of cathodal currents in this montage was evident from our previous study 

which directly compared anodal currents and found they were not different from sham. Thus, it 

is parsimonious and valid to argue that changes in the target area under the cathodal electrode 

were responsible for the effects observed here. 

An interesting implication of our results for understanding brain function concerns the 

complexity that is characteristic statistical learning.  An important contribution of the Fiser and 

Aslin experiments were that they demonstrated the capability to encode high-dimensional 

patterns beyond mere frequencies, such as combinations of joint probabilities, transitional 

probabilities, and hierarchical relationships (Fiser & Aslin, 2001; 2005). In spatial contextual 

cuing, the structure comes from multi-object layouts that repeat. Relying on this instantiation of 

statistical structure alone may be limiting since we know that statistical learning is optimised for 

complex relationships found in real world events, a prolific example being language. Thus, by 

showing the same tDCS effect applied to joint probability relationships, our results instantiate a 

key feature of statistical encoding that concerns complexity beyond marginal probabilities (i.e., 
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frequencies) or repetition.  An important direction for future work would be to probe whether the 

same cortical activity remains important beyond joint probabilities to more complex community 

structures – as has been successfully applied to understanding hippocampal involvement (Aly 

& Turk-Browne, 2017; Schapiro, Kustner, & Turk-Browne, 2012; Schapiro, Turk-Browne, 

Norman, & Botvinick, 2016). This would relate statistical learning to some recent work on the 

functional organisation of the frontal cortex for representing abstraction of spatial regularities 

(Wang et al., 2019). 

Conclusions 
Using online tDCS we have demonstrated how visual statistical learning for identity 

structure is altered by perturbing activity in a key parietal processing region.   These findings 

further establish causal evidence of a broader cortical network, beyond the sensory and medial 

temporal lobe areas, that is directly involved in statistical processing, in line a domain-general 

memory system.  Most interestingly, our findings converge on an early locus of influence that 

is overcome with continued exposure. These results add to our understanding about how the 

brain produces incidental learning across different types of visual input and task settings.  
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Summary of the Research Findings 
 

The overarching aim of this thesis was to examine the neural substrates involved in 

incidental learning via experience with statistical regularities from the environment. It focused 

on the question of direct cortical involvement on statistical learning that applied to visuospatial 

input. I explored the causal modulation of cortical activity by tDCS and measured tDCS-

induced changes to learning and the timecourse of these changes. Based on the 

neuroimaging data, tDCS was delivered over two key brain regions in the left frontal and left 

parietal lobes. The statistical learning process was assessed using a number of behavioural 

paradigms, including two paradigms that are highly popular in the literature – Contextual 

Cuing, introduced by Chun and Jiang and Visual Statistical Learning from Fiser and Aslin – 

and a new paradigm that combined elements of both to measure online cuing based on 

identity. The question of whether or not tDCS causally modulates incidental learning was 

addressed by comparing bidirectional currents (Chapter 3) targeting different brain regions 

(Chapter 3 and Chapter 4), and, where this was not feasible, a double-blind-sham-control 

procedure was employed (Chapter 4, Experiment 2).  

In pursuit of the larger goal, the study reported in Chapter 2 examined the temporal 

dynamics of information processing in the Contextual Cuing task. The key aim was to 

investigate the capacity of the system to learn regularities when processing time was 

controlled by masking. It also served to determine task parameters that could produce robust 

statistical learning within the time window required for online delivery of stimulation in the 

subsequent studies. Compared to standard contextual cuing tasks where visual displays 

terminate upon response at around 1000-2000 ms, I truncated visual exposure to 300 ms and 

disrupted further processing with masking. In Experiment 2, we observed evidence of a rapid 

statistical learning mechanism which could produce an increasing accuracy benefit for repeat 

displays. This complimented work showing that contextual cuing affected information 

processing and was effective at this timescale (e.g., Chun and Jiang, 1998; Experiment 5), 

after learning with longer displays. However, this rapid learning exhibited a capacity limitation 

(Experiment 1a) that was not observed with the typical 2000 ms display durations 

(Experiment 1b). Together, these findings implied that statistical learning could be robust and 

capacity limited. It was robust to disruptions in the time available to process information. But 

limited in the ability to benefit from set of larger set of information when given a brief glance. 



 

 

 140 

The first tDCS study is reported in Chapter 3 (Nydam, Sewell & Dux, 2018). It 

investigated cortical involvement in statistical learning with spatial regularities. This study had 

two key aims: to determine whether tDCS-modulation of cortical activity could affect statistical 

learning; and if so, determine how tDCS effects related to polarity and target region. 

Motivated by fMRI work on contextual cuing, which implicated the IPS, TPJ and IFG regions 

of the left Frontoparietal network, we explored whether targeting the left PFC and left PPC 

with tDCS would affect learning directly. Across six groups, we delivered cathodal, anodal and 

sham currents to two target regions. Cathodal currents disrupted the contextual cuing relative 

to the reverse polarity (anodal) and to the sham control. This provided the first causal 

evidence that brain activity in cortical areas was directly contributing to the dynamics of 

statistical learning in the contextual cuing paradigm. When exploring this tDCS-induced effect, 

it appeared to reflect a delay in learning rather than complete disruption. The early cuing 

effect, which typically emerges in the first 4 blocks, was attenuated during cathodal 

stimulation. But the cuing that emerged later on, in blocks 5-12, was unaffected by tDCS and 

of a comparable magnitude to the sham group. This finding built on the neuroimaging 

evidence to provide causal data on frontoparietal involvement in statistical learning.  

In studying the process of statistical learning, it was important to use other tasks to 

demonstrate that effects can generalise and do not simply reflect a specific stimulus or 

response mapping. With this in mind, Chapter 4 investigated casual modulation of cortical 

activity using the visual statistical learning task by Fiser and Aslin. This task also uses spatial 

arrays with simultaneously presented items, but the embedded regularities are derived from 

the identity of items (i.e., shapes in base-pairs) while controlling for their location. Taking the 

relevant neuroimaging work on this paradigm (i.e., Karuza, 2017), and combining it with the 

findings from Chapter 3, we focused on the effect of cathodal currents over the IPS region of 

the left parietal lobe. In a large sample, I compared three stimulation groups who received 

either cathodal currents over the left PPC, cathodal currents over the orbitofrontal cortex (OF: 

a region control), or sham stimulation (placebo control). Using the exposure-test design, 

Experiment 1 showed learning via above-chance recognition of the pair-identity structure at 

test. Learning was reliable in all three groups, being highest in the PPC group, followed by 

sham, followed by the OF group. However, learning was not modulated by tDCS. In fact, 

according to the Bayes Factors, the data favoured a null model for the cathodal effect of PPC 
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stimulation compared with sham and was uninformative regarding the region difference 

between the PPC and OF stimulation.  

Because learning is only assessed once and at the end of the trials in the standard 

Fisher and Aslin paradigm, Experiment 2 investigated whether this may have missed 

stimulation effects that occurred earlier, during exposure. I developed an online measure that 

would be sensitive to temporal evolution of learning. It was based on the cuing task used in 

Chapter 3. Active (cathodal) stimulation was compared to sham using a randomized, double-

blind design. I predicted a differential effect of tDCS early on compared to later on based on 

the effects observed in Chapter 3. As predicted, stimulation did affect learning, and was 

selective to the early time window; consistent with the temporal dynamic observed for spatial 

contextual cuing. But unlike the delay caused with spatial-cuing, here the stimulation 

expedited learning, driven by earlier emergence of identity-cuing relative to sham. These 

results provided evidence that the tDCS-induced effects on statistical learning could 

generalise across tasks, though their effects may differ depending on the learning task. 

Furthermore, as cathodal tDCS over parietal cortex affected both location-based learning in 

contextual cuing, and identity-based learning here, this provided preliminary evidence to 

suggest the parietal cortex may be causally involved in visual statistical learning.  

 

Implications of the Research Findings 
 

The Frontoparietal Cortex Plays an Interfering Role in Statistical Learning  
 

This thesis leveraged the known modulatory effects of tDCS to make causal links 

between brain function and behaviour. Across two studies, we found converging evidence 

that modulating activity in the frontoparietal network changed the way statistical regularities 

guide attention and decision-making. The studies in Chapter 3 and 4 show that the left PFC 

and the left PPC This finding expanded on fMRI studies showed associated activity in such 

regions by providing causal evidence to suggest a direct role of such activity in producing 

incidental statistical learning behaviours. Previous studies had used TMS to show frontal 

involvement in implicit sequence learning {PascualLeone:1996fj, Janacsek:2015bi} and 

related it to the role of fronto-striatal network in procedural motor learning {Goldfarb:2016ir, 

Rieckmann:2010ia}. We focused on learning that occurred outside the motor system. We 
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targeted targeting the left IPS in the frontoparietal network, based on a mass of evidence 

showing related activity in this region. We did not investigate the effects of stimulating other 

parts of this highly connected system, and so it remains possible that tDCS-effects on visual 

statistical learning could be uniform across the cortex, regardless of the area targeted. 

However, when considering the neuroimaging evidence, and the surprising functional 

specificity of our effects on learning (and not on procedural learning or response operations), 

this becomes less likely.  

The present findings expand scientific knowledge concerning the causal role of cortical 

activity in incidental forms of learning and memory. While both previous studies had focused 

on an imposed dualism between explicit and implicit learning and memory (O’Reilly, 

Bhattacharyya, Howard, & Ketz, 2014), the evidence from functional neuroimaging provided a 

link between cortical control areas and implicit learning. Using causal neuromodulation 

techniques, the present work builds on that evidence by showing that frontal and parietal 

activity contributes to directly learning dynamics. Our results could not be explained by a 

change in motor learning of response-mapping or a general change in procedural learning. 

Instead the tDCS effect was specific to the difference between repeat and novel responses 

over time. These observations provide novel evidence to support the proposal of a direct role 

for cortical control areas in implicit memory-guided behavior. The two observations that tDCS 

affected learning early on is consistent with an influence of these regions in the formation of 

statistical learning. This evidence is consistent with the idea that statistical learning is 

governed by a distributed network in the brain that involves hippocampal, sensory and 

cognitive control circuits.  

 

What the tDCS Effects Reveal About a Cortical Mechanism 
 

Stimulation modulated learning in a task-dependent manner. The same stimulation 

montage, with cathodal currents over left PPC and anodal currents over right mastoid, both 

disrupted and facilitated statistical learning depending on the task. Recall that in Chapter 3, 

tDCS delayed cuing by spatial regularities, but in Chapter 4, tDCS expedited cuing by identity-

based regularities that controlled for spatial location. Observing opposing effects on cuing by 

the same stimulation protocol may point to some explanations for how the targeted brain 

region may be contributing to statistical learning. As stated throughout, the cathodal-inhibition 
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model of tDCS effects on the brain is over-simplified and cannot explain such task-dependent 

results. Many empirical studies have observed non-linear effects of cathodal tDCS on brain 

activity across dose and time (for a review, see: Filmer, Dux, & Mattingley, 2014), and a 

number of authors have emphasized that the simplified model is inappropriate for explaining 

effects at the level of behaviour (Bestmann, de Berker, & Bonaiuto, 2015; Bonaiuto, de 

Berker, & Bestmann, 2016).  

Instead, there is an emerging body of literature showing that tDCS effects are 

contingent on state-based or task-based activity. Studies that assess brain activity during or 

closely before and after stimulation reveal that way tDCS modulates network activity depends 

on the task (Li et al., 2019; Saiote, Turi, Paulus, & Antal, 2013). The present results would be 

consistent with such an account. Whether such cortical activity may reflect explicit knowledge 

that occurs alongside statistical learning is a question for future studies. This thesis focused 

on the way regularities come to be used incidentally, without instruction or feedback, and so 

such a discussion would be largely discursive and beyond the scope of the present findings 

which were not designed to test the nature of such knowledge. Instead, it is clear that tDCS 

over parietal regions affected the acquisition of regularities across two experiments (Chapters 

3 and 4). According to the contemporary notion of tDCS effects on behaviour (i.e., beyond 

cathodal-inhibition accounts), there are two ways that stimulation over the same brain region 

could produce opposing effects on the operations it governs. One such way is by disrupting 

systems within the target region.  

Rather than simply modulating the parietal cortex as a single, functional node, a sub-

system account might suggest the regions within the targeted parietal cortex were 

differentially recruited by the task material. Systems within the parietal cortex are known to 

have different functional roles. Recall that the effects of tDCS on behaviour are a combination 

of task-based activity with tDCS modulations of excitability. According to this view, exposure 

to identity-based and spatial-based regularities may have engaged different functional 

systems within the parietal cortex, that when combined with the modulatory effects of tDCS, 

could have produced different net changes to activity and resulted in different behaviour. This 

sub-systems account would explain the effects we observed as a function of an interaction 

between task-evoked activity and tDCS-induced modulation. Such interactions are beginning 

to be explored in other work. For example, combining tDCS of the right-IFG and fMRI showed 
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that the same polarity of stimulation had different effects on brain activity depending on the 

brain state (either simple choice task or no task; Li et al., 2019).  

 

Was the Hippocampus Mediating Our Results? 
 

It is worth considering the present results against a growing body of literature suggests 

the hippocampus is important for the rapid extraction of structure (Schapiro, Turk-Browne, 

Botvinick, & Norman, 2016a; Schapiro, Turk-Browne, Norman, & Botvinick, 2016b; Turk-

Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, Scholl, Johnson, & Chun, 2010). One 

may wonder if tDCS may have produced current flow in subcortical regions, which would 

provide an alternative explanation for the observed results. The stimulation protocol placed 

the cathodal electrode over the left PPC and the return electrode over the contralateral 

mastoid and was delivered at .7mA. Studies show that 1mA applied to the scalp induces 

currents of .04V/m in the cortex (Huang et al., 2017) and that currents measured to be 

between .03 and .07V/m in monkeys have important effects on neural physiology and 

behaviour (Krause et al., 2019; 2017). It is unlikely that our stimulation produced sufficient 

current flow in deeper, subcortical structures to have had direct modulatory effects on the 

hippocampus. However, the effects of tDCS on brain function are more complex than 

originally thought (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013), and stimulation over 

targeted areas of cortex can yield widespread changes in areas across the brain.   

Studies that combine tDCS and fMRI are beginning to shed light on this issue. For 

example, tDCS to the motor cortex during an SRT task produced activation changes in 

different networks, and these depended on the polarity of stimulation (Stagg et al., 2009). 

Anodal tDCS increased activity in a motor network including the preSMA, whereas cathodal 

tDCS altered a motor network that included the PPC, suggesting intra-cortical effects. These 

changes can be in the same or opposite direction to activity changes in the target motor 

region (Antal, Polania, Schmidt-Samoa, Dechent, & Paulus, 2011), suggesting 

complementary dynamics may also be at play. While direct effects of the induced current on 

the hippocampus are unlikely, modulation of parietal activity by tDCS could have produced 

downstream changes to other functionally connected areas, which could have included the 

hippocampus. In fact, causal modulation of the hippocampus by cortical stimulation using 

rTMS has been reported (Wang et al., 2014). Using an associative learning task combined 
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with rTMS to the left PPC, stimulation was found to produced offline changes to hippocampus 

that were specific to a functional network that involved the IPS in the parietal lobe and a sub-

region of the hippocampus. Modulation of this network also affected associative learning. 

However, TMS may have a greater ability to modulate distal sites due to its ability to evoke 

action potentials directly. Modulation of the hippocampus or other subcortical regions by 

cortical tDCS has not yet been observed.  

 

Impact of the Work in the Broader Field  
 

Models of Learning and Memory Systems in the Brain 
 

The question of cortical involvement in statistical learning abilities has important 

consequences for theories of memory and learning systems in the brain. Memory is not a 

unitary construct, and certain memory systems appear to represent certain types information 

(Henke, 2010; Preston & Gabrieli, 2008; Schapiro, Turk-Browne, Botvinick, & Norman, 2017; 

Squire, 2007). Many of these theories have sought to explain the functional tradeoffs between 

a fast, flexible system for encoding generalizable memories; and a slow, rigid system for 

encoding stimulus-specific memories. The current findings are not readily interpretable within 

the framework of dual-memory systems theory (O’Reilly et al., 2014). A prominent aspect of 

this model was the dissociation between a declarative memory system depended on the MTL 

(and hippocampus), and a non-declarative system depended on the cortex (O’Reilly et al., 

2014). But incidental learning of statistical regularities has frequently been shown to involve 

the MTL and hippocampus (Chun & Phelps, 1999; Giesbrecht, Sy, & Guerin, 2013; Greene, 

Gross, Elsinger, & Rao, 2007; Karuza et al., 2017; Preston & Gabrieli, 2008; Turk-Browne, 

Johnson, Chun, & Scholl, 2008). The extent to which statistical learning may recruit either of 

these systems in isolation remains a subject of debate (Henke, 2010; Reber, 2013; Sestieri, 

Shulman, & Corbetta, 2017). And it remains possible that both implicit and explicit forms of 

knowledge are acquired in parallel during statistical learning tasks (Goujon, Didierjean, & 

Poulet, 2013; Rebuschat & Williams, 2012; Taylor, Krakauer, & Ivry, 2014). However, the 

statistical learning in our tasks occurred without explicit awareness of the regularities based 

on recognition tests. When attempting to characterize naturalistic learning that occurs during 
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exposure to regularities, the interaction between learning and memory systems (Chun & Turk-

Browne, 2007; Reber, 2013) may be more important than the dissociation.  

A contemporary notion of statistical learning views it as a principle of processing in the 

brain, rather than a discrete system. According to this framework, the statistical learning 

process can operate on memories formed by either system (Reber, 2013), and can recruit 

neural resources based on the current demands. A related idea is the principle of Bayesian 

inference, which has been proposed to be a universal principal governing adaptive brain 

function (Friston, 2010). The underlying idea is that the brain constantly makes unconscious 

predictions based on an internal model of the world, and constantly updates that model based 

on experience. The system seeks to optimize sensory processing by applying a probabilistic 

model (i.e., Bayes theorem) to minimizing uncertainty. It uses what was most likely to occur 

previously (priors, and information about the current stimulus (likelihood) to compute what is 

most likely in a given environment (posterior). Learning is then based on the efficacy of these 

predictions over time. Optimization is said to manifest in the brain via a hierarchical model 

that enables reciprocal exchange of bottom-up predictions and top-down predictions to 

optimize predictions online. Both these frameworks suggest that downstream cortical areas 

can represent information about regularities while also explaining the involvement of the MTL. 

In this way, they both offer a parsimonious explanation for cortical involvement when using 

statistical regularities for learning.  

Beyond the models, evidence is amassing that statistical learning recruits a distributed 

network of regions that include frontal, parietal, sensory and subcortical structures (Batterink, 

Paller, & Reber, 2019). Some research suggests that the involvement of sensory areas may 

be domain specific, and that the hippocampus is largely domain-general. The role of the brain 

areas outside sensory and memory systems has been overlooked.  By and large, the extent 

of domain-generality has not been systematically investigated throughout the brain. There are 

well-known anatomical and functional connections between hippocampal, frontal and parietal 

regions that relate to attention, memory, and associative learning (Corbetta, 1998; Corbetta & 

Shulman, 2002; Staresina, Cooper, & Henson, 2013; Wagner, Shannon, Kahn, & Buckner, 

2005).  An important goal for future work is to understand whether learning statistical 

regularities happens independently and locally in the distributed brain regions, or whether 

changes in one region drive changes in the others.  
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The Early Impact of Stimulation and Network Dynamics 
 

We observed an early locus of cortical involvement in statistical learning. Across 

Chapter’s 3 and 4, the time-window in which stimulation modulated learning was selective to 

the first few blocks. We also observed an early locus of the masking effect, since cuing 

appeared to be delayed or diminished but not abolished all together. These findings could 

suggest a couple of things about the temporal dynamics of cortical involvement in a statistical 

learning process. Firstly, it may reflect a primacy effect of cortical involvement where such 

areas are recruited for the early stage of learning and reduce over time. This idea is 

supported by findings from the fMRI work. During contextual cuing, an area in the left IPS that 

was jointly associated with learning dynamics and working memory load decreased its activity 

over time, and the decrease was related to the way cuing by repeats increased over time 

(Manginelli, Baumgartner, & Pollmann, 2013a). The cortex along the IPS is commonly found 

to support working memory functions (Todd & Marois, 2004; Xu & Chun, 2006) as well as the 

interplay between memory and decision making, and tDCS studies find that stimulating this 

area affects performance in working memory tasks (Moos, Vossel, Weidner, Sparing, & Fink, 

2012; Pergolizzi & Chua, 2015; Sandrini, Fertonani, Cohen, & Miniussi, 2012). These findings 

may suggest that cortical regions are involved early on, possibly related to the temporal 

dynamics of working memory involvement in the learning process. A related possibility is that 

these results reflects the temporal dynamics of a network involving the IPS and other brain 

regions that was affected by tDCS. The network idea is also supported by fMRI work showing 

that connectivity between parietal and hippocampal regions is initially high during statistical 

learning, then decreases over the course of learning or exposure (Giesbrecht et al., 2013; 

Karuza et al., 2017). This pattern was observed in the contextual cuing task and the visual 

statistical learning task, and the network activity correlated with behaviour in both cases.  A 

parietal-hippocampal network may recruit cortical areas early on, then reduce involvement 

over time (Squire, 1992; McClelland, McNaughton & O’Reilly, 1995; Yamashita et al., 2009; 

Durrant et al., 2013). In both cases, the early effects of tDCS may have been in part due to 

functional activity patterns recruited by the tasks. 

Alternatively, the early modulation of learning may reflect the temporal dynamics of 

tDCS on neural activity and functioning more generally. Until recently, the temporal evolution 

of tDCS-induced changes had been overlooked by the brain stimulation literature. Studies of 
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tDCS effects on excitability had investigated temporal dynamics to some degree. Early on, 

studies showed that tDCS effects on excitability persisted for up to 90 min after stimulation 

had ceased (Nitsche & Paulus, 2000). Now, studies are showing that the changes can be 

dynamic across time (Batsikadze et al., 2013; Monte-Silva et al., 2013). Most relevant to the 

present work are results {Samani:2019kg} showing that cathodal stimulation over the primary 

motor cortex in humans produced long term depression-like changes to neural plasticity after 

15 and 30 minutes, but produced the opposite changes (i.e., long term potentiation) after 20 

minutes. This was one of a number of non-linear changes observed with TMS measures of 

neural activity over duration and dose. How such dynamic changes may relate to information 

processing or changes in non-motor regions is an open question. But some preliminary work 

combining tDCS and electroencephalography dovetails with these investigations. As was 

discussed in a recent review  (Reinhart & Woodman, 2015), manipulating a cognitive function 

with a constant current via tDCS can produce temporally specific changes to ERP 

components that related information processing. This work has suggested a degree of 

temporal specificity at the scale of 3-5 seconds for tDCS effects. Thus, the effects of tDCS on 

both neural and cognitive function appear to have temporal consequences. The work done 

thus far suggests our early modulation of learning could, in part, relate to the temporal effects 

of stimulation.  

It would be interesting to investigate whether the early locus of the tDCS effect could 

reflect either; working memory dynamics that are involved in statistical learning, or a stage-

based effect on the initial acquisition of regularities for learning. To address the question of 

acquisition, one could deliver stimulation after learning has already taken place, or once 

learning asymptotes. If tDCS still modulates cuing or the dynamics of cuing after the 

regularities have been acquired, it could rule out a critical stage of cortical involvement in 

acquisition, and instead it may point to an effect of tDCS on the way latent learning of 

regularities were being used by the system to affect goal-directed behaviour. Such a 

distinction between latent learning (i.e., acquisition) and the expression of learning through 

behaviour (i.e., retrieval) appears to be important for understanding how statistical learning 

draws on other cognitive functions to do with selection. Behavioural studies of the contextual 

cuing phenomena and sequence learning in the SRT task have shown that loading working 

memory or manipulating attentional selection affects the expression of learning while leaving 

the acquisition process intact (Annac et al., 2013; Annac, Zang, Müller, & Geyer, 2018; Jiang 
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& Chun, 2001; Manginelli, Geringswald, & Pollmann, 2012; Manginelli, Langer, Klose, & 

Pollmann, 2013b; Pollmann, 2018). Given the exploratory nature of the initial tDCS work, we 

investigated the learning process as a whole (i.e., combining the acquisition of information 

about regularities with the use of this information to guide search).  Moving forward, one can 

use our observation of selectively early cortical involvement across combined with the 

suggestion that learning expression may be distinguished from learning itself to ask more 

targeted questions about cortical involvement in aspects of statistical learning behaviour.  

 

Statistical Learning Was Robust to Different Types of Disruption  
 

This thesis examined the notion that implicit statistical learning recruits cognitive control 

regions in the frontoparietal cortex. Along the way, we observed that implicit memory-guided 

search (i.e., contextual cuing) was robust to different types of disruption: electrical and 

physical. When visual processing time was disrupted with masking, statistical learning still 

emerged (Chapter 2). When cortical processing regions were disrupted with tDCS, statistical 

learning still emerged. In both cases, learning was delayed or slowed, but appeared robust in 

the later blocks and was of a magnitude comparable to the control conditions without visual or 

electrical disruption. I am not the first to draw comparisons between the effects of masking 

and brain stimulation on visual processing. Similarities between the way a visual mask and a 

TMS pulse to the occipital pole modulate information processing were reviewed previously; in 

the context of conscious object perception (Breitmeyer, 2004). The work explains that 

masking and TMS can both limit the amount of information available for processing. More 

recently, the two have been compared experimentally to investigate the stochastic resonance 

account of visual detection mechanisms in the brain (van der Groen & Wenderoth, 2016). 

This experiment compared three levels of perceptual noise (via a stimulus) and electrical 

noise (via tRNS) and showed the same inverted “U” shapes relationship between noise and 

contrast thresholds. It showed that adding noise (either physical or electrical) during 

subthreshold and suprathreshold contrast reduced visual detection, but noise during optimal 

Both lines of work provide a proof of concept that physical disruption of a stimulus and 

electrical disruption of the brain can have comparable effects on behavior or a given process 

(i.e., detection). At least at the level of perceptual operations. Whether such a relationship 

would hold for more central cognitive operations, like visual search and decision-making, 
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remains a question for future work. The present research was certainly not designed to 

compare the effects of masking to those of tDCS. However, the combined results of Chapters 

2 and 3 are consistent with the notion that masking and tDCS placed limits on the amount of 

information available for processing, and that statistical learning was robust to these limits 

after a period of sufficient exposure to the regularities (i.e., the later epochs). In the case of 

memory-guided attention, assessed by spatial contextual cuing, it seems that different types 

of disruption only slowed learning, and did not abolish it completely.  

In accordance with previous studies of the contextual cuing phenomenon, the 

advantages afforded by repeating arrays can manifest with incomplete information. For 

example, a complete spatial configuration is not necessary to produce a cuing benefit to 

repeat displays once learned (Olson & Chun, 2002). Likewise, a cuing benefit was still 

observed when displays were too brief for eye movements (Chun & Jiang, 1998; Makovski & 

Jiang, 2018). Our study presents novel results that the formation of context memories can still 

take place when processing of displays was disrupted by masking or modulating excitability in 

cortical control regions. The observation that implicit cuing can overcome such disruptions to 

the input is consistent with the idea that scene regularities provide rich information that is 

multi-faceted and extend these findings to processing networks in the brain (see below for 

more on networks). 

In line with such an idea, studies show that statistical learning can adapt to distortions 

in distractor items, such as altered locations or removed items (Annac, Conci, Müller, & 

Geyer, 2017; Geyer, Shi, & Müller, 2010; Zellin, Mühlenen, Müller, & Conci, 2014), implying a 

flexible and efficient system that allows a learned display to be associated with variations in 

the input. Consistent with a statistical learning process (Turk-Browne et al., 2009). There is 

evidence that both local (Brady & Chun, 2007) and global (Peterson & Kramer, 2001; Tseng & 

Li, 2004) aspects of a display contribute to finding the target. While local regularities may be 

sufficient to produce cuing after learning has taken place (e.g., Olson & Chun, 2002), global 

regularities may be important for the formation of context memories early on (see Goujon, 

Didierjean, & Thorpe, 2015). This idea would predict different effects of disrupting local and 

global information (such as via masking) on the early and late stages of cuing. Masking global 

elements of a display should reduce early cuing benefits, while masking only local items near 

the target may not affect early cuing. These early and late stages refer to the learning period 

itself, such as early acquisition and later exploitation during the learning period (Thorndike, 
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1931). But the cuing benefit is also associated with early and late changes within a single 

search period during stimulus presentation (Jiang, Sigstad, & Swallow, 2012; Sisk, 

Remington, & Jiang, 2019; Zhao et al., 2012). These refer to information processing stages 

(i.e., Treisman and Gelade, 1980). 

A more cohesive understanding of statistical learning mechanisms at the scale of 

information processing (during stimulus presentation) and the scale of learning (during 

acquisition and exploitation) is needed to move theory forward. This will help to explain how 

implicit learning may be robust to such a variety of forms of disruption. A key question 

concerns the relationship between statistical learning and distractor processing. Take the 

assertion that during visual search, top-down attentional control serves to boost the 

processing of target information and suppress processing of distractor information (i.e., 

Guided Search; Wolfe, 1994). At the same time, the literature on associative learning asserts 

that when a stimulus becomes a reliable predictor, such as through repetition, processing is 

biased towards that stimulus (e.g., Beesley & Le Pelly, 2010). These two predictions come to 

a head when regularities (learned over time) guide attentional processing (within a single 

event). Both operations predict a reciprocal relationship between statistical learning and 

attentional processing. When mapping this idea on to sequence learning paradigms, there is 

evidence of both aspects: that statistics modulate attention (e.g., Zhao & Turn-Browne, 2013); 

and that attention modulates statistical learning (e.g., Turk-Browne et al., 2009; Jiang & Chun, 

2001). In the case of spatial learning paradigms, where the temporal sequence of spatial 

attention is harder to disambiguate, these relationships remain unclear. Might spatial 

regularities increase distractor processing? This would be predicted by an associative 

learning mechanism and was the observed previously where temporal regularities biased 

attention towards the distractors during search (i.e., Zhao & Turn-Browne, 2013). 

Alternatively, might spatial regularities suppress distractor processing? This would be in line 

with repetition-suppression effects or the “attentional efficiency” account of guided search 

(e.g., Beesley et al., 2018). Very recently, a study looked into this exact question proposes 

that distractor rejection may be a mechanism for spatial statistical learning (Stilwell & Vecera, 

2020). At heart, these questions are about the nature of the representations that support a 

statistical learning process. And to understand mechanisms of disruption is to understand 

mechanisms of representation. 
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A related idea is that disruption may alter information processing through a mediator, 

namely that of utility. Predictive information in implicit learning tasks may be selected based 

on what will provide the most utility in given situation. There is evidence that the system does 

not always use all the regularities available to it, but prioritizes them based on utility (Endo & 

Takeda, 2004; Jiang & Song, 2005). When both the spatial location of objects and the 

identities of objects were predictive of a target (Endo & Takeda, 2004), spatial regularities 

were more influential than identity regularities. But when spatial regularities were no longer 

predictive (i.e., did not provide utility), identity regularities become influential. In other words, 

identity regularities were learned only when they provided an aspect of utility that spatial 

regularities did not. This suggests a hierarchy of information processing that can be flexibly 

adapted based on utility. A similar form of adaptation may have occurred during tDCS or 

masking, especially since these manipulations could have altered other operations involves in 

the cognitive cascade. The most obvious candidate is eye-movements.  If eye movements 

were discouraged by the brief display durations used in Chapter 2, the system may have 

adapted to select information that did not require eye movements, based on utility, and this 

may have qualitatively altered what was learned in the task to produce slower, capacity 

limited cuing. To investigate this idea, one could use the method of recombined displays to 

assess global and local learning after contextual cuing with different task conditions (Ogawa & 

Kumada, 2008). In this design, each target would be associated with two repeat 

configurations during training. Afterwards, a test phases would measure cuing for repeat 

displays and recombined displays - made of two halves of the two repeat configurations. If 

individual items were learned, as was the case for standard visual search (Ogawa & Kumada, 

2008), cuing should transfer to the recombined displays. If only global information was 

learned, cuing will not be transfer, as was the case for a pop-out search task (Ogawa & 

Kumada, 2008). Thus, this method can be used to infer whether local or global information 

was of greater utility during different task conditions. Likewise, during search with or without 

eye movements, cuing may be supported by a reliance on local and global information based 

on utility. Such an approach would get at the nature of the representations during various 

types of disruption.  
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Potential Mechanisms for Cortical Control Involvement 
 

The key experiments in Chapters 3 and 4 provide novel evidence that cortical control 

regions play an interfering role in the statistical learning process. We show that modulating 

activity in DLPFC and PPC interferes with the early formation of statistical learning in a task 

dependent manner. I have considered the findings in terms of a direct role of cortical areas, 

as this was the most parsimonious explanation given the data. Until now, I have been 

agnostic about how these control areas may be involved. The present findings cannot strictly 

elucidate mechanisms on their own. But when considered alongside newly emerging 

evidence in the literature, a number of possibilities emerge. First off is the role of cognitive 

control governed by frontal regions and to a lesser extent, parietal regions. The DLPFC is 

important for a number of executive functions. Most notably it exerts top-down control over 

visual attentional processes (Miller and Cohen, 2001; Fuster, 2001). In the context of visual 

search, frontal regions are believed to exert influence over parietal areas in order to suppress 

unwanted distraction (e.g., see Feredoes et al., 2011). Some studies have suggested that 

DLPFC-governed control is actually detrimental to implicit statistical learning. This idea was 

touched on in the Discussion for Chapter 3. The notion takes a competition approach to 

learning. It proposes that disengagement of top-down control, through DLPFC deactivation, is 

beneficial for implicit processes. 

Some evidence may support this account, since TMS protocols believed to decrease 

neural activation have produced an increase in contextual cuing (Rosero Pahi et al., 2020) 

and implicit recognition (Lee, Blumenfeld and d’Esposito, 2013). However, the assertion that a 

“decrease in excitability” caused the changes observed is not strictly supported by the data. 

Neural excitability was not measured in either case. Also, the TMS protocols were delivered 

offline, as a pre-treatment, before implicit learning was measured. So, the changes may have 

been contaminated by consolidation processes mediated by short-term plasticity. This 

explanation would be consistent with the fact that changes occurred in the later epochs of the 

tasks. One of the studies measured EEG-oscillatory activity induced by the TMS protocol and 

during the learning task (Rosero Pahi et al., 2020). And this was advantageous. It enabled 

them to show how task-related oscillations in the beta band were altered by DLPFC 

stimulation compared to the control region (vertex). The finding linked TMS-induced changes 

to a mechanism of top-down control; namely reduced beta-oscillations. It is possible that a 
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similar reduction in cognitive control produced by tDCS in our studies can explain the 

facilitation of learning in Chapter 4, but it does not account for the disruption in learning we 

observed in Chapter 3. Whether facilitation may have been observed later on, after 

consolidation in Chapter 3 remains possible. Yet no causal, temporally specific evidence 

exists on whether PFC acts to suppress cognitive control or may also simultaneously 

enhance representations of the relevant statistical information. Also note that any observation 

of reduced activity in averaged BOLD signal may actually reflecting increased 

representational content (e.g., Garner & Dux, 2015; Kok, Jehee, & de Lange, 2012). Overall, 

the explanation that statistical learning relies on frontal control circuits via inhibition of top-

down control is intriguing but requires further evidence. Combined methodologies, such as 

TMS-EEG and TMS-fMRI are now available and will surely prove useful for the needed 

investigations. 

Another possibility is that cortical control regions were involved through a modulatory 

role of another process controlled by the same circuits. Two obvious candidates would be the 

dorsal fronto-parietal attention circuit (Summerfield et al., 2006; Rosen et al., 2016; Stokes et 

al., 2012), and the memory-retrieval circuit. Both are commonly known to be governed by the 

posterior parietal lobe and the dorsal frontoparietal network (Berryhill, Chein, & Olson, 2011; 

Corbetta, 1998; Sestieri et al., 2017) and both appear to play a role in gating the statistical 

learning process (Jiang & Chun, 2001; Turk-Browne, Jungé, & Scholl, 2005). Modulating 

parietal activity with tDCS can affect processes to do with visual search (Ball, Lane, Smith, & 

Ellison, 2013), spatial attention (Moos et al., 2012) and working memory (Berryhill, Wencil, 

Branch Coslett, & Olson, 2010; Sandrini et al., 2012). While modulating frontopolar activity 

has been related to  memory retrieval processes after regularity learning and associative 

learning tasks (Chua & Ahmed, 2016; Pergolizzi & Chua, 2015; Ryals, Rogers, Gross, 

Polnaszek, & Voss, 2016). Therefore, an immediate question might be whether changes to 

attention or working memory processes can explain the pattern of results we observed with 

these statistical learning tasks. 

To understand whether cortical modulation by tDCS may influence regularity learning 

through an intervening effect on attention, one could measure attentional changes directly; 

either using eye tracking, psychometric tasks, or known markers of attentional selection in 

EEG or fMRI. Alternatively, one could manipulate attention during exposure to regularities, to 

see whether attentional settings simply boost regularity learning during tDCS or may 
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determine how tDCS influences learning. To address impending questions about the role of 

working memory, one may wish to focus on the opposing effect of stimulation for identity-

cuing and location-based cuing. The expression of learning in contextual cuing appears to 

draw on working memory resources in a task-dependent manner. Studies show that holding 

items in working memory while searching displays impairs contextual cuing if the items were 

locations but not if they were colours or shapes (Annac et al., 2013; Manginelli et al., 2013b; 

Travis, Mattingley, & Dux, 2013). When the working memory task is removed, contextual 

cuing returns, suggesting the expression of learning requires working memory resources, not 

the learning itself. However, a recent study found that working memory load is not always 

detrimental and can even facilitate learning (and expression) in contextual cuing under certain 

conditions (Annac et al., 2018). Using the dual-task methodology, one could examine the 

relationship between different types of working memory load in learning different types of 

regularities. These research avenues serve to build on the current understanding of cortical 

involvement by investigating the nature of causal cortical involvement. 

 

Concluding Remarks  
 

The mechanism of cortical involvement in statistical learning is likely to be a complex 

one, but the contribution of the present work is clear. We provided much needed causal 

evidence on the role of cortical activity in producing statistical learning behaviours. These 

findings provide a novel and significant link between the modulation of cortical activity by 

tDCS and the process by which visual statistical regularities are learned. We identified the 

causal cortical locus across two different statistical learning tasks. We demonstrated that 

tDCS affected learning in a task-based manner early on, likely mediated by functional 

systems within the frontoparietal network. We proposed that the direct involvement of frontal 

and parietal activity in statistical learning can explain the observations in fMRI literature. 

Questions remain open as to the spatial specificity of our tDCS effects, and the effects of 

tDCS applied to areas outside this network. Whether task-based effect of tDCS on statistical 

learning occurred because of a mediating role of another function served by the same brain 

region is now an avenue for future work. To answer broader questions about the domain-

general nature of cortical involvement, one can take what has been learned here with cuing 

tasks and apply it to other stimulus domains, tasks and regularities. Such an approach has 
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already been taken for understanding hippocampal function in statistical learning across a 

range of tasks and phenomena (see: Schapiro et al., 2017).  

The present work, together with the neuroimaging work, provides compelling evidence 

that statistical learning draws on distributed networks of brain areas in which both cortical and 

subcortical regions play an important role. Exploring the connections between statistical 

learning and brain regions that support higher-level cognition, such as attention and decision-

making, can help answer important questions about the neural mechanisms that underlie 

statistical learning. It can also reveal new connections between statistical learning and other 

forms of learning that may draw on shared neural systems. The driving question is to 

understand how a sensitivity to statistical structure can be accomplished over so many 

stimulus types, tasks and timeframes. Such research also has the potential to inform models 

of diseases where aberrations in statistical learning have been observed, which include; 

Dyslexia, Parkinson’s, Schizophrenia, Autism, as well as in healthy aging. The brain, after all, 

is not a passive machine; but is constantly generating predictions. And learning the structure 

of experience is a powerful way to form predictions. I believe there is much more to be gained 

by investing experience-based knowledge acquisition. Without these abilities, the dominant 

view is that you would not be able to read this thesis, and I would not be able to write it. 
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