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Summary 

 

Representational dynamics across multiple timescales in human cortical networks 

Tanya Wen 

 

Human cognition occurs at multiple timescales, including immediate processing of the ongoing 

experiences and slowly drifting higher-level thoughts. To understand how the brain selects and 

represents these various types of information to guide behavior, this thesis examined 

representational content within sensory regions, multiple demand (MD) network, and default 

mode network (DMN). Chapter 1 provides a background review of the current literature. It 

begins by reviewing experimental investigations of component visual processes that unfold 

over time. Next, the MD network is introduced as a collection of frontal and parietal regions 

involved in implementing cognitive control by assembling the required operations for task-

relevant behavior. Finally, the DMN is introduced in the context of temporal processing 

hierarchies, with focus on its representation of situation models summarizing interactions 

among entities and the environment. The first experiment, presented in Chapter 2, used 

EEG/MEG to track multiple component processes of selective attention. Five distinct 

processing operations with different time-courses were quantified, including representation of 

visual display properties, target location, target identity, behavioral significance, and finally, 

possible reactivation of the attentional template. Chapter 3 used fMRI to examine neural 

representations of task episodes, which are temporally organized sequences of steps that occur 

within a given context. It was found that MD and visual regions showed sensitivity to the fine 

structure of the contents within a task. DMN regions showed gradual change throughout the 

entire task, with increased activation at the offset of the entire episode. Chapter 4 analyzed 

activation profiles of DMN regions using six diverse tasks to examine their functional 

convergence during social, episodic, and self-referential thought. Results supported proposals 

of separate subsystems, yet also suggest integration within the DMN. The final chapter, Chapter 

5, provides an extended discussion of theoretical concepts related to the three experiments and 

proposes possible avenues for further research.  
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Chapter 1 Introduction 

 

Human cognition unfolds at multiple timescales. It could occur as fast as a saccade to 

an item during visual search, or unfold slowly over minutes or even hours when carrying out a 

multi-step task. In any given moment, our interaction with the world consists of immediate, 

ongoing experiences, as well as higher level thoughts that drift in and out, that are not driven 

by immediate sensory input. It has been suggested that different parts of the brain represent 

different information occurring at different timescales to together give rise to “experience”. In 

the following review, some of the salient findings concerning events and episodes at different 

timescales will be presented, as well as the techniques used to measure them 

In the first section, the dynamics of attentional selection will be discussed. Early studies 

with electrophysiological recordings in behaving monkeys as well as ERPs/ERFs in humans 

have shown attentional selection to be remarkably efficient, in that it happens within a few 

hundred milliseconds, yet it consists of multiple component processes that occur successively 

in time. More recently, with the development of pattern analysis methods, it has been possible 

to track how representational dynamics evolve over time. The techniques and findings from 

high-temporal resolution recording data will be specifically reviewed 

In the second section, a collection of frontal and parietal regions, known as the multiple 

demand (MD) network, will be reviewed. Activity in these regions has been found to be 

associated with many different kinds of task demands, and is believed to be involved in 

behavioral organization. The involvement of the MD network in goal-directed behavior is 

specifically reviewed, focusing on three aspects, including attentional selection, task difficulty, 

and task episodes. It is argued that these regions represent currently attended task-related 

information 

In the third section, another network, the default mode network (DMN) will be 

reviewed. This set of regions highly overlap with areas in the brain involved in episodic 

memory. A recent theory of cortical information processing argues for a distributed 

topographical hierarchy of timescales, the DMN having the longest processing timescales. In 

this view, it is suited for representing high-level abstract features of the current event. The 

review will first focus on the involvement of the DMN in representing situation models and 

event boundaries. It will then raise the issue of the DMN’s involvement in other cognitive 
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domains, including social cognition and resting-state activity. Better definition of the DMN, 

including division of subnetworks will then be discussed 

Finally, a summary and overview of subsequent chapters, looking at various issues is 

presented. 

 

1.1 Attentional Selection 

In visual search, observers try to find a target object among distractors, in visual scenes 

where the location of the target is unknown. (Eimer, 2015) has summarized visual search to 

include at least four successive phases (Figure 1.1A). First is an initial preparatory phase, where 

the representation of the current search goal is activated. Once visual input has arrived, 

information of target-matching features is accumulated, which is then used to guide allocation 

of spatial attention to the target object, which then leads to encoding and recognition of the 

selected object. 

For example, in the classic “Where’s Wally” visual search game (Figure 1.1B), one 

must first have a mental representation of what the target (Wally) looks like before starting the 

search. Once the observer begins searching for Wally, objects with matching features (e.g., red 

and white stripes) will gain attentional weight, which will help guide attention towards those 

objects. Attention is later directed towards the location of those feature-matching objects before 

the object is recognized. Recognition of the object requires integration of features within the 

object, before a decision can be made on whether it is a target or non-target (Wally or a beach 

towel). As illustrated in this example, visual search is not a single process, but requires many 

stages of attentional processing that occur at successive time points. 
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Figure 1.1. (A) Four phases of attentional control during visual search, including component processes 

of preparation, guidance, selection, and recognition, which emerge at successive points in time during 

a search process. The four functions are described at the cognitive level (white boxes) as well as their 

implementation at the neural level (gray boxes). Reproduced from Eimer (2015). (B) An example of a 

visual search task, where the target is presented among distractors in a visual scene. The black circle 

indicates the location of the target item, and the gray circle indicates a distractor item that shares 

similar features with the target (i.e., red and white stripes). 

 

1.1.1 Preparatory attention 

Before searching for a particular target object within a visual display, the observer first 

has to decide which object to search for. Next, a mental representation of the target is formed, 

known as the attentional template, and held “in mind”. This preparation has been described by 

William James (1890) as “the anticipatory preparation from within of the ideational centers 

concerned with the objects to which attention is paid” (p 411). Preparatory attention may rely 

on the “central executive” of working memory that controls and manipulates its contents to 

match top-down goals, and working memory workspaces or “sketchpads” to maintain the 
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current attentional template (Baddeley and Hitch, 1974; Wolfe, 1994). These preparatory 

attentional templates are set up prior to visual search, which can help direct and guide attention 

to candidate targets later on during the search process. 

An interesting question is how are such preparatory attentional templates implemented 

at the neural level? In a prospective coding framework, one could expect representation of 

attentional templates to resemble that of the anticipated stimulus. Therefore, one would expect 

that neural activity patterns in the visual cortex during the preparatory period would be similar 

to the patterns observed when the stimulus is perceptually processed (Awh and Jonides, 2001; 

D’Esposito, 2007; Stokes et al., 2009). This prediction has been investigated in single-unit 

recordings in monkeys, human fMRI, and human electrophysiology. In these experiments, 

neural activity is recorded during the preparatory phase (which is after a target-indicating cue, 

but before the onset of the visual search display). Early evidence for the neural correlates of 

attentional templates comes from Chelazzi et al. (1998). In the experiment, monkeys were given 

a delayed-match-to-sample task, where they were shown a picture of the target, followed by a 

delay period, before being presented with a visual search display (where they were required to 

make a saccade to the target if the target was present). During the delay period, the monkey 

simply fixated at the center of the screen with no further visual input, but the target had to be 

held in working memory in preparation for the search task. Interestingly, the delay period 

showed target-selective activity in inferotemporal regions, which was absent in a control 

experiment where the initial stimulus had no subsequent behavioral relevance. 

Similar findings of increased baseline activity in regions sensitive to the target during 

the preparatory period have been reported in human fMRI studies (Battistoni et al., 2017). In 

these studies, participants were cued to attend for certain features, such as spatial location (e.g., 

Giesbrecht et al., 2006; Sylvester et al., 2009), motion (e.g., Chawla et al., 1999; Shibata et al., 

2008), color (e.g., Chawla et al., 1999; Giesbrecht et al., 2006; Shibata et al., 2008), and object 

categories (e.g., Puri et al., 2009; Esterman and Yantis, 2010). During the delay period, activity 

has been found to be selectively enhanced in location-, motion-, color-, and object-sensitive 

regions depending on the cued feature. This has led to the view that maintenance of the 

attentional template is supported by similar neural mechanisms as seeing the target itself, known 

as the sensory-recruitment model of working memory (Awh and Jonides, 2001; Postle, 2006; 

D’Esposito, 2007; Serences et al., 2009). This line of research was extended with the 

development of multivariate pattern analysis (MVPA). It has been shown with fMRI that 

training a classifier on neural patterns elicited by stimulus processing can accurately predict the 
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contents of working memory during preparatory attention (Harrison and Tong, 2009; Serences 

et al., 2009; Stokes et al., 2009; Peelen and Kastner, 2011). For example, Stokes et al. (2009) 

had participants perform an independent task, where they viewed repetitions of two letters (“X” 

and “O”) while detecting size deviants. The authors trained a classifier to discriminate the 

activity pattern evoked by these two letters, and were able to predict above chance which letter 

the participants were attending for in a separate attention task during the delay period following 

an auditory attentional cue. This cross-generalization between tasks demonstrates a shared 

neural code between the stimulus-evoked activity pattern and attentional template. The 

specificity of the top-down attentional bias during preparatory attention is thought to be 

reflected by the similarity of these two patterns, and has been supported by studies showing that 

the degree of target-specific activity and pattern specificity is correlated with behavioral 

performance (e.g., Giesbrecht et al., 2006; Stokes et al., 2009; Esterman and Yantis, 2010; 

Peelen and Kastner, 2011; Soon et al., 2013). 

Electrophysiology studies using EEG and MEG have also found neural correlates of 

attentional templates. Early evidence comes from ERP studies showing a slow negative neural 

activity throughout the delay period of working memory tasks is elicited at posterior electrodes 

contralateral to the side of the target object during encoding. This is known as the contralateral 

delay activity (Vogel and Machizawa, 2004; Luria et al., 2016). One of the advantages of 

electrophysiological recordings is its high temporal resolution, which can be used to capture 

how activity and neural representations evolve over time (King and Dehaene, 2014). Some EEG 

studies have revealed that, for extended periods of time, information held in working memory 

cannot be decoded from a classifier trained to discriminate neural patterns elicited by visual 

perception using conventional methods (e.g., Wolff et al., 2015, 2017). Other studies have 

found decoding of the preparatory template during the pre-stimulus delay (e.g., Myers et al., 

2015; Kok et al., 2017). However, in contrast to models that predict sustained pre-activation of 

the template, stimulus encoding was dynamic, and cross-generalization between stimulus 

encoding and template coding occurred only briefly around the time of stimulus onset. These 

results indicate that template activity patterns and stimulus activity patterns do cross-generalize, 

indicating a shared neural representation, but only weakly and transiently. 

Recent findings from empirical data looking at single trial analysis of neural recordings 

suggest that spiking activity during the delay period is actually sparse, with brief bursts of 

activity with variable onset latency and durations sprinkled throughout the delay (Shafi et al., 

2007; Stokes et al., 2013; Lundqvist et al., 2016a, 2018; Stokes and Spaak, 2016; Kucewicz et 
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al., 2017). It has been suggested that attentional templates may sometimes be stored in an 

“activity silent” passive form, such as changed synaptic weights (Lundqvist et al., 2010; Stokes, 

2015). Furthermore, high-temporal resolution data show that the way information is reflected 

in brain activity is highly dynamic (Stokes et al., 2013; King and Dehaene, 2014). Time 

dependency can be expressed using cross-temporal generalization analysis, where 

discriminative patterns at each time point are statistically compared with discriminative patterns 

at every other time point (King and Dehaene, 2014). Stokes et al. (2013) showed, in a delayed 

paired-associate task, robust decoding of the attentional cue can be found in the monkey PFC 

when training and testing on the same time-points, but there was little cross-generalization 

between time-points. This suggests that preparatory activity travels through a continuous series 

of states rather than maintaining a fixed memory or anticipation state. Together, these results 

suggest that an attentional template is formed following a decision of what to look for; and 

high-temporal resolution data can reveal how neural patterns associated with the preparatory 

template evolve over time. 

1.1.2 The successive processes of visual search 

Our perception of the external environment is shaped by attentional selection according 

to our behavioral goals. After an attentional template is set up in preparation for the upcoming 

task, the search process begins after the visual search display is presented. Since the location of 

the target object is unknown in the preceding delay period, the selection of possible target 

objects is therefore based on the visual information available from the visual search display. As 

the brain has a limited processing capacity, we are aware of only a small part of sensory 

information at a given time in a cluttered visual world. Therefore, representations of visual 

inputs compete to gain dominance through a process known as biased competition (Duncan, 

1996, 2006; Beck and Kastner, 2009). When visual inputs compete, a stronger representation 

for a particular visual object will be at the expense of other objects’ representations. During 

visual search, if one is looking for a particular target, attention biases the selection of objects 

by giving each an “attentional weight” determined by their match to the attentional template 

that resembles a flexible description of the target stimulus (Duncan, 1980; Bundesen, 1990; 

Desimone and Duncan, 1995; Bundesen et al., 2015). These top-down mechanisms play a key 

role in resolving biased competition, such that attention can be directed to stimuli of high 

behavioral priority. 

Given that the function of such top-down biases is to guide the allocation of attention 

during search for known targets at unknown locations, these biases are believed to operate in a 
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spatially global fashion across the visual field (Eimer, 2015). Information across the entire 

visual field is processed in parallel, and is selectively weighted for features that match the 

current search goal (Wolfe, 1994; Bundesen et al., 2005). These spatially global biases in 

feature-based attention have been shown in both fMRI and electrophysiological studies, such 

that attention to the target stimulus feature (e.g., color, motion, or object categories) showed 

increased visual cortical responses to spatially distant, ignored stimuli that shared the same 

feature (Treue and Martínez Trujillo, 1999; Saenz et al., 2002; Serences and Boynton, 2007; 

Peelen et al., 2009; Zhang and Luck, 2009). For example, in Peelen et al. (2009), participants 

were cued to detect bodies or cars within scenes presented at certain locations (and to ignore 

scenes presented in other locations). Using MVPA, the authors found significant decoding of 

objects that belonged to the target category even when they were presented outside the focus of 

attention; in contrast, objects belonging to irrelevant categories did not show above-chance 

decoding, even when they were presented inside the focus of attention. This finding provides 

evidence that top-down biases operate across the visual field independent of spatial attention. 

Furthermore, in the study, visual search displays were presented only for 130 ms, suggesting 

that feature-based attention occurs very rapidly, and very early in time. Zhang & Luck (2009) 

used high-temporal resolution EEG data to examine feature-based attention. With ERP 

analyses, the authors found that feature-based attention was able to influence feedforward 

sensory activity, within 100 ms of the onset of the visual display, even for stimuli presented at 

unattended locations. These findings suggest that top-down search goals influence visual search 

very early on, in a spatially global fashion, while features that match the search goals gain 

attentional weight. 

This feature-based attention weighting can highlight the presence of potential target 

objects in the search display, which provides guidance signals for subsequent allocation of focal 

attention to particular objects (Wolfe, 1994; Bundesen et al., 2005; Gray, 2007; Eimer, 2015). 

Hopf et al. (2004) showed that feature-based attention initially operated in a location-

independent manner, and that selection of features guided allocation of attention to the location 

of the target. In their experiment, EEG and MEG were recorded while participants performed 

a visual search task (Figure 1.2A; the target could be a red or green “C”, and in the example 

shown here is red). The target and lure were placed either on the left or right of the screen, 

surrounded by a cloud of distractor “C”s, in the same orientation as the target on target-side 

only, nontarget-side only, on both sides, or on neither side. Interestingly, the presence of task-

relevant features led to a change in ERP/ERF activity around 140 ms after stimulus onset, and 
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this effect was independent of the location of the target (Figure 1.2B). This effect was followed 

by attentional allocation to the location of the target, indexed by the N2pc component, that 

began around 170 ms post-stimulus (Figure 1.2C). The N2pc is a well-known index of focusing 

attention to a target, and is characterized by a negativity in the posterior electrodes around 180-

300 ms, contralateral to the location of the attended item (Luck and Hillyard, 1994; Luck et al., 

1997, 2012). It has been suggested that the N2pc component is related to the process of biased 

competition between visual objects, enhancing perceptual processing of the target and 

suppressing information from distractors (Hopf et al., 2004; Luck et al., 2012). This has also 

been thought to be related to modulations of single-unit activity, where an initial on-discharge 

was produced by both target and nontarget stimulus, followed by latter suppression of the 

nontarget response (Chelazzi et al., 1993a, 1998; Duncan, 2006). These findings show that a 

dynamic process is involved as competition gradually resolves, generally favoring the target 

stimuli, resulting in a later modulation of visual activity. 

 

 

Figure 1.2. (A) Stimulus arrays used in the experiment of Hopf et al. (2004). Stimuli consisted of arrays 

of C-shaped items placed to the left and right of fixation, with one distinctively colored item in each field 

(red or green C). In this example, participants were required to attend to the red “C” and ignore the 

green distractor. The colors were randomized across trials. Distracter items (blue Cs) were placed in 

both visual fields surrounding the target and the lure. The orientation of the distracters was either left–

right like the target (relevant-orientation distractor; ROD) or up–down (irrelevant-orientation 

distractors). The location of RODs and irrelevant-orientation distractors was varied to generate four 

different distractor distributions: (1) RODs in the target visual field and irrelevant-orientation 

distractors in the opposite field (target-side ROD); (2) RODs in the nontarget visual field and irrelevant-
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orientation distractors in the target field (nontarget-side ROD); (3) RODs in both visual fields (both-

sides ROD); and (4) irrelevant-orientation distractors in both visual fields with no RODs (no ROD). (B) 

ROD-related effects for left visual field targets. ERP waveforms elicited by target-side ROD (top), 

nontarget-side ROD (middle), and both-sides ROD (bottom, solid lines) trials superimposed onto 

waveforms of the no ROD condition (dashed lines) at selected electrode sites from the left parieto-

occipital (PO7) and the right parieto-occipital (PO8) scalp. Similar trends were found in the right visual 

field (not shown here). (C) Target-related effects (N2pc effect). Average waveforms elicited by target 

items contralateral (solid line) and ipsilateral (dashed line) to electrode sites PO7/8. Data were 

collapsed over electrode sites to simplify presentation. The N2pc effect is highlighted by the gray areas 

between waveforms. Reproduced from Hopf et al. (2004). 

 

After allocation of attention to the target location, further processing is required before 

the object is recognized. Object recognition takes place at a subsequent stage after selection, 

where the features of the selected objects are integrated, such that their identity becomes 

accessible (Xu and Chun, 2009; Carlson et al., 2013; Kiss et al., 2013; Eimer and Grubert, 2014; 

Eimer, 2015). In a study by Eimer & Grubert (2014), participants were asked to identify whether 

a target defined by a color-shape conjunction (e.g., blue square) was present among a display 

of four items. On no-competition trials, some displays contained the target object with three 

distractor items that shared neither of the two target features, while other displays contained a 

nontarget object that had one of the two target features (e.g., blue circles or red square, when 

the target was a blue square) and three distractors. On competition trials, the target and a 

partially-matching nontarget were present on the same display. Results showed that regardless 

of competition, both targets and partially-matching nontargets elicited reliable N2pc 

components. Interestingly, the sum of the two N2pc components elicited by color- and shape-

matching nontargets was equal to the N2pc elicited by targets, until after 250 ms poststimulus, 

when the target N2pc became larger than its summed components. The superadditivity of the 

target N2pc suggested that selective attention processing changed from being feature-based to 

object-based, during which information is integrated across feature dimensions in later stages 

of processing. Integration implies that, as attention becomes focused on one object, all features 

of the object will be represented, not just those relevant to the task (Duncan, 1996; O’Craven 

et al., 1999; Schoenfeld et al., 2003). It has been proposed by Duncan (1996) that biased 

competition is integrated across different cortical regions, such that when attention is directed 

to one feature of an object, all features belonging to that object will become dominant in their 

respective cortical modules. For example, in Schoenfeld et al. (2003), when subjects attended 
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to one of two superimposed surfaces of moving dots, activity increased in the color-sensitive 

region of the fusiform gyrus when the surface moving in the attended direction displayed an 

irrelevant color (compared to when the dots were white). It has further been shown that 

following coding of exemplar-specific features, the brain can additionally categorize the objects 

on various levels of abstraction (e.g., animate or non-animate), and that the time it takes for the 

brain to discriminate such categories depends on the level of category abstraction (Carlson et 

al., 2013). Collectively, these findings suggest a temporal evolution from feature-coding to 

object-recognition to category-representation. 

In summary, a simple visual search, that can happen within a few hundred milliseconds, 

involves multiple component processes. This begins with a flexible mental description of what 

to look for. During visual search, features matching the attentional template will gain attentional 

weight, guiding allocation of attention to potential targets. Finally, features are integrated and 

the objects can be recognized and categorized (Eimer and Grubert, 2014; Eimer, 2015). Many 

of these findings took advantage of high-temporal resolution electrophysiology recordings (e.g., 

single-cell, EEG, and MEG) that can capture dynamics at the millisecond timescale. Sensor-

selection and source localization of EEG/MEG have suggested that a set of frontal and parietal 

regions play an important role in top-down modulation during working memory and visual 

processing (Corbetta and Shulman, 2002; Bressler et al., 2008; Simpson et al., 2011; Soon et 

al., 2013; Baldauf and Desimone, 2014; Wallis et al., 2015; Goddard et al., 2016). Simpson et 

al. (2011) showed a sequence of activation from early visual cortex to frontal and parietal 

regions during anticipatory spatial attention, corresponding to bottom-up extraction of cue 

meaning to top-down attentional deployment. Goddard et al. (2016) further used Granger 

causality analysis combined with MVPA, which showed feedforward and feedback flows of 

representational content between peri-occipital and peri-frontal areas during object recognition. 

As mentioned above, it has been shown that a set of frontal and parietal areas have heavy 

involvement in attention. These regions are thought to be the source of the attention template 

(Duncan et al., 1997; Miller and Cohen, 2001), which generates top-down biasing signals to 

influence processing in other regions. Functional connectivity analysis has demonstrated 

significant Granger causality from the frontal and parietal cortex to visual occipital cortex 

during preparatory attention (Bressler et al., 2008). Finally, it has been shown that target 

detection not only elicits increased activity in sensory regions sensitive to the target features, 

but also in frontal and parietal areas (Corbetta and Shulman, 2002; Soon et al., 2013; Baldauf 

and Desimone, 2014; Finoia et al., 2015), suggesting these areas could be related to controlling 
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the locus of attention, or perform target-matching operations. The next section will focus more 

broadly on the functions of these frontal and parietal regions, collectively known as the multiple 

demand network. 

 

1.2 The multiple demand network 

It has been suggested that the frontal and parietal regions are particularly important for 

cognitive control (Miller and Cohen, 2001). In imaging studies, a characteristic pattern of 

frontoparietal activity, known as the “multiple demand” (MD) network (Duncan and Owen, 

2000; Duncan, 2010), is produced by a wide range of different task demands. These regions 

have the ability to access and represent many different kinds of information, and adapt their 

coding in different contexts to code for specific information that is relevant to the current task 

demands (Duncan, 2001; Woolgar et al., 2011a). 

A feature of human cognition is to be able to adapt and solve novel tasks. While some 

regions are specific to a particular cognitive function, e.g., sensory perception, movement, or 

language, regions involved in higher-level cognitive control need to be flexible and domain 

general (Duncan, 2006; Fedorenko et al., 2013). Several meta-analyses have consistently 

identified domain-general regions in frontal and parietal regions overlapping with the MD 

network (Duncan and Owen, 2000; Niendam et al., 2012; Yeo et al., 2015). In an early attempt 

in understanding the locus of cognitive control, Duncan (2006) (also see Duncan and Owen 

(2000)) reviewed 20 studies that manipulated five different cognitive demands: response 

conflict, task novelty, working memory load, working memory maintenance, and perceptual 

difficulty. Systematic comparisons of activations for the five cognitive demands showed a 

similar pattern of activation in the inferior frontal sulcus (IFS), anterior cingulate (ACC), 

anterior insula extending into frontal operculum (AI/FO), and intraparietal sulcus (IPS), shown 

in Figure 1.3A. This showed that while cognitive demands recruit only a set of specific parietal 

and prefrontal regions, the same network of regions are recruited in very diverse cognitive 

demands. Conceptually similar results were found by Dosenbach et al. (2006; Figure 1.3B), 

who conjointly analyzed data from mixed design experiments using 10 different tasks (varying 

in task rules, stimuli, sensory input, and response output) across a large number of subjects. 

Frontal and parietal regions, such as IPS and lateral prefrontal cortex (LPFC) were consistently 

activated at start-cue and error-related activity, suggesting a role in initiating trial-by-trial 

adaptive control, while ACC and AI/FO showed reliable start-cue and sustained responses in 
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nearly all tasks, suggesting a role in controlling goal-directed behavior through the stable 

maintenance of task sets. 

More recent attempts to localize domain general activity found that this MD pattern 

exists at the individual subject level (Fedorenko et al., 2013; Figure 1.3C). Fedorenko et al. 

(2013) had participants perform 7 diverse tasks (including demands such as arithmetic, 

verbal/spatial working memory, and inhibition of irrelevant information), each with a difficult 

and easy condition, and identified regions that were responsive to cognitive demand as showing 

greater activity for difficult versus easy. Across all tasks, the same set of voxels showed 

consistent activity within the dorsolateral prefrontal cortex, extending along the inferior/middle 

frontal gyrus (IFG/MFG), and including a posterior-dorsal region close to the frontal eye field 

(pdLFC), parts of the anterior insular cortex (AI), pre-supplementary motor area and adjacent 

anterior cingulate cortex (pre-SMA/ACC), and intraparietal sulcus (IPS). The group analysis of 

Fedorenko et al. (2013) is now often used as an a priori MD template in a variety of studies on 

MD function (e.g., Crittenden et al., 2016; Muhle-Karbe et al., 2016; Tschentscher et al., 2017). 

 

 

Figure 1.3 MD (multiple-demand) network in functional imaging. (A) Cortical activation foci from 20 

studies examining response conflict (green), task novelty (purple), number of elements in working 

memory (yellow), working memory delay (red), and perceptual difficulty (blue). IFS: inferior frontal 

sulcus. AI/FO: anterior insula/frontal operculum. SMA/ACC: supplementary motor area/anterior 

cingulate. IPS: intraparietal sulcus. Reproduced from Duncan (2006). (B) Conjunction map of task-set 

signals showing regions that are active across different tasks. Reproduced from Dosenbach et al., 2006. 
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(C) Group-averaged multiple demand network from Fedorenko et al. (2013). ROIs taken from 

http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem 

 

1.2.1 Adaptive coding 

In regions within the MD network, it has been shown that neurons may dynamically 

adjust their activity to carry information that is relevant to the current task demands. In a study 

by Freedman et al. (2001), the authors examined the neural activity in the monkey LPFC during 

an abstract categorization task. The authors used morphing software to generate stimuli that 

spanned two categories, “cats” and “dogs.” Three species of cats and three breeds of dogs 

served as prototypes, with morphing used to produce all possible linear combinations between 

each of the six images (Figure 1.4A). By morphing prototype pairs in different proportions, the 

stimuli were varied continuously across each category boundary (i.e., more “cat-like” vs. more 

“dog-like”), or between two of the prototypes within each animal category. In the main task, 

monkeys were initially trained on a cat-dog categorization task, where on each trial they 

indicated with a lever whether an initial sample and subsequent test stimulus were from the 

same category. Among a large sample of responsive neurons in the LPFC, many were category 

selective, in that their activity differentiated between cats and dogs (Figure 1.4B), even when 

they were close to the decision boundary (e.g., cat:dog 60:40); but did not distinguish between 

morphs within a category (e.g., D1 and D3). It appears unlikely that outside the context of this 

particular task these neurons acted as cat-dog categorizers. To prove this, the authors retrained 

one of the monkeys on the categorization task with two new category boundaries which were 

orthogonal to the original boundary. This created three categories, which each centered around 

a prototype cat and a prototype dog (Figure 1.4A). After training, neural activity was 

discriminable among the three new categories, but no longer reflected the original categories, 

showing that coding preferences adapt to the context of the particular task. 

 

http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem
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Figure 1.4 (A) Stimuli. Monkeys learned to categorize randomly generated “morphs” from the vast 

number of possible blends of six prototypes. Morphing software created blends between all prototype 

pairs (double-headed arrows), including within-category (for example, C1–C2) and between-category 

(for example, C1–D1) cases. (B) The average activity of a single neuron in response to stimuli at the six 

morph blends. This neuron responded strongly to all dogs, but poorly to all cats, irrespective of 

proximity to the category boundary. In the inset, the prototypes (C1, C2, C3, D1, D2, and D3) are 

represented in the outermost columns; each appears in three morph lines. A color scale indicates the 

activity level. Reproduced from Freedman et al. (2001). 

 

Other studies have similarly shown that neurons in MD regions are strongly influenced 

by task context, with a selective focus on information of current behavioral relevance. In studies 

by Kadohisa et al. (2013) and Stokes et al. (2013), monkeys were trained to perform a delayed 

paired-associate task, where they learned pairs of cues and targets. During the choice display, 

either the target, a distractor, or a neutral stimulus could appear, and monkeys were required to 

make a saccade after stimulus offset to the location of the target and maintain fixation if the 

target was not present. Both studies showed that during the choice display, neurons in the frontal 

lobe initially discriminated the physical properties of the stimulus regardless of context, but 

later in time, coding transitioned to representing behavioral significance (target vs. non-target), 

irrespective of the stimulus. Similar results showing coding of behavioral categories have been 

found using human fMRI (Erez and Duncan, 2015). Other studies have shown that MD regions 

can code for several different types of task-relevant information, such as rules, stimuli, and 

motor responses (Li et al., 2007; Woolgar et al., 2011b, 2011a, 2015; Jackson et al., 2017), and 
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that the representation of information in MD increases in accordance to cognitive demand 

(Woolgar et al., 2011a, 2015). 

The MD network is incredibly flexible and can change the contents of its representation 

on a trial-by-trial basis. Furthermore, the ability to flexibly combine different rules may be 

critical in explaining our ability to rapidly learn and implement new rules to novel situations, 

including learning novel task procedures from instructions (Dumontheil et al., 2011), even 

within a single trial (Cole et al., 2013a). At the simplest level, single rules link individual 

sensory stimuli to their appropriate behavioral responses; however, many tasks are complex 

and require the concurrent application of multiple rules. It has been found that the neural coding 

of multiple rules in the MD network is compositional, such that the neural activity patterns for 

multiple rules can be decomposed into the patterns of the constituent simple rules (Reverberi et 

al., 2012b; Garner and Dux, 2015). Cole et al. (2010) designed a cognitive paradigm where 

each trial involved three distinct rules that had to be integrated with each other to achieve 

accurate task performance. 12 task rules were permuted to create 64 unique tasks, and among 

those, 4 tasks were used for participants to learn each rule prior to scanning, while the rest were 

novel to participants. Within the LPFC, classifiers trained to identify abstract task rules based 

on practice task activity patterns were able to cross-generalize to novel tasks, suggesting that 

this region is involved in the adaptive transfer and composition of multiple rules (Cole et al., 

2011, 2013b). 

A growing number of functional connectivity studies have revealed functional networks 

underlying the brain’s intrinsic functional architecture that matches task-driven activity patterns 

(Smith et al., 2009; Laird et al., 2011). Recent advances in brain connectivity have suggested 

that the frontoparietal network serves as a flexible hub for adaptive task control (Dosenbach et 

al., 2007; Cole et al., 2013b). The frontoparietal network has especially high global connectivity 

(Cole et al., 2010) and resting-state global connectivity in the LPFC has been found to be 

correlated with individual differences in cognitive control capacity and general fluid 

intelligence (Cole et al., 2012; Hearne et al., 2016). It has further been shown that this network 

rapidly shifts its functional connectivity with other networks when performing a variety of 

tasks, and that these connectivity patterns could be used to identify the current task (Cole et al., 

2013b). This suggests that the frontoparietal network can access and influence other networks 

to assemble the neural components required for specific tasks. Together, these lines of evidence 

suggest a central role of the MD network in cognitive control and adaptive implementation of 

task demands. 
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1.2.2 MD activity, task difficulty, and behavioral organization 

In line with the involvement of the MD network during cognitive demands, activity in 

the MD network had been found to increase with increases in many kinds of task difficulty 

(Duncan and Owen, 2000), such as with additional subgoals (e.g., Farooqui et al., 2012), greater 

working memory demand (e.g., Manoach et al., 1997), resisting strong competitors (e.g., 

Baldauf and Desimone, 2014), task switching (e.g., Wager and Smith, 2003), or a wide range 

of other task demands (e.g., Jovicich et al., 2001; Marois et al., 2004; Crittenden and Duncan, 

2014; Woolgar et al., 2015). In fact, task difficulty has often been used as a manipulation to 

define MD regions (Fedorenko et al., 2013; Assem et al., 2017). Increased activity in more 

difficult conditions can also be accompanied by stronger information coding, shown by 

multivoxel pattern analysis (Woolgar et al., 2011b, 2011a, 2015).  

However, in some cases, MD activity can be rather independent of task difficulty 

(Muller-Gass and Schröger, 2007; Cusack et al., 2010; Han and Marois, 2013; Dubis et al., 

2016). For example, Cusack et al. (2010) contrasted hard and easy trials of a task in which 

participants had to detect a barely perceptible ripple in an oscillating dot field and found no 

neural activation differences between the two sensory difficulty levels, despite substantial 

differences in behavioral performance, and robust BOLD contrast to a different task 

manipulation (attention switching). Dubis et al. (2016) re-analyzed the tasks in Dosenbach et 

al. (2006) and showed no sustained activity in a purely perceptual task. They further conducted 

a new, difficult, perceptually-driven task, and found that signals in these regions are negligible 

or absent when a task is driven by perceptual information alone; however, MD regions were 

involved when the tasks required the use of abstracted representations beyond perceptual ones. 

Furthermore, they found that activations in these areas were not driven by task difficulty, 

measured objectively by reaction time and accuracy, and subjectively using a questionnaire 

rating. 

In an important study, Han and Marois (2013) investigated activity in parts of the MD 

system during a task in which three letter targets were to be identified in a rapid stream of digit 

non-targets. In the baseline condition, the three letters occurred in immediate succession. To 

increase demand, the authors either inserted a non-target into the series of three targets, or 

reduced exposure duration. While activity in frontoparietal areas increased with the addition of 

a distractor, exposure duration had little effect. To interpret their findings, Han and Marois 

(2013) appealed to the distinction made by Norman and Bobrow (1975), between data-limited 

and resource-limited behavior. Norman and Bobrow (1975) proposed that, for any task, some 
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function (the performance-resource function or PRF) relates performance to investment of 

attentional resources. When this function is increasing, behavior is said to be resource-limited, 

and additional investment is repaid by improved performance. When the function asymptotes, 

further investment has no positive effect, and performance is said to be data-limited. In line 

with a link of MD activity to attentional investment, Han and Marois (2013) used these ideas 

of data- and resource-limitation to explain their findings. They proposed that, in their task, brief 

exposure duration created data limits, which could not be offset by increased frontoparietal 

recruitment, while adding a distractor introduced resource limits by calling for increased 

attentional focus.  

Furthermore, while many studies in the literature show increasing MD activity with 

increasing task difficulty, there have also been studies that showed decreased MD activity (Bor 

et al., 2003), an inverted U-shape response (Callicott et al., 1999; Linden et al., 2003), or a 

plateau after a certain difficulty level (Todd and Marois, 2004; Marois and Ivanoff, 2005; 

Mitchell and Cusack, 2008). Callicott et al. (1999) and Linden et al. (2003) found that the 

frontal-parietal network initially showed increased activation with increased working memory 

load, but decreased in the highest load condition close or beyond the limit of capacity. In a 

particularly interesting study, Bor et al. (2003) compared the involvement of the MD network 

in encoding structured versus unstructured sequences into spatial working memory. They found 

that while reorganizing working memory contents into high level chunks decreased task 

difficulty and made the trials easier to remember, it recruited more MD activity than trials that 

did not allow chunking. This further suggests that MD is not responsive to difficulty per se, but 

recruitment of cognitive resources may be the driver of MD activation, especially when 

manipulations require behavioral organization beyond stimulus information. 

The above evidence suggests that the recruitment of the MD network plays a role in 

implementing top-down attentional control, optimally focusing processing for the requirements 

of a current task (Miller and Cohen, 2001; Duncan, 2013). While most work on cognitive 

control is concerned with isolated operations, such as attentional biases, target selection, or 

behavioral categorization, everyday behavior involves events that are situated in a larger 

context of a purposive mental episode. For example, in many everyday situations, such as 

planning a dinner (Penfield and Evans, 1935), making coffee (Cooper and Shallice, 2000), or 

solving logical puzzles (Lashley, 1951; Duncan et al., 2017), goals are achieved by assembling 

a series of subtasks, each separately defined and solved. It has been proposed that MD regions 

play a core role in defining and controlling these mental programs for complex cognition 
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(Kurby and Zacks, 2008; Duncan, 2010, 2013; Farooqui et al., 2012). In achieving a multi-step 

goal, each step requires selective focus on currently relevant information. Steps follow in rapid 

succession, requiring the MD network to rapidly change its processing focus and content 

(Duncan, 2010). As mentioned above, the coding of information in MD regions is highly 

flexible, and can rapidly reorganize the mental focus of attended information (Downar et al., 

2000; Freedman et al., 2001). Furthermore, single-cell recordings have shown that neurons in 

the MD network can separate successive task steps within a cognitive episode (Sigala et al., 

2008; Saga et al., 2011). For example, Sigala et al. (2008) compared the similarity of neural 

activity patterns defined by three task phases (cue, delay, and target), and found that activity 

patterns were approximately orthogonal between each phase, maximizing the discrimination of 

processing content of each step.  

In fMRI, the MD network has been shown to be involved in task rule assembly, as each 

new rule is added throughout the task episode (Dumontheil et al., 2011). In Dumontheil et al. 

(2011), the authors constructed eight sets of tasks, and, for each task, instructions could define 

up to five rules (Figure 1.5Ai; e.g., if the letters are in lower case or if symbols are presented, 

press the left middle finger. If the letters are in uppercase and there is one filled square, press 

the direction that most arrows point to; otherwise, if there are zero or two vowels, do nothing). 

At the beginning of each task, a series of instruction screens were presented. Each task rule was 

described in a separate instruction screen, presented for 20 s with a delay of 10 s between each 

instruction and the next (Figure 1.5Aii). Timecourse analysis showed that MD regions exhibited 

a phasic response locked to each rule and its baseline response increased as each new task rule 

was assembled into the mental program (Figure 1.5Aiii).  

Data from fMRI also show strong MD activity when a new task episode is created and 

when transitioning from one episode to the next. Increased MD activity is often seen at the 

boundary between perceived events (Sridharan et al., 2007; Kurby and Zacks, 2008). In a study 

investigating the involvement of the MD network in sequential behavior, Farooqui et al. (2012) 

designed series of hierarchical task episodes, for example participants were instructed to 

sequentially search for four target letters, such as “CATX” (Figure 1.5Bi), where completion 

of “CAT” completes the first subtask, and completion of “X” completes the entire episode. The 

results showed increased MD activity after each sub-goal is completed, with the greatest 

increase when the entire episode was completed (Figure 1.5Bii). Furthermore, in a second 

experiment, where the completion of the subtask was on step two (e.g., searching for targets 

“OHMY”), activation on step two was greater than step three in many MD regions. The authors 
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suggest that this increase in MD activity after completion of each step or subtask is a result of 

directing and revising the control representations of each step of the episode.  
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Figure 1.5 (A) (i) Example of an instruction screen for one of the eight tasks used in Dumontheil et al. 

(2011). For each task, instructions could define up to 5 task rules (e.g., if the letters are in lower case, 

press the left middle finger; if the display contains uppercase letters and there is one vowel, press the 

direction that most arrows point to). (ii) Illustration of task setup. At the beginning of each task, a series 

of instruction screens was presented. Each task rule was described in a separate instruction screen, 

presented for 20 s with a delay of 10 s between each instruction and the next. (iii) Timecourse analysis 

for each MD region of interest, showing phasic responses time-locked to instruction screens. Whole-

brain render shows regions that were more active during instructions screens compared to baseline. 

Reproduced from Dumontheil et al. (2011). (B) (i) Structure of a typical trial in Farooqui et al. (2012). 

On each trial, participants monitored a sequence of letters, searching for a cued word (here “CAT”), 

and finally for the letter X. Targets were to be detected in the correct order. The first two targets (T1 

and T2) completed subgoals at the lowest level (component letters of the first target word; level 1); the 

third target, T3, completed a subgoal at the next highest level (complete target word; level 2), while the 

fourth target, T4 (X), completed the whole goal of the task (level 3). Dotted arrows indicate the variable 

number of nontarget letters between initial cue, successive targets, and final probe. (ii) Comparison of 

phasic activity in response to various target events. Plots show activity index for each target. 

Reproduced from Farooqui et al. (2012). 

 

 In summary, the above review demonstrates the role of the MD network in a wide range 

of tasks. Coding of information in MD regions is highly flexible and can adaptively change in 

response to the current task demands. MD activity increases in accordance with cognitive 

demand, but can be independent of difficulty. Strong MD activity has been found during mental 

organization of behavior into chunks or mental programs, as well as completion of subtasks 

within an episode. It has been argued that the MD system plays a critical role in dividing 

complex problems into focused parts, and constructing component episodes (Duncan, 2010, 

2013). However, the organization of sequences of events within a given context has also been 

associated with other regions involved in episodic memory (Ezzyat and Davachi, 2011; 

Eichenbaum, 2013; Hsieh et al., 2014; Cohn-Sheehy and Ranganath, 2017; Radvansky and 

Zacks, 2017), in particular in regions associated with the default mode network (DMN). The 

next section will review the involvement of DMN in representing events and situation models. 

 

1.3 The default mode network 
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Representation of episodes has been widely studied in the context of episodic memory. 

Episodic memory contains representations of the record of spatial and temporal relationships 

between entities within a given context (Tulving, 1972; Ranganath and Ritchey, 2012), 

allowing people to re-experience the content and context of the events in the order they had 

previously occurred (Tulving, 2002). It has been suggested that different parts of the brain 

represent information at different timescales to together represent “experience”. In everyday 

experience, we perceive a continuous stream of incoming sensory information, and this is 

integrated into longer timescale, meaningful representations. In an episode of “going to a formal 

dinner”, one would need to “get dressed” and “eat dinner”. While “getting dressed”, subtasks 

could involve “put on a dress”, “brush hair”, and “wear a gown”. As suggested previously, MD 

regions may segment episodes into smaller focused parts, selectively representing the currently 

relevant task (Duncan, 2010, 2013). However, while MD and sensory regions represent these 

immediate ongoing experiences, we have higher level thoughts (i.e., “going to a formal dinner”) 

that may not be driven by our immediate sensory experience and occur over a longer timescale, 

spanning multiple events (Manning et al., 2015). Representation of these higher level episodes 

have been found to be related to regions in the DMN, which has been thought to integrate spatial 

and temporal information into situation models (Ranganath and Ritchey, 2012; Cohn-Sheehy 

and Ranganath, 2017). The DMN includes a set of functionally connected regions including the 

posterior medial cortex, medial prefrontal cortex, middle temporal gyrus, angular gyrus, and 

several other regions that are involved in episodic memory and retrieval (Raichle et al., 2001; 

Spreng and Grady, 2010; Rugg and Vilberg, 2013). An illustration of the DMN is shown in 

Figure 1.6A(a). The following sections will first review the role of the DMN in representing 

temporally extended episodes, and later discuss its broader involvement in other cognitive 

domains. 

1.3.1 Long-timescale regions and event boundaries 

According to some frameworks of hierarchical organization of functional brain 

networks that underlie goal-directed action, as one moves rostrally along the lateral frontal 

cortex, representations become increasingly more abstract (Badre, 2008; Badre and D’Esposito, 

2009) and episodic (Koechlin et al., 2003; Koechlin and Summerfield, 2007). Dixon et al. 

(2014, 2017) have extended this framework to networks organized in a posterior-to-anterior 

gradient, starting from the sensorimotor network representing current stimulus and actions, to 

the anterior frontoparietal network (a network often coactivated with the DMN) representing 

distal goals. Hierarchical control contributes to tasks that require taking a series of actions in 
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time, where one must simultaneously manage a sequence of subgoals in the context of a 

superordinate goal (Badre and Nee, 2018). Temporally abstract episodic control has been found 

to produce more rostrocaudal and DMN engagement (Desrochers et al., 2015; Farooqui and 

Manly, 2018a). 

These high level regions are not only involved in goal-directed tasks, but also represent 

temporally extended situations as we experience the world. Although we experience the world 

as a continuous sensory stream of information, people tend to segment these experiences into 

discrete events (Zacks et al., 2007; Radvansky and Zacks, 2011), and this segmentation can 

occur at different temporal granularities. Several studies have shown the existence of a 

hierarchy of temporal receptive windows in the human cortex, with early sensory regions 

representing short timescales, high-level sensory regions and MD regions representing 

intermediate timescales, and DMN regions representing long timescales (Hasson et al., 2008; 

Lerner et al., 2011; Honey et al., 2012; Chen et al., 2015). In one study, Chen et al. (2015) 

showed participants movie clips that were temporally scrambled at a fine timescale, scrambled 

coarsely, or intact. Inter-subject correlation was used to index the extent to which each region 

responded similarly across subjects to the continuous stimuli. They showed that voxels in 

primary sensory regions responded reliably across all subjects regardless of the degree to which 

the movie was scrambled, MD regions responded to both coarsely scrambled and intact movies, 

while DMN regions only responded reliably to the intact movie, suggesting a hierarchy of 

sensitivities to different temporal granularities (Figure 1.6A(b)). Baldassano et al. (2017) 

further showed that neural activity patterns during continuous experience are stable for a certain 

duration before rapidly shifting. The duration of pattern stability of each region corresponds to 

the timescale of event segmentation within the region, such that sensory regions encode short 

events, while DMN regions are relatively stable within temporally extended episodes (Figure 

1.6B).  
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Figure 6. (A) (a) The DMN mapped by calculating functional connectivity (within-subject correlation) 

between the posterior parietal cortex (PCC) ROI and every other voxel in the brain. (b) Map of 

processing timescales across human cortex. Subjects viewed a movie clip either temporally scrambled 

at a fine timescale (<2 s), scrambled coarsely (7–22 s), or intact. For each clip, inter-subject correlation 

(ISC) was calculated at each voxel. Voxels were classified as “Long Timescale” if they responded 

reliably (i.e., above-threshold ISC) only when the movie was intact (blue); as “Medium Timescale” if 

they responded reliably during both the intact and coarsely scrambled movie (green); and as “Short 

Timescale” if they responded reliably in all 3 conditions (red). Reproduced from Chen et al. (2015). (B) 

The brain map shows the optimal estimated number of events identified by an event segmentation model 

by Baldassano et al. (2017) that identifies each rapid change in activity pattern as a new event. Results 

show a large number of short events in sensory cortex and a small number of long events in high-level 

cortex. For example, the time point correlation matrix for a region in the precuneus exhibited coarse 

blocks of correlated patterns, leading to model fits with a small number of events (white squares), while 

a region in visual cortex was best modeled with a larger number of short events. Reproduced from 

Baldassano et al. (2017). 

 

Event boundaries occur when there is a perceived transition between a previous event 

and the next (Reynolds et al., 2007; Speer et al., 2007; Kurby and Zacks, 2008). It has been 

found that human annotations of meaningful event boundaries are associated with increased 

DMN activity (Speer et al., 2007; Yarkoni et al., 2008; Ben-Yakov and Dudai, 2011; Ezzyat 

and Davachi, 2011; Swallow et al., 2011) as well as pattern transitions in the DMN regions 

(Baldassano et al., 2017). Information about events is represented by mental models that capture 

the contents and structure of the events that people experience (Speer et al., 2007; Radvansky 

and Zacks, 2011), and DMN has been suggested to represent these high level abstract situations 

(Yarkoni et al., 2008; Baldassano et al., 2017; Cohn-Sheehy and Ranganath, 2017).  

1.3.2 Posterior medial network and situation models 

Context is often defined as slowly drifting information (i.e., information that persists 

over a relatively long timescale in the brain), which organizes our representations of co-

occurring transient information (Howard and Kahana, 2002; Manning et al., 2014). A few 

examples of context could include information about the external environment, when an event 

occurred, internal thoughts, future plans, etc. (Smith and Vela, 2001). Many studies have found 

regions in the DMN are involved in contextual representation.  
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From earlier studies, it has been suggested that the medial temporal lobe is involved in 

representing events, and two subregions – the perirhinal cortex (PRC) and parahippocampal 

cortex (PHC) – have different functions. The PRC is thought to be involved in representing 

specific items, and the PHC is thought to represent information about the spatiotemporal context 

in which the items occurred (Diana et al., 2007; Ranganath, 2010a). It has later been found that 

these two regions are core components of two separate large-scale cortical networks. The PRC 

is a core component of an extended anterior medial system that is involved in representation of 

unique local entities. The PHC is a core component of the posterior medial system, which 

includes regions of the DMN, such as the posterior cingulate cortex (PCC), precuneus, angular 

gyrus, posterior lateral cortex (pIPL), and medial prefrontal cortex (MPFC), and has a central 

role in the representation of situation models (Ranganath & Ritchey, 2012; Reagh & Ranganath, 

2018). A situation model is a mental representation that summarizes the interactions among 

entities in an environment, including place, temporal context, and social context, etc.  

Regions that code for high level representations of situation models should be invariant 

of sensory modality, such that e.g., reading a book, hearing an audio narrative, seeing a movie, 

or recollection of the same episode should generate similar representations. Zadbood et al. 

(2017) and Baldassano et al. (2017) investigated how neural patterns associated with viewing 

television shows were encoded, recalled, and transferred to a group of naïve listeners. By 

comparing neural patterns across these three conditions, they found event-specific neural 

patterns in the DMN were able to cross-generalize across watching, recall, and listening to the 

same story. Interestingly, although both event durations and input modality in the three 

conditions were different, DMN exhibited shared neural patterns for each event regardless of 

condition. And although auditory cortex was active during both watching the movie and 

listening to the narrative, event structure did not cross-generalize in this region. 

In addition to representing specific episodes, DMN regions have been shown to 

generalize across similar episodes, for example, various formal dinners at different colleges. 

Schemas are more abstract representations of situation models, involving organized semantic 

knowledge of stereotypical situations (Bartlett and Kintsch, 1932; Zwaan and Radvansky, 1998; 

Ghosh and Gilboa, 2014a). Several reviews have suggested that the MPFC is involved in 

schema representation (Preston and Eichenbaum, 2013; Robin and Moscovitch, 2017). 

Baldassano et al. (2018) analyzed fMRI data of human subjects that were presented with eight 

stories drawn from two different scripts (eating at a restaurant or going to the airport). Although 

each script shared similar structure (e.g., enter restaurant, being seated, ordering food, food 
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arriving), the stories varied widely in terms of their characters and storylines. They showed that 

patterns within the MPFC were sensitive to the overall script structure, abstracting away from 

the particular details of each story and activating a representation of the general type of situation 

being perceived.  

 These studies have shown that the DMN is involved in representing contextual episodes 

over a temporally extended period. Different regions in the DMN may represent the event 

scaffold at different levels of abstraction (context, situation model, and schema), together 

representing generalized temporal information of meaningful events (Cohn-Sheehy and 

Ranganath, 2017; Reagh and Ranganath, 2018). In addition to episodic representation, the 

DMN has been proposed to underlie a number of different processes (Buckner et al., 2008; 

Spreng et al., 2009; Andrews-Hanna, 2012), which will be discussed in the following section.  

1.3.3 History, functional processes, and subnetworks 

 The DMN was initially identified by task-induced deactivations, where activity was 

found to be higher in a passive baseline condition compared to attention demanding external 

tasks (Shulman et al., 1997; Raichle et al., 2001). It was later introduced as a “task-negative” 

network by Fox et al. (2005). As the DMN is often identified during a passive baseline when 

no task was performed, it has been hypothesized to reflect spontaneous internal mentation 

(Buckner et al., 2008; Andrews-Hanna, 2012), such as mind-wondering (McGuire et al., 1996; 

Christoff et al., 2009). While the function of the DMN is still debated, more recent studies 

suggest that it is inaccurate to characterize it as “task-negative”, as it has been shown to be 

actively engaged in a variety of tasks (Spreng and Grady, 2010; Spreng, 2012).   

One aspect of DMN function is that it is related to self-projection (Buckner and Carroll, 

2007). Many of these topics that have been traditionally studied independently seem to activate 

a similar network of regions related to the DMN. For example, studies of episodic memory have 

characterized a general recollection network (Rugg and Vilberg, 2013), which later has been 

found to share common neural substrates with imagination of future episodes (Addis et al., 

2007; Schacter and Addis, 2007). In social cognition, a theory of mind localizer that had been 

developed to characterize regions involved in contemplating of other people’s mental states has 

reliably found a similar network (Saxe and Kanwisher, 2003; Dodell-Feder et al., 2011). The 

most prominent regions within the DMN, the PCC and MPFC, have been found to be activated 

when engaged in self-relevant thought (Kelley et al., 2002; Benoit et al., 2010). Spreng et al. 

(2009) performed a systematic meta-analysis to quantify this common network of activation 
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among these various domains, and a conjunction analysis of “autobiographical memory”, 

“navigation”, “theory of mind”, and “default mode” as keywords identified regions consistent 

with the DMN, with extensive functional overlap.  

To dissociate the different components within the DMN, Andrews-Hanna et al. (2010b) 

performed a clustering analysis on intrinsic connectivity within the DMN, revealing three 

subnetworks – the dMPFC subsystem, the MTL subsystem, and the core hubs (Figure 1.7A). 

These three subsystems were similarly identified with resting-state ICA (Yeo et al., 2011). 

Task-based fMRI revealed a dissociation between the dMPFC subsystem and the MTL 

subsystem, which were preferably activated when participants made self-referential decisions 

about their present situation and when participants constructed events about their possible 

future, respectively, while the core hubs were activated in both self-relevant conditions 

(Andrews-Hanna et al., 2010b). In a later article, Andrews-Hanna (Andrews-Hanna, 2012) 

reviewed the three subsystems and their proposed functions (Figure 1.7B).  

 

 

Figure 1.7 (A) (a)(b) Eleven a priori regions within the DMN in volume and surface space. (c) functional 

correlation strengths between the 11 regions, with the thickness of the lines representing the strength of 

the correlations between regions and the size of the circles representing how central a node is in the 

network. This revealed the aMPFC and PCC as core hubs of the DMN (d) Hierarchical clustering of 

the remaining regions, which grouped into two subsystems, the dMPFC and MTL subsystems. 

Reproduced from Andrews-Hanna et al. (2010). (B) Proposed functional-anatomic organization of the 

major default network components. A schematic drawing of the default network hubs (yellow) and 

subsystems (blue = dorsal medial prefrontal cortex subsystem; green = medial temporal lobe subsystem) 
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is highlighted along with each component’s hypothesized functions and the tasks that frequently activate 

them. Reproduced from Andrews-Hanna (2012). 

 

The dorsal medial prefrontal subsystem (dMPFC) consists of the temporoparietal 

junction (TPJ), lateral temporal cortex (LTC), and temporal pole (TempP) in addition to 

dMPFC. A rich body of work has suggested that the dMPFC subsystem may play an important 

role in introspecting about the mental states of social agents. These regions have been found to 

be consistently activated as a network when individuals reflect upon, evaluate, or appraise 

social information (Frith and Frith, 2006; Young et al., 2010; Dodell-Feder et al., 2011; 

Andrews-Hanna, 2012). For example, the dMPFC subsystem is activated when participants 

engage in interpersonal interactions (Rilling et al., 2004), view animated shapes to which 

intentions are imputed (Tavares et al., 2008; Isik et al., 2017), read social narratives (Fletcher 

et al., 1995), or reason about social problems (Van Overwalle, 2011) and moral dilemmas (Moll 

et al., 2005). Collectively, these findings suggest that the dMPFC subsystem plays a broad role 

in introspecting about self and other mental states.  

The medial temporal lobe (MTL) subsystem consists of the ventromedial prefrontal 

cortex (vMPFC), posterior inferior parietal lobule (pIPL), retrosplenial cortex (Rsp), 

parahippocampal cortex (PHC), and hippocampal formation (HF). The MTL subsystem 

overlaps with the so-called core recollection network (Hayama et al., 2012; Rugg and Vilberg, 

2013) or autobiographical memory network (Svoboda et al., 2006; Spreng and Grady, 2010). 

Studies looking at autobiographical memory (Cabeza and St Jacques, 2007; McDermott et al., 

2009), episodic future thinking (Hassabis et al., 2007; Addis et al., 2009), retrieval of contextual 

associations (Bar, 2007), processing semantic and conceptual knowledge (Binder et al., 1999, 

2009), and spatial navigation (Spiers and Maguire, 2006; Vann et al., 2009) have found the 

MTL subsystem to be engaged. It has therefore been suggested that a critical role of the MTL 

subsystem is to support memory-based construction and simulation (Schacter et al., 2008; 

Andrews-Hanna, 2012). 

The core hubs consist of the posterior cingulate cortex (PCC) and anterior medial 

prefrontal cortex (aMPFC), and show the highest functional connectivity to all the other DMN 

regions (Andrews-Hanna et al., 2010b). The hubs of the default network activate across a 

diverse range of mnemonic, social, and emotional tasks that involve personally significant and 

other motivationally salient information (Olsson and Ochsner, 2008; Andrews-Hanna et al., 

2010b). 
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 These studies suggest that the DMN is involved in a wide range of tasks. While the 

precise functions of the DMN are not yet defined, and regions within the DMN could subserve 

different functions, evidence suggests that the DMN is involved in representing abstract high-

level thoughts beyond those that emerge from the immediate environment. 

 

1.4 Precis 

 In this thesis, different experiments are used to examine the temporal dynamics of 

information representation in sensory, MD, and DMN regions.  

 In Chapter 2, a combined EEG/MEG experiment is described that investigates the 

timecourses of component processes within a simple event that requires selection of a target in 

a visual display. With the advantage of millisecond precision recording, the experiment showed 

that multiple processes of selective visual attention can be robustly decoded from MEG/EEG 

signals. While the representation of a preparatory target template was largely undetectable prior 

to the choice display, the preparatory target template reemerged after presentation of a 

consistent non-target. During the visual display, attentional selection dynamically enhanced 

visual representations matching a target. Furthermore, the timing of directed attention to a target 

appeared earlier than explicit categorization of a single stimulus as a target. 

 Chapter 3 uses fMRI to examine the roles of the MD network and DMN during 

execution of larger task episodes, where a sequence of actions must be completed in the correct 

order to achieve a goal. The MD network and the visual cortex exhibited phasic responses to 

each task step, suggesting that they are sensitive to the fine structure of the episode. In contrast, 

DMN regions showed a phasic response predominantly to onset and offset of the entire episode. 

Beyond these phasic responses, gradually increasing activity across each task episode was seen 

throughout most of the brain. Representational similarity analysis revealed that both MD and 

DMN networks coded for step and item, while DMN additionally coded for episode.

 Chapter 4 describes an experiment using six tasks to examine three different cognitive 

domains in which the DMN has been found to be involved. Theory of mind and moral dilemmas 

tasks were designed to engage the dMPFC subsystem; autobiographical memory and spatial 

navigation tasks were designed to engage the MTL subsystem; a self/other adjective judgement 

task was designed to engage the core hubs; finally, a resting baseline compared to a working 

memory task was carried out as to examine task-induced deactivation. While all six tasks 

activated the DMN, differences in activity patterns were found according to cognitive domain.  



29 
 

 Finally, Chapter 5 discusses issues related to temporal organization, and possible roles 

of the MD and DMN networks.  
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Chapter 2 The time-course of component processes of 

selective attention 

 

2.1 Abstract 

Attentional selection shapes human perception, enhancing relevant information, 

according to behavioral goals. While many studies have investigated individual neural 

signatures of attention, here we used multivariate decoding of electrophysiological brain 

responses (MEG/EEG) to track and compare multiple component processes of selective 

attention. Auditory cues instructed participants to select a particular visual target, embedded 

within a subsequent stream of displays. Combining single and multi-item displays with different 

types of distractors allowed multiple aspects of information content to be decoded, 

distinguishing distinct components of attention, as the selection process evolved. Although the 

task required comparison of items to an attentional “template” held in memory, signals 

consistent with such a template were largely undetectable throughout the preparatory period but 

re-emerged after presentation of a non-target choice display. Choice displays evoked strong 

neural representation of multiple target features, evolving over different timescales. We 

quantified five distinct processing operations with different time-courses. First, visual 

properties of the stimulus were strongly represented. Second, the candidate target was rapidly 

identified and localized in multi-item displays, providing the earliest evidence of modulation 

by behavioral relevance. Third, the identity of the target continued to be enhanced, relative to 

distractors. Fourth, only later was the behavioral significance of the target explicitly represented 

in single-item displays. Finally, if the target was not identified and search was to be resumed, 

then an attentional template was weakly reactivated. The observation that an item’s behavioral 

relevance directs attention in multi-item displays prior to explicit representation of target/non-

target status in single-item displays is consistent with two-stage models of attention. 

 

2.2 Introduction 

Our perception of the world is constantly shaped by attentional selection, enhancing 

relevant over irrelevant information, to achieve our behavioral goals. Effective selection begins 

from a flexible description, often called the attentional template, of the object currently required 



31 
 

(Duncan and Humphreys, 1989; Bundesen, 1990). Much evidence suggests that attentional 

selection is then achieved through a process of biased, integrated competition across a broad 

sensorimotor network (Duncan et al., 1997). As objects in the visual input compete to dominate 

neural activity, the degree to which they match the attentional template determines their 

competitive advantage (Desimone and Duncan, 1995; Beck and Kastner, 2009). 

Attention is often characterized as an emergent property of numerous neural 

mechanisms (Desimone & Duncan, 1995; Hopf et al. 2005), with different mechanisms 

dominating as successive stages of selection (Eimer, 2015). Therefore, while many studies have 

investigated the time-course of individual neural signatures of attention in humans and animal 

models, it is informative to compare multiple components of the selection process within the 

same paradigm. Recently, there has been much interest in the use of MEG/EEG for real-time 

decoding of cognitive representations in the human brain (Stokes et al., 2015). Here, we used 

simultaneous MEG/EEG to examine the time-course and content of different components of 

attentional selection. We combined single-item and multi-item search displays with different 

types of distractors to allow multiple aspects of information content to be decoded from the 

neural signal, distinguishing distinct components of attention as the selection process evolved.  

The behavioral relevance of stimuli was manipulated by starting each trial with one of 

two auditory cues, indicating the relevant visual target object on this trial. Participants were 

then presented with a series of visual displays of 4 possible types: a 1-item display of the target 

(T), an inconsistent non-target (Ni; which was associated with the other cue and served as a 

target for other trials), a consistent non-target (Nc; which was never a target), or a 3-item display 

with all items presented simultaneously (see Figure 2.1 for an illustration). The use of 

inconsistent non-targets allowed representation of target status to be distinguished from 

representation of stimulus identity. The inclusion of 3-item displays allowed competitive 

representation of target location and target identity to be quantified under matched visual input. 

The use of consistent non-targets amongst a stream of choice displays allowed decoding of 

attentional template reactivation in preparation for a subsequent display. Participants made a 

button press whenever they detected a rare brightening of the target item. Requiring responses 

only for conjunctions of identity and brightening allowed response trials to be excluded from 

the analysis and attentional selection assessed on trials without an overt response. Using 

multivariate decoding analyses, we asked which component processes of attentional selection 

are visible in the MEG/EEG signal over time. 
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First, we examined representation of the attentional template. One possibility is that, 

when a cue indicates the relevant target object, some sustained signal will be set up in neurons 

selectively responsive to that object (Chelazzi et al., 1993b; Puri et al., 2009; Kok et al., 2013). 

fMRI decoding studies have shown cross-generalization between attentional templates and 

sensory responses to the corresponding objects (e.g., Stokes et al., 2009; Peelen and Kastner, 

2011), supporting a tonic activation of visual representations. However, corresponding results 

tend to be weak or non-existent in electrophysiological recordings (Stokes et al., 2013; Myers 

et al., 2015; Wolff et al., 2015), and where they have been found, they may appear only very 

briefly prior to the target stimulus (Myers et al., 2015; Kok et al., 2017). Indirect measures of 

attentional templates, derived from ERP components, demonstrate that search templates are not 

continuously active but are transiently activated in preparation for each new search episode 

(Grubert and Eimer, 2018).  Recently, it has been proposed that template storage may 

sometimes be “silent”, perhaps encoded in changed synaptic weights rather than sustained firing 

(Stokes, 2015). To examine template coding, holding visual input constant, we analyzed data 

from the period between cue and displays, and during subsequent presentation of Nc stimuli.  

Second, we were interested in the process of target selection itself. Comparing target 

and non-target stimuli shows strong differences both behaviorally and neurally (Duncan, 1980; 

Hebart et al., 2018). Attending to a relevant visual object produces strong, sustained activity 

across many brain regions (Desimone and Duncan, 1995; Sergent et al., 2005; Dehaene and 

Changeux, 2011), reflecting encoding of its multiple visual properties and implications for 

behavior (Wutz et al., 2018). In the presence of multiple stimuli, neural responses are initially 

divided amongst the competing sensory inputs and later become replaced by a wide-spread 

processing of the behaviorally critical target (Duncan et al., 1997; Kadohisa et al., 2013). On 1-

item trials, we focused on the response to the T and Ni stimuli, to quantify the representation 

of object identity (e.g., face vs. house) regardless of status as target or non-target, as well as 

representation of behavioral category (T vs. Ni) regardless of object identity. On 3-item trials, 

we quantified the encoding of target location and target identity, to assess preferential 

processing of target features when multiple items compete for representation.  

 

2.3 Methods 

2.3.1 Participants 
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Eighteen participants (9 males, 9 females; age range: 18-30 years, mean = 24.4, SD = 

3.8) took part in the study, recruited from the volunteer panel of the MRC Cognition and Brain 

Sciences Unit. Two additional participants were excluded from the analysis due to technical 

problems (one could not do the MRI; another was excluded due to an error in digitizing the 

EEG electrodes). EEG data for 4 participants were excluded from the MVPA analysis due to a 

technical issue (a test signal used during hardware checkup was not removed). All participants 

were neurologically healthy, right-handed, with normal hearing and normal or corrected-to-

normal vision. Procedures were carried out in accordance with ethical approval obtained from 

the Cambridge Psychology Research Ethics Committee, and participants provided written, 

informed consent prior to the experiment.  

2.3.2 Stimuli and Procedures 

Participants performed two localizer tasks (auditory and visual) and an attention task 

(see Figure 2.1 for an illustration). Stimulus presentation was controlled using the 

Psychophysics Toolbox (Brainard, 1997) in Matlab 2014a (Mathworks, Natick, WA). Auditory 

stimuli were delivered through in-ear headphones compatible with the MEG recording. Visual 

stimuli were back-projected onto a screen placed in front of the participant, approximately 129 

cm from the participant’s eyes. Each stimulus image was approximately 20 cm wide 

(approximate visual angle 8.8°) on a gray background. Before the start of each task, participants 

were given training to familiarize them with the stimuli and task rules. If a false alarm was 

made during any of the trials during the recording, that trial was repeated at the end of the run.  

2.3.2.1 Pattern Localizer Tasks 

Auditory Localizer Task: This task was used to characterize multivariate activity 

patterns for high and low pitch tones used in the attention task. Participants heard a stream of 

intermixed high (1100 Hz) and low (220 Hz) pitch tones. On rare occasions (9% of the time), a 

frequency modulation would occur (modulator frequency = 20 Hz; modulation index = 2.5), 

and participants were instructed to press a button whenever they detected a distortion in a tone. 

There were 100 occurrences of each unmodulated tone and 10 occurrences of each modulated 

tone. The duration of each tone was 100 ms, with the beginning and ending 10 ms ramped. The 

inter-stimulus interval was jittered between 1000-1500 ms. 

Visual Localizer Task: Similar to the auditory localizer task, this task was used to 

establish multivariate activity patterns for three visual stimuli (a face, a house, and a violin) 

used in the attention task. Participants were shown a stream of these images presented 
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sequentially in the center of the screen for 100 ms each, with an inter-stimulus interval jittered 

between 1500-2000 ms. Most image displays were semi-transparent (60% opaque) on a grey 

background; participants were asked to make a button press whenever they detected a brighter 

and higher contrast version of the image (100% opaque). There were 100 occurrences of each 

translucent image and 10 occurrences of each brightened image. 

2.3.2.2 Attention Task  

Figure 2.1 illustrates the stimuli used in the task, as well as the task structure. Before 

the start of this task, participants were trained to associate the two auditory tones with two of 

the three visual stimuli (the same used in the localizer tasks). This pairing resulted in the visual 

stimuli being categorized by behavioral relevance as targets (T: the visual stimulus paired with 

the current cue), inconsistent non-targets (Ni: the visual stimulus paired with the alternative 

cue), and consistent non-targets (Nc: never targets). All six possible mappings of two cues to 

three objects were counterbalanced across participants. The task was executed in runs of 90 

trials.  Each trial began with an auditory cue (for 100 ms), followed by a 1750 – 2250 ms 

fixation cross during which participants were instructed to prepare to attend for the target 

stimulus. Then a stream of three visual displays appeared one by one for 100 ms each, separated 

by 1500-2000 ms inter-stimulus intervals. Each display could be a 1-item display or a 3-item 

display with equal probability (order pseudorandomized, with the constraint that a 1-item 

display could not follow a 1-item display of the same type to minimize sensory adaptation 

effects). On 1-item displays, the stimulus was centered at fixation; 3-item displays contained 

all three visual stimuli, with the center of each stimulus 10° visual angle from fixation, arranged 

in an equilateral triangle with one above left, one above right, and one below. In 18 out of the 

90 trials in each run, a single brightened stimulus, target or non-target, occurred pseudo-

randomly in one of the 3 displays, with equal likelihood of appearing in each. For each cue 

type, brightenings affected T, Ni and Nc items once each on single item-trials, and twice each 

on 3-item displays, allowing one brightening for each of the six possible 3-item stimulus 

configurations. Participants were asked to attend to targets, pressing a button if they detected a 

brightened target (they could respond any time before the next stimulus), with no response for 

all other displays. Events with a brightened stimulus and/or button presses were later removed 

in the analysis, such that the results were not influenced by these events. The trial terminated if 

a button press was made, and participants were informed whether the response was a correct 

detection or a false alarm. A new trial began when the participant indicated with a button press 

that they were ready to continue. Otherwise, each of the 90 trials in each run had a full sequence 



35 
 

of 3 displays.  At the end of each run, feedback informed participants of their accuracy through 

the run. To discourage false alarms and equalize the number of non-response trials across 

conditions, trials that contained a false alarm were repeated at the end of the run. The task was 

repeated over 5 runs (2 participants only completed 4 runs due to time constraints). 

 

 

Figure 2.1. Stimuli and experimental paradigm. (A) The 3 objects used in the experiment. (B) An 

example of how the two auditory tones could be paired with the three objects. This results in two items 

that serve as targets (T) for one cue, and non-targets (Ni) for the other cue, and the third item serving 

as a consistent non-target (Nc). The pairings between the tones and the objects were counterbalanced 

across participants. (C) An example trial illustrating the experimental paradigm. At the beginning of 

each trial, an auditory cue indicated the target for that trial. After a delay, this was followed by three 

visual displays. Participants were asked to make an immediate button press if a brightening of the target 

stimulus was detected.  

 

2.3.3 Data acquisition 

2.3.3.1 Electroencephalography (EEG) 
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EEG data were collected from 70 Ag/AgCl electrodes mounted on an electrode cap 

(Easycap, Falk Minow Services, Herrsching-Breitbrunn, Germany) distributed according to the 

extended 10/20 system. Electrode impedances were kept below 5 kΩ. An electrode placed on 

the nose served as online reference while the ground electrode was placed on the right cheek. 

Vertical and horizontal eye movements were monitored using the electrooculograms (EOG) 

recorded using bipolar electrodes placed above and below the left eye and at the outer canthi of 

the eyes, respectively. Electrocardiography (ECG) was recorded using bipolar electrodes placed 

below the right collarbone and below the left ribcage. EEG data were sampled at 1000 Hz with 

a band-pass filter of 0.1–333 Hz. EEG and MEG data were acquired simultaneously. 

2.3.3.2 Magnetoencephalography (MEG) 

MEG data were acquired using a 306 channel (204 planar gradiometers and 102 

magnetometers) Neuromag Vectorview system (Elekta AB, Stockholm) in a sound-attenuated 

and magnetically shielded room. Data were sampled at 1000 Hz with an online band-pass filter 

of 0.03–333 Hz. Five Head Position Indicator (HPI) coils were attached firmly to the EEG cap 

to track the head movements of the participant. The locations of the HPI coils as well as the 

EEG electrodes were recorded with a Polhemus 3D digitizer. We also measured three 

anatomical landmark points (nasion, left and right preauricular points) and additional points on 

the head to indicate head shape and enable matching to each individual’s structural MRI scan. 

2.3.3.3 Structural MRIs 

High-resolution anatomical T1-weighted images were acquired for each participant 

(either after the MEG session or at least three days prior to the MEG session) in a 3T Siemens 

Prisma scanner, using a 3D MPRAGE sequence (192 axial slices, TR = 2250 ms, TI = 900 ms, 

TE = 2.99 ms, flip angle = 9°, field of view = 256 mm × 240 mm × 160 mm, 1 mm isotropic 

resolution). The coordinates of the nasion, left and right preauricular points in native space were 

hand-marked by the experimenter, and used in the coregistration of the EEG/MEG and MRI. 

2.3.4 EEG and MEG data preprocessing 

The raw data were visually inspected during recording for any bad channels, which were 

removed (EEG: 0 - 5 across subjects; MEG: 1 - 5 across subjects). The MEG data were de-

noised using Maxfilter 2.2 (Elekta Neuromag, Helsinki), with the spherical harmonic model 

centered on a sphere fit to the digitized head points; default settings were used for the number 

of basis functions and the spatiotemporal extension (Taulu & Simola, 2006). Maxfilter detected 

additional bad channels using the first and last 900 data samples (default threshold), and signal 
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from all bad channels was removed and interpolated. Continuous movement compensation was 

applied at the same time.  

Subsequent preprocessing used SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and Matlab 

2015a (The Mathworks Inc). Separately for EEG electrodes, magnetometers and gradiometers, 

independent component analysis (ICA), implemented using EEGLAB (Delorme & Makeig, 

2004), was used to detect and remove components whose time-course correlated with EOG or 

ECG reference time-courses, and whose topography matched reference topographies associated 

with ocular or cardiac artefacts estimated from independent data acquired on the same system. 

ICA used the default infomax algorithm, with dimension reduction to 60 principal components. 

An independent component was removed if (1) it had the maximum absolute correlation with 

both a temporal and spatial reference, (2) these correlations were significant at p < 0.05, (3) the 

z-scored absolute correlations exceeded 2 for the spatial component, and 3 for the temporal 

component, and (4) it explained > 1.7% of total variance. For assessing temporal correlations 

only, ICA and reference time-courses were band-pass filtered between 0.1 - 25 Hz, and 

correlations were also repeated 1000 times with phase randomization of the reference time-

course to ensure that the true maximum absolute correlation of eliminated components was 

greater than the 95th percentile of the null distribution.  EEG data were then re-referenced to the 

average reference.  

Data were band-pass filtered between 0.1 Hz and 40 Hz (zero-phase forward and reverse 

5th order Butterworth filters with half-power cutoff frequencies). We note that although filtering 

enhances the signal-to-noise ratio of neural signals, it also spreads signal in time, distorting 

estimates of onset latencies. In this paper we focus on peak latencies, which are less sensitive 

to filtering (Luck, 2014; Grootswagers et al., 2016; van Driel et al., 2019). Data were epoched 

around the events of interest, time-locked to stimulus onset (from -100 ms to 1000 ms in the 

auditory localizer task; from -100 ms to 1500 ms in the visual localizer task; from -100 ms to 

1750 ms for the cue and delay period of the main task, and -100 ms to 1500 ms for each of the 

visual stimulus presentations in the main task). Time points -100 ms to 0 ms served as baseline 

for baseline correction – the mean signal across this window was subtracted from each time 

point, per epoch. Epochs that contained flat segments or high threshold artifacts (peak-to-peak 

amplitude greater than 4000 fT for magnetometers, 400 fT/m for gradiometers, 120 μV for 

EEG, or 750 μV for EOG) were marked as bad trials and were rejected. In both localizer and 

attention tasks, any epoch that contained an auditory frequency distortion, a visual brightening, 

or a button press were additionally excluded from analyses. In the attention task, we also 

http://www.fil.ion.ucl.ac.uk/spm
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removed all data from any trial with an error (false alarm or miss). The average number of 

epochs remaining for each condition is shown in Table 2.1. 

 

Table 2.1. Mean number of epochs (and standard deviation across participants) per condition after 

artifact rejection 

Localizer Tasks 

Auditory localizer 

Low tone High tone   

80.8 

(16.8) 

81.0 

(14.9) 
  

Visual localizer 

Face House Violin  

72.1 

(13.6) 

70.1 

(14.9) 

69.7 

(15.4) 
 

Attention Task 

Preparatory phase 

Low tone High tone   

147.6 

(35.7) 

147.4 

(37.5) 
  

Stimulus processing phase 

Face House  Violin 3-item 

138.4  

(36.4) 

134.2  

(34.2)  

139.5  

(34.3) 

406.1  

(110.2) 

Target (T) 
Inconsistent Non-

target (Ni) 

Consistent Non-

target (Nc) 
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138.9  

(35.3) 

137.9  

(35.0) 

135.1  

(34.8)  

 

2.3.5 Source Localization 

For each participant, a cortical mesh was created from the individual’s structural MRI, 

with a mesh resolution of ~4000 vertices per hemisphere. The EEG/MEG and MRI were 

coregistered based on the three anatomical fiducial points and an additional ~200 digitized 

points on the scalp. Forward models were computed for EEG data using a three-shell boundary 

element model (BEM) and for MEG data using a single-shell BEM. The forward model was 

inverted using minimum norm estimation (MNE) to compute source estimates for each 

experimental condition.  

Due to the limited spatial resolution limits of EEG/MEG, we chose three a priori 

spatially distinct bilateral ROIs (Figure 2.2C). Early visual cortex and lateral prefrontal cortex 

(LPFC) were used to test representation in relevant sensory and cognitive control areas. An 

additional auditory cortex ROI was used both to measure cue decoding, and in other analyses 

to test for signal leakage. Auditory and primary visual cortex ROIs were taken from the SPM 

Anatomy toolbox (Eickhoff et al., 2005), containing 350 and 523 vertices. The LPFC ROI was 

taken from Fedorenko et al. (2013) (http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem), 

combining the anterior, middle, and posterior middle frontal gyri, spanning 461 vertices. 

We chose V1 as the visual ROI to keep the three regions as far apart as possible and 

thus minimize signal leakage between them. Since higher visual regions are specialized for 

object-level processing, and can contain template-like signals (Stokes et al., 2009), we 

subsequently examined a broad extrastriate visual cortex (ESV) ROI from the Fedorenko et al. 

(2013) template, which encompasses object, face, and scene processing regions.  In all cases, 

results were very similar, reflecting the low spatial resolution of MEG. Here we report the 

results of V1, but the results from ESV can be found in Appendix A. Figures A.1~A.6. 

 

2.3.6 Multivariate Pattern Analysis (MVPA) 

Multivariate pattern analyses were performed using the Matlab interface of LIBSVM 

(Chang and Lin, 2011). We used a linear support vector machine (SVM), with default 
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parameters. For each analysis, we performed decoding in sensor space as well as in source space 

using data from the three ROIs. For sensor space decoding, we combined data from good EEG 

and MEG (gradiometers and magnetometers) channels. Each individual time point was 

standardized (z-scored across channels) before entering the classifier. For source space 

decoding, each participant’s cortical mesh was transformed into MNI space, and estimated 

source activity at each vertex within the ROIs was extracted to serve as a feature in the classifier. 

In both sensor and source space MVPA analyses, we trained and tested using 

spatiotemporal patterns extracted from a sliding time window of 32 ms, in 4 ms steps. Training 

and testing were performed on every combination of time windows, resulting in a cross-

temporal generalization matrix of classification accuracies (King and Dehaene, 2014), with the 

diagonal representing the performance of classifiers trained and tested on the same time 

window. The classification accuracy matrix was then slightly smoothed using a sliding 32 ms 

square averaging window. For analyses involving within-task decoding, the data were split into 

five folds (with one fold containing every 5th trial chronologically), iteratively trained on 

individual trials from four of the folds and tested on the remaining fold by applying the SVM 

to the remaining trials individually. In cross-task decoding, a classifier was trained on all 

relevant epochs from one task and tested on all relevant epochs from another task. 

Classification accuracies were compared against chance (50%) with one-tailed t-tests. 

Multiple comparisons were accounted for using Threshold Free Cluster Enhancement (TFCE), 

with height and extent exponents of 2 and 2/3 respectively, and Family-Wise Error controlled 

by comparing the statistic at each time point to the 95th percentile of the maximal statistic across 

a null distribution of 1000 permutations with random sign flipping (Smith and Nichols, 2009). 

TFCE was performed in the same way across the time × time decoding matrices and along the 

matched-time diagonals. The figures were plotted according to the last time bin in the sliding 

window (Grootswagers et al., 2017). For decoding of 1-item behavioral category, epochs that 

were preceded by a T or Ni were excluded, to ensure that behavioral category was balanced in 

the baseline period.  

 

2.4 Results 

2.4.1 Behavioral results 
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Behavioral performance was consistently high (auditory localizer task – hits: mean = 

99.0%; false alarms: mean = 0.8%; visual localizer task – hits: mean = 98.9%; false alarms: 

1.0%; attention task – hits: mean = 98.3%; false alarms: mean = 0.8%). 

2.4.2 Coding of the attentional cue/attentional template during the preparatory 

phase 

Source localization of the response to the cue at representative time points is shown in 

Figure 2.2A. We first looked for decoding of the specific attentional cue during the preparatory 

phase of the attention task, defined as starting from cue onset but before the first visual stimulus, 

and compared this with decoding in the auditory localizer task. We asked whether preparing 

for a target enhances cue decoding. Here, we subsampled the trials in the attention task to match 

the minimum number of trials in the auditory localizer for each participant, keeping the first n 

trials, to ensure comparable signal-to-noise ratio across the three decoding analyses. 

Cue/stimulus decoding as a function of time from auditory stimulus onset is shown in Figure 

2.2B, D. Curves on the left show training and testing on matched time-points. Matrices on the 

right show generalization of patterns across all pairs of training and testing time windows. 

Across the whole sensor space (Figure 2.2B), significant discrimination between the 

two auditory stimuli/cues emerged shortly after the presentation of the stimulus, peaking at 

around 116 ms for the auditory localizer task (Figure 2.2B, orange curve), 148 ms for the 

preparatory phase of the attention task (Figure 2.2B, purple curve), and 112 ms when training 

the classifier on the localizer task and testing on the attention task (Figure 2.2B, pink curve). In 

both sensor space (Figure 2.2B) and all ROIs (Figure 2.2C-D), cue decoding during the 

attention task returned to chance level. During the auditory localizer task, cue decoding was 

more sustained, especially in the LPFC. After matching the number of trials used to train the 

classifier, an analysis type × ROI ANOVA of peak decoding accuracies, within a 0 – 600 ms 

time window, showed a main effect of ROI (F(2,34) = 155.2, p < 0.001), but no differences in 

decoding amplitude (F(2,34) = 3.4, p > 0.5), and no interactions (F(4,68) = 0.7, p = 0.6). 

Therefore, we found no evidence for template representation beyond the initial auditory 

representation of the cue. 

To test whether activity during any stage of the preparatory phase might reflect the 

representation of the upcoming trial target, we performed a cross-task and cross-time 

classification analysis trained using the visual localizer task. At every time window, patterns 

from the two visual items associated with each cue were taken from the visual localizer task to 
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use as training data, and these were tested at every time window of the preparatory phase of the 

attention task to decode the trial target (now without subsampling trials). We did not find any 

significant time points where the visual template cross-generalized to the preparatory phase.  

Finally, we note that cross-time generalization matrices suggest that the LPFC signal 

reached a steady state at the end of the auditory localizer, in contrast to its lack of any sustained 

signal during the preparatory phase of the attention task. Even including all the trials of the 

attention task, without subsampling, we observed the same disappearance of cue decoding 

during the preparatory phase (see Appendix A. Figure A.7). This might reflect the fact that the 

representation in the auditory task does not need to be transformed further, whereas in the 

attention task it serves an intermediate role in mapping subsequent visual inputs to behavior.     
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Figure 2.2. Response to the attentional cue. (A) Source localization of EEG/MEG response to the 

auditory attentional cue at representative time points relative to cue onset. (B) Decoding time-course of 

auditory stimulus/attentional cue using all sensors combining EEG and MEG across the whole brain. 

Curves on the left show decoding when training and testing on matched time-points. Dark colored dots 

beneath the decoding curves show times where decoding is significantly above chance for each condition 
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(p < 0.05), corrected for multiple comparisons along the diagonal of the cross-temporal generalization 

matrix; faint colored dots represent additional time-points where the diagonal of the cross-temporal 

generalization matrix is significant when corrected for multiple comparisons across the whole matrix. 

Translucent bands represent standard error of the mean. Matrices on the right show temporal 

generalization of decoding across all pairs of training and testing times. Black contours indicate regions 

of significant decoding (p<0.05). (C) Vertices within source space ROIs (auditory cortex, lateral 

prefrontal cortex (LPFC), and visual cortex). (D) Decoding time-courses from these source space ROIs; 

same format as (B). Significance is corrected for multiple comparisons across time using TFCE and 

permutation testing. 

 

2.4.3 Coding of visual and behavioral properties of 1-item displays  

We next turned to processing of the visual items, and selection of the target item. Source 

localization of the response to the visual stimuli at representative time points is shown in Figure 

2.3A.  

During 1-item displays, we expected strong, early discrimination of object identity (e.g., 

face vs. house, when the consistent non-target was the violin). In the attention task, each 

stimulus additionally had a behavioral category depending on the cue of that trial. For the 

participant to make the appropriate response to each stimulus, we expected that the neural signal 

would also show behavioral category discrimination (target vs. non-target), which would occur 

after object identity processing. For these analyses, we focused on the T and Ni conditions, for 

which object identity and behavioral category were fully crossed. Object representation was 

measured by the discrimination between stimulus identities (e.g. face vs. house) when each 

were equally often targets or non-targets; conversely, behavioral category representation was 

measured by discrimination between targets and non-targets when these were equally balanced 

across stimulus identities. 

Single stimulus decoding time-courses on T and Ni presentations are shown in Figure 

2.3B-C. In line with expectations, both object identity and behavioral category showed 

substantial periods of significant decoding accuracy. Across the whole sensor space, a 

significant difference between object identities peaked at around 128 ms. Behavioral category 

decoding emerged later, slowly rising to a peak at 360 ms. 

Source space analysis showed that both types of information could be decoded from all 

three ROIs. Decoding of object identity in the auditory ROI warns of possible signal leakage 
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between regions. Visual cortex, however, had the highest decoding accuracy for object identity, 

while ROIs did not statistically differ in their strength of decoding accuracy for behavioral 

category. 

Cross-temporal generalization indicated that object identity representation was most 

stable in the visual ROI. In contrast, behavioral category representation was most stable in the 

LPFC ROI. 

 

 

Figure 2.3. Coding of visual and behavioral properties of 1-item displays (A) Source localization of 

EEG/MEG response to visual presentation (including both single-item and multi-item displays) at 

representative time-points. (B) Decoding time-courses of object identity, in (a) sensor and (b) source 

space, when training/testing using matched time-points, and (c) generalizing across training/testing 
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times. Dark colored dots beneath the decoding curves show times where decoding is significantly above 

chance for each condition (p < 0.05), corrected for multiple comparisons along the diagonal of the 

cross-temporal generalization matrix; faint colored dots represent additional time-points where the 

diagonal of the cross-temporal generalization matrix is significant when corrected for multiple 

comparisons across the whole matrix. Translucent bands represent standard error of the mean. Black 

contours in cross-time matrices indicate regions of significant decoding (p<0.05). Significance is 

corrected for multiple comparisons across time using TFCE and permutation testing. (C) Decoding 

time-courses and cross-temporal generalization for behavioral category information. Object identity 

decoding emerged earlier than behavioral category decoding. Visual cortex showed the highest object 

decoding accuracy, while ROIs were comparable in their strength of behavioral category 

representation.  

 

2.4.4 Coding of target location in 3-item displays 

Next, we examined target representation in the presence of simultaneous distractors. We 

first asked when the spatial location of the target within 3-item displays could be decoded 

(Figure 2.4; Fahrenfort et al. 2017). To do this, we decoded every pair of T versus Ni locations, 

while holding Nc position constant (i.e., “T right, Ni left” vs. “Ni right, T left”, “T right, Ni 

bottom” vs. “Ni right, T bottom”, and “T left, Ni bottom” vs. “Ni left, T bottom”) and averaged 

the accuracies within each participant. Within each pair, collapsing across both possible cues 

ensured that the decoding was balanced for both visual features and auditory cues. Group 

sensor-space results showed that decoding began to emerge shortly after stimulus onset, and 

peaked at 244 ms, before slowly declining toward the end of the epoch. The analysis was 

repeated in source space. Decoding of target location was significant in all ROIs, but strongest 

in visual cortex where it peaked at 132 ms. Cross-temporal generalization suggested that the 

representation of target location was initially dynamic, then entered a temporarily stable state, 

most apparent in sensor space suggesting spatially coarse stability, before becoming unstable 

once more prior to the end of the epoch. 

In a complementary analysis to target location decoding, we examined the N2pc, a well-

known early index of spatial attention, which appears as a negativity over posterior EEG 

electrodes contralateral to the side of space to which the subject is attending around 200-300 

ms following a stimulus (Luck and Hillyard, 1994; Heinze et al., 1990; Eimer, 1996; Hopf et 

al. 2000; Fahrenfort et al., 2017). We compared event-related potentials/fields when the target 

was on the right or left of the screen of the 3-item display, and the topography of this contrast 
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is shown in Figure 2.4B. Differences between target locations peaked between 200-300 ms in 

posterior EEG and MEG signals, although the signals diverged earlier in MEG, which could 

reflect the source of the earlier decoding. We note that our lateralized stimuli were in the upper 

visual field, and that the N2pc is typically stronger for stimuli in the lower visual field (Luck et 

al 1997; Bacigalupo & Luck, 2018).  

 

 

Figure 2.4. Coding of target location in 3-item displays. (A) Decoding of target location during 

presentation of 3-item displays, i.e., whether the item corresponding to the cue is in the left, right, or 

bottom position. Format as in Figure 2.3. Location decoding was strongest in the visual cortex. (B) 

Univariate N2pc ERP/ERFs across (a) EEG electrodes and (b) latitudinal gradiometers. Latitudinal 

gradiometers are presented because their orientation around the helmet means that contralateral 

asymmetries in the magnetic flux gradient are expressed analogously to the EEG topography (Mitchell 

and Cusack, 2011; Kuo et al. 2016). Topographies are averaged across 200-260 ms (marked in grey on 

the time-courses). Time-courses are averaged across posterior sensors contralateral and ipsilateral to 

the target (highlighted on the topographies), with black dots indicating a significant difference (p<0.05) 

after TFCE with permutation testing. 

 

2.4.5 Coding of target identity during presentation of 3-item displays 
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We also hypothesized that representation of 3-item displays would differ depending on 

the cue, even though the visual input was the same. All 3-item displays contained the target 

item that was associated with the cue, as well as the Ni and Nc items. Therefore, the decoding 

of the cue in the presence of a matching visual stimulus likely reflects attentional enhancement 

of the selected target identity. Although a template representation could also contribute to the 

decoding, this can only be isolated in the absence of a target (see next section). In sensor space, 

cue/target identity decoding peaked at 252 ms. In source space, the visual cortex showed the 

highest decoding accuracy (Figure 2.5).  

Cross-temporal generalization suggested that the representation of target identity in the 

presence of distractors was dynamic, and decayed rather than settling into a steady state. For 

this analysis, we also expected cross-task generalization from the visual localizer. This was 

significant in the visual ROI, but not in the auditory or LPFC ROIs, suggesting that the shared 

pattern was predominantly sensory, with minimal signal leakage in this case.  

To compare the decoding latencies of target location and target identity in 3-item 

displays, we calculated 50%-area latency (Luck, 2014; Liesefeld, 2018) using data from a 0 – 

600 ms window for each subject, ROI and decoding type. Paired 2-tailed t-tests showed that 

target location decoding preceded target identity decoding in both the whole sensor space (t(17) 

= 2.86, p < 0.05) and in the visual cortex (t(17) = 4.97, p < 0.001), but not in the auditory or 

LPFC ROIs (both t(17)<1.95; both p>0.05). 

 

 

Figure 2.5. Decoding of attentional cue/target identity during presentation of 3-item displays. Panels 

(a-c) have the same format as Figure 2.3. Panel (d) shows cross-task generalization of decoding, when 

training on the visual localizer task and testing on the attention task.  
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2.4.6 Reawakening of the attentional cue/template during presentation of 

consistent non-targets 

Finally, we tested whether we could decode the cue/template during the presentation of 

a single Nc visual stimulus. Wolff et al. (2015, 2017) have shown that by ‘pinging’ the brain 

with a neutral stimulus during working memory maintenance, it can be possible to decode the 

memory-item-specific information from the impulse response. In our data, cue decoding 

following Nc presentation was visible but rather weak and intermittent (Figure 2.6).  Across 

sensor space and source space, there were scattered brief periods of above-chance decoding. 

Their appearance in auditory as well as visual and frontal ROIs questions whether these might 

reflect a reactivated memory of the auditory cue, or a visual attentional template in anticipation 

of the next visual input. Apparent signal in the auditory ROI might also reflect leakage from 

other sources.  Cross-temporal generalization suggested that although the representation was 

not fully sustained, when it resurfaced in the visual ROI it did so with a similar pattern. Cross-

task generalization from the auditory and visual localizers provided no evidence that this 

representation was in a similar format to either cue or target perception.   

 

 

Figure 2.6. Decoding time-course of attentional cue during presentation of Nc displays. Format as in 

Figure 2.3. 

 

2.4.7 Summary of component time-courses during attentional selection 

Above we have described five distinct forms of information representation evoked by 

the appearance of the visual stimuli (Figures 2.3-6). These are summarized in Figure 2.7, 

overlaying their average sensor-space and ROI-based decoding time-courses for ease of 

comparison. 
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Figure 2.7. Summary of the decoding time-courses of five component processes of selective attention 

following onset of a visual stimulus: representation of stimulus identity, target position, target identity, 

behavioral status, and the template of the cue/target. Decoding accuracy is averaged across sensor 

space and source ROIs, and translucent bands represent standard error of the mean across subjects. 

 

2.5 Discussion 

There is currently much interest in decoding the contents of cognitive operations from 

human MEG/EEG data, and in using these methods to understand attentional selection of 

information relevant to current goals. Here, we examined the evolution of multiple forms of 

information represented in the brain as a visual target is selected. Combining single-item 

displays with multi-item displays of targets and different types of distractors allowed 

quantification of distinct components of processing during selective attention, indexed by 

different profiles of representational content. 

Although multiple attentional templates could guide behavior (Awh et al., 2012), for 

effective task performance selection of a particular target requires a template that specifies the 

currently relevant object (Duncan and Humphreys, 1989; Bundesen, 1990).  In fMRI, 

multivariate classifiers trained on responses to viewed stimuli can predict an attentional 

template during the preparatory phase (e.g., Stokes et al., 2009). In our MEG/EEG data, we 

observed significant decoding of cue identity in the attention task, but after equating trial 

numbers decoding accuracies were not significantly different from that of stimulus processing 
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in the auditory localizer task. Furthermore, beyond 1000 ms, cue decoding was 

indistinguishable from chance. Previous MEG/EEG studies have suggested existence of a pre-

stimulus template, often subtle and short-lived (Myers et al., 2015; Kok et al., 2017; Grubert 

and Eimer, 2018). Following non-target displays, we observed evidence of template 

reawakening; although significant, this was weak and not fully sustained. The delay of template 

reactivation relative to the explicit categorization of the display as a non-target suggests a serial 

component to the search process, here within the temporal presentation stream but consistent 

with neural evidence of serial refocusing of attention within single search displays (Woodman 

& Luck, 1999; Bichot et al., 2005). 

Sustained preparatory activity reflecting an attentional template may be largely invisible 

to MEG/EEG for many reasons. For example, at the physiological level, if discriminating 

neurons are intermixed, they may be hard to distinguish with non-invasive methods. Recent 

findings from single trial analysis of direct neural recordings also suggest that spiking activity 

during the delay period is sparse, with brief bursts of activity having variable onset latency and 

duration, which would hinder cross-trial decoding (Shafi et al., 2007; Lundqvist et al., 2016a, 

2018; Stokes and Spaak, 2016; Miller et al., 2018). A parallel possibility is that attentional 

templates may sometimes be stored in an “activity silent” passive form, such as changed 

synaptic weights (Lundqvist et al., 2010; Stokes, 2015). Consistent template representations 

may also be difficult to detect if there is-trial-to-trial variability at the cognitive level (Vidaurre 

et al., 2019), such as fidelity of mental imagery, as well as the anticipation of stimulus timing, 

with templates activated/strengthened only when the search display is expected to be imminent 

(Grubert and Eimer, 2018). It is also possible that in the current experiment, the attentional 

template required little effort to maintain as a verbal label and might have been more visible if 

harder to verbalize. Consistent templates may be more likely when few features distinguish 

targets from distractors, for example when targets are defined only by orientation or color (Kok 

et al., 2017; Myers et al., 2015; Grubert and Eimer, 2018). Perceptually complete templates 

may be more likely when targets share different features with different distractors (Duncan and 

Humphreys, 1989).  Finally, we emphasize that for successful task performance a template must 

exist in some form, even when we are unable to detect it, and that uncovering subtle or variable 

templates may benefit from novel analysis methods (Vidaurre et al. 2019). 

Upon presentation of the visual choice display, we found much decodable information 

of various kinds. The timing of peak decoding of different features suggests five components 

of processing. The current data cannot determine the extent to which these components evolve 
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in parallel or have some serial dependency, whereby one process influences another. It is likely 

that there is a degree of both (Bichot et al., 2005). First, visual stimulus properties are encoded, 

shown by object identity decoding in 1-item displays, peaking around 128 ms, and strongest in 

visual cortex. Second, in a multi-element display, the candidate target is localized, shown by 

target location decoding that peaked between 132 ms (in visual cortex, where strongest) and 

244 ms (combining all sensors). This may be partially concurrent with initial visual processing, 

consistent with an initial parallel stage of selection (Duncan, 1980; Treisman and Gelade, 1980) 

and automatic registration of coarse feature location (e.g. Cohen & Ivry,1989; Hopf et al., 

2004), that could be used to guide subsequent attention (Itti and Koch, 2000; Bisley and 

Goldberg, 2010; Wolfe, 1994; Eimer, 2015). Third, representation of the candidate target 

continues to be enhanced relative to distractors, perhaps via integrated competition, shown by 

cue/target identity decoding in 3-item displays, peaking around 252 ms, again strongest in 

visual cortex. Fourth, behavioral significance of the target is explicitly represented (in this case 

whether it is a target, so requiring further processing), shown by behavioral category decoding 

in 1-item displays, peaking around 360 ms and most stable in the LPFC. Fifth, if no target is 

identified and search must continue, an attentional template might be reactivated or 

strengthened, shown by cue decoding after Nc displays, peaking beyond 500 ms. The precise 

timing at which each representation is detectable will depend on many factors including stimuli, 

task, analysis sensitivity, similarity between targets and distractors, and the number and 

homogeneity of distractors (Duncan and Humphreys 1989). Nonetheless, we anticipate that the 

sequence of key components would largely generalize across paradigms (Eimer, 2015; Vidaurre 

et al., 2019). Potential dependencies between processes might be investigated by combining 

MVPA of electrophysiological recordings with transcranial magnetic stimulation at successive 

times. 

In 1-item displays, we found a distinction between visual cortex and LPFC. While the 

regions represented behavioral category with similar strength, visual cortex represented 

stimulus identity more strongly than LPFC. Similarly, object identity was represented more 

stably in visual cortex, whereas behavioral category was represented more stably in LPFC. 

fMRI studies show that frontal regions flexibly code for behaviorally relevant categories 

according to task rule (Jiang et al., 2007; Li et al., 2007; Woolgar et al., 2011a; Lee et al., 2013; 

Erez and Duncan, 2015). Electrophysiological recordings of monkey prefrontal responses to T, 

Ni, and Nc stimuli show that visual input properties are initially equally represented for targets 

and non-targets, whereas the behaviorally critical target dominates later processing (Kadohisa 
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et al., 2013; Stokes et al., 2013). Our results also suggest an anterior-posterior distinction in 

information content and timing.  

In multi-item displays, the candidate target was rapidly identified and localized, with 

location decoding providing the earliest evidence of modulation by behavioral relevance. 

Although its timing, peaking around 132 ms in V1, was earlier than might be expected based 

on the N2pc and multivariate decoding using EEG alone (Fahrenfort et al., 2017), it is consistent 

with representation of the location of task-relevant features reported from ~140 ms and 

preceding the N2pc (Hopf et al. 2004). Ipsilateral and contralateral target responses diverged 

earlier in MEG than EEG, suggesting that the source of the earlier decoding may be more visible 

to MEG. Location decoding peaked later in the other ROIs and at the sensor level (beyond 230 

ms) suggesting that source localization may have helped in isolating the earlier signal. 

Although target localization implies target identification, and time-courses of location 

and identity representation in 3-item displays were heavily overlapping, the location signal was 

significantly earlier than the identity representation in visual cortex. This is consistent with 

models of visual attention as well as empirical data that make an explicit distinction between 

feature selection, where attention is rapidly allocated to candidate objects (Broadbent, 1958), 

and object recognition, which takes place at a subsequent stage where the features of objects 

are integrated and their identity becomes accessible (Eimer, 2015; Eimer & Grubert, 2014; Kiss 

et al., 2013). It could also arise within a continuous competitive framework, without explicit 

recognition, if neurons representing identity have overlapping receptive fields such that 

competition amongst them is slower to resolve or benefits from prior spatial filtering (Luck et 

al. 1997); or if complete identity representation involves several features whose integration is 

strongly mediated by shared location within spatiotopic maps (Treisman & Zhang, 2006; 

Schneegans and Bays, 2017). The location of an attended feature can also be represented before 

the location of a target itself (Hopf et al., 2004), and the temporal priority with which different 

features of the target are enhanced may depend on the cortical location as well as the particular 

task demands (Hopf et al., 2005). The observations that competitive representations of target 

location and target identity peaked at different times, and that neither appeared to reach a 

permanent steady state, together indicate that the early phase of integrated competition is 

dynamic, with different aspects of the target representation waxing and waning at different 

times. In contrast, the later explicit representation of target status settled into a steady state in 

LPFC that persisted until the end of the epoch.  
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Interestingly, a target influenced bias in the 3-item displays well before its target status 

was explicitly decodable in the single-item displays. This strongly suggests at least two stages 

of target processing, consistent with behavioral manipulations suggesting that spatial selection 

and target identification are separable (Ghorashi et al., 2010). Distinction between an early, 

parallel processing stage and a later capacity-limited stage is central to most models of attention 

(Duncan, 1980; Treisman & Gelade, 1980). Target decoding in 3-item displays peaked at 252 

ms with first significance at 196 ms, similar to attentional modulation of stimulus category 

processing in cluttered scenes observed from 180 ms (Kaiser et al., 2016), and to demonstration 

of feature-binding during integrated competition (Schoenfeld et al. 2003). The later stage 

indexed by single-item decoding may correspond to capacity-limited individuation of the 

integrated target object, allowing its bound properties to become accessible for further 

processing and goal-directed action (Duncan, 1980; Bichot et al., 2005; Mitchell and Cusack 

2008; Christie et al., 2015), in this case likely including the brightness judgement. These two 

stages could also be interpreted in terms of the “global neuronal workspace” model - the earlier 

attentional bias reflecting accumulation of pre-conscious sensory evidence; the later explicit 

representation of target status reflecting conscious awareness and “ignition” of fronto-parietal 

networks, linked to P3 waves around 300- 500 ms (Dehaene & Changuex, 2011; Sergent et al., 

2005) and consistent with the timing of peak decoding at 360 ms. 

To conclude, although attentional selection must begin with a template, this may be 

weakly or variably represented (Duncan et al., 1997; Lundqvist et al., 2018; Miller et al., 2018), 

such that it is largely invisible to MEG/EEG, or even maintained in “silent” form (Stokes, 

2015). In agreement with others (Olivers et al., 2011; Myers et al., 2015; Grubert and Eimer, 

2018), we suggest that the template may be actively and consistently represented only when 

needed, and least likely to interfere with other concurrent processes. Integrated competition 

accounts of attention imply that the template need be neither complete nor constant across trials, 

consistent with no significant response pattern generalization between template representations 

and the visual localizer. In contrast, integrated competition suggests that attentional selection 

and enhancement of stimulus representations will be strong and widespread. Supporting such 

models, we observed robust, time-resolved decoding of the critical processing stages required 

to select and enhance a target amongst competing distractors, and to categorize it according to 

behavioral requirements.  
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Chapter 3 Representation of task episodes in human 

cortical networks 

 

3.1 Abstract 

Task episodes consist of sequences of steps that are performed to achieve a goal. The 

current study used fMRI to examine which regions of the brain represent full episodes, 

component items, and sequential position. Participants learned six tasks each consisting of four 

steps. Inside the scanner, participants were cued which task to perform and then sequentially 

identified the target item of each step in the correct order. The multiple demand (MD) network 

and the visual cortex exhibited phasic responses to each task step, suggesting that they are 

sensitive to the fine structure of the episode. In addition, many brain regions – including regions 

of the default mode network (DMN) - showed a phasic response to onset and offset of the entire 

task episode, along with gradually increasing activity across the episode. Representational 

similarity analysis was used to examine encoding of component items and entire episodes.  

Compared to MD regions, which coded individual items but not the entire episode, the DMN 

showed representation of both item and episode. The results suggest collaboration of multiple 

brain regions in control of multi-step behavior, with MD regions representing the detail of 

individual steps, and DMN adding representation of broad task context. 

 

3.2 Introduction 

A central feature of purposeful everyday behavior is the retrieval of learned sequences 

of events from memory (Hsieh and Ranganath, 2015) to guide our current actions. This involves 

parcellating a main goal (e.g., “make a stew”) into smaller achievable steps (e.g., “take food 

from fridge”  “wash vegetables”  “chop vegetables”  “cook on stove”) to allow 

progression towards the goal (Penfield and Evans, 1935; Cooper and Shallice, 2000; Farooqui 

et al., 2012). We call these temporally organized sequences of steps that occur within a given 

context “task episodes”. A key aspect of these task episodes is the control of extended episodes 

of behavior as one unit, and not as a collection of independent acts (Schneider and Logan, 2006; 

Duncan, 2010; Farooqui and Manly, 2018b). Whenever a step is completed, its specific content 

loses relevance, but higher level task representations of the full episode must remain in 
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behavioral control (Farooqui et al., 2012; Farooqui and Manly, 2018b). This raises the question 

of how different brain regions work together to execute the current step of the task while 

keeping the overall goal in mind.  

Previous literature has highlighted the importance of a set of frontal and parietal regions, 

known as the multiple demand (MD) network (Duncan and Owen, 2000), in executing complex 

mental programs (Duncan, 2010, 2013; Farooqui et al., 2012). It has been proposed that the MD 

network plays a key role in defining and controlling parts of task episodes, allowing goals to be 

achieved by decomposition into a structure of subgoals (Kurby and Zacks, 2008; Farooqui et 

al., 2012; Duncan, 2013). The MD network is well suited for focusing on specific contents of a 

current cognitive operation, dynamically encoding information relevant to a current decision 

(Asaad et al., 2000; Everling et al., 2002; Li et al., 2007; Woolgar et al., 2011b; Stokes et al., 

2013), and radically changing the pattern of activity across successive task steps (Sigala et al., 

2008; Duncan, 2010). In particular, Farooqui et al. (2012) investigated the role of MD activity 

in task episodes requiring a series of target detection steps. The authors found that target 

detections that completed the entire task episode elicited the greatest MD activity, followed by 

those completing a subtask, and finally steps within one subtask. As MD activity depended on 

task completion, it was suggested to be involved in directing and revising the control 

representations of each step of the episode.  

The ability to organize sequences of events within a given context has also been a key 

topic in the study of episodic memory (Ezzyat and Davachi, 2011; Eichenbaum, 2013; Hsieh et 

al., 2014; Cohn-Sheehy and Ranganath, 2017; Radvansky and Zacks, 2017). Tulving’s original 

definition emphasized the importance of temporal events: “Episodic memory receives and 

stores information about temporally dated episodes or events, and temporal-spatial relations 

among these events (Tulving, 1972, p.385).”  Event segmentation theory (Zacks and Tversky, 

2001; Zacks and Swallow, 2007; Radvansky and Zacks, 2017) proposes that humans can 

segment incoming information into temporal parts that are meaningfully related to the current 

situation. When important situation features change, the current event model is updated and 

experienced as an event boundary. Neuroimaging studies have found brain regions sensitive to 

event boundaries to overlap with areas associated with episodic memory retrieval including 

regions in the default mode network (DMN; Zacks et al. 2001; Speer et al. 2007; Ben-Yakov et 

al. 2014; Richmond and Zacks 2017; Baldassano et al. 2018). Furthermore, it has been 

suggested that these dynamics within the DMN may reflect the underlying meaning of the 

episode rather than simple stimulus changes (Radvansky and Zacks, 2017), as coarse 
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segmentation elicited greater DMN activity than fine-grained segmentation (Speer et al., 2007). 

Consistent with this observation, the DMN network has been implicated in high level cognition 

at a broad scale, such as encoding of schemas (Robin and Moscovitch, 2017), situation models 

(Reagh and Ranganath, 2018), and cognitive contexts (Crittenden et al., 2015). In a study of 

topographic mapping of a hierarchy of temporal receptive windows (TRW), participants 

listened to a story scrambled at the time scales of words, sentences, and paragraphs (Lerner et 

al., 2011). Results showed that early sensory regions were driven by incoming sensory input 

and were similarly responsive in all conditions; however, MD regions exhibited intermediate 

TRWs, whereas DMN regions were at the apex of the TRW hierarchy, such that they responded 

reliably only when intact paragraphs were heard in a meaningful sequence. This evidence 

suggests that the DMN is well suited to representing task episodes over an extended timescale.  

Although various brain networks have been implicated in the execution of task episodes, 

to our knowledge, no study has contrasted the roles of MD and DMN in representing different 

aspects of a task episode. In the current study, we aimed to examine which brain regions are 

involved in coding of information at various levels of abstraction within a single task: individual 

steps, including their content and position within an episode, whole episodes, and groups of 

related episodes. Prior to the experiment, participants learned six everyday task episodes 

associated with different rooms (three kitchen tasks and three bathroom tasks) that each 

consisted of four steps. Inside the scanner, after being cued which task to perform, participants 

sequentially identified the target item of each step in the correct order. This design allowed us 

to examine which brain regions represent rooms (e.g., kitchen), full episodes (e.g., “make a 

stew”), items within the episode (“take food from fridge”), and current position in the episode 

(e.g., first step). We hypothesized that different regions of the brain would be sensitive to 

different levels of the temporal task hierarchy. We first focused on the MD and DMN networks 

as a priori regions of interest. We hypothesized that the MD network would be especially 

involved in moment-to-moment control (Duncan, 2010, 2013; Farooqui et al., 2012); whereas 

the DMN would be especially involved in representation of full episodes (Lerner et al., 2011; 

Reagh and Ranganath, 2018). In addition to these pre-defined networks, we examined 

information coding using a whole brain searchlight to localize relevant brain regions at a finer 

scale, both within and beyond the a priori networks. The visual cortex encodes physical 

properties of visual stimuli, and therefore we expected it to be involved in item coding along 

with the MD system. It has been suggested that both the MD network (Dosenbach et al., 2006, 

2007) and the DMN (Andrews-Hanna, 2012; Ranganath and Ritchey, 2012) can be divided into 
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finer components or subsystems, therefore we additionally examined subregions within each 

network separately. We used both univariate finite impulse response (FIR) models to 

characterize the temporal evolution of activity though the extended episode, and 

representational similarity analysis (RSA) to investigate coding of cognitive representations of 

task structure and content. This was done on large-scale networks, their component ROIs, and 

at the whole brain level with a searchlight approach in the RSA analysis. 

 

3.3 Methods 

3.3.1 Participants 

42 participants (20 male, 22 female; ages 18-39, mean = 26.79, SD = 4.77) were 

included in the experiment at the MRC Cognition and Brain Sciences Unit. An additional 18 

participants were excluded (two were discovered to have cysts, one lost several slices due to 

poor bounding box positioning, ten were excluded due to having no correct episodes for at least 

one combination of cued task × distractor task, and a further six were excluded due to excessive 

head motion > 5 mm). All participants were neurologically healthy, right-handed, with normal 

or corrected-to-normal vision. Procedures were carried out in accordance with ethical approval 

obtained from the Cambridge Psychology Research Ethics Committee, and participants 

provided written, informed consent before the start of the experiment. 

3.3.2 Stimuli and task procedures 

The study consisted of a learning session outside the scanner and an execution session 

in the scanner. During the learning session, participants learned six everyday task sequences 

(“episodes”) each based in one of two locations (“rooms”; three kitchen and three bathroom). 

Each episode consisted of four ordered “steps”. For example, the episode “make a stew” 

consisted of the steps “take food from fridge”, “wash vegetables”, “chop vegetables”, “cook on 

stove”. Each step was associated with a unique image (“item”). The complete set of stimuli is 

shown in Figure 3.1A. 
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Figure 3.1. (A) Illustration of the six task episodes (three kitchen and three bathroom tasks) 

memorized before going into the scanner. Each task episode consisted of four steps to be 

completed in serial order (e.g., the task “make a stew” consisted of “take food from fridge”, 

“wash vegetables”, “chop vegetables”, “cook on stove”). (B) Structure of an example task 

episode. Episodes began with a cue indicating which task to perform (e.g., “make a stew”). 
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After a short delay, the first search array of four items appeared, and participants were asked 

to select the item corresponding to the first step of that task (here, “take food from fridge”). 

Participants selected this same target in three search arrays (total step duration = 9 s), then 

were given a brief indicator that the step had been completed, and moved on to the next step 

(here “wash vegetables”). Completion of all four steps completed the entire task episode. 

 

In the learning session, participants viewed the names and images of the steps of each 

task episode in sequential order. The step images were presented simultaneously with a 

background image corresponding to the room in which they occur (kitchen or bathroom). The 

learning was self-paced, in separate runs for each room. Within each room, each task sequence 

was presented three times, and each item within the sequence was presented until the participant 

decided to move on to the next item. There was a 1.5 s inter-stimulus interval between items. 

After viewing all six sequences, participants were tested for their memory of the task episodes 

by (1) sorting picture cards representing all steps of the six task episodes into the correct 

sequences, and (2) completing a pen-and-paper test in which they were asked to write down the 

names of the steps in the correct order for each task episode. Most participants performed both 

tests without error. A few participants made a mistake on 1-2 items but were able to correct 

their answers after being told they make a mistake. The tests ensured participants had 

memorized the specific step sequence of each task. Before entering the scanner, participants 

practiced a shortened version of the main experiment, containing one trial of each task episode. 

During scanning, participants performed two runs of the experiment, interleaved with shorter 

runs (~5 minutes) of a localizer task that was not analyzed and is not described further. 

Figure 3.1B illustrates the structure of the task episodes paradigm. At the start of each 

45 s episode, participants were presented with a cue (e.g., “make a stew”) for 1 s, indicating 

which task to complete. This was followed by a fixation period lasting between 1.5 – 7.5 s, 

selected randomly from a uniform distribution, before the onset of the first step. On each step, 

participants had to perform three visual searches. On each search, an array of 4 images was 

presented in a horizontal row (total left to right visual angle approximately 12.6°). These 

included (randomly ordered from left to right): the correct image (“target”) corresponding to 

the current task step; a distractor image representing a random incorrect step from the correct 

task; a distractor representing the correct step but from an incorrect task; and an additional 

distractor from the same incorrect step of the same incorrect task. To ensure that each display 

contained two images from each room, incorrect-task distractors were selected at random from 
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the alternative room to the cued task. The array remained for 2 s, and within this time, the 

participant had to indicate the position of the target image using a 4-choice button box with 

their right hand. A 1 s fixation interval preceded onset of the next search array. Each step thus 

lasted for 9 s, with the participant selecting the same target in each of three search events, to 

allow separation of the hemodynamic response to successive task steps, while ensuring 

sustained focus on the relevant item within each step. At the end of the third search event, a 0.2 

s presentation of the words “STEP COMPLETED” indicated the completion of that step, and 

was followed by a 0.8 s fixation interval. Without further cueing, the participant then moved on 

to the next task step. After completing the last step, a fixation interval of 0.5 – 6.5 s was 

presented before the onset of the cue for the next task. The total interval between the last step 

of the previous task and the first step of the next task was fixed at 9 s. Participants were not 

given feedback on their accuracy. Each run consisted of 36 task episodes (with an additional 

dummy episode to start), constructed so that each task appeared following each possible 

preceding task once. Task ordering was chosen before the start of each run to maximize the 

design efficiency (Dale, 1999) of all pairwise contrasts between tasks. 1000 task orders were 

simulated, and the most efficient one was chosen. Each of the two runs lasted ~28 min.  

3.3.3 fMRI data acquisition and preprocessing 

Scanning took place in a 3T Siemens Prisma scanner. Functional images were acquired 

using a multi-band gradient-echo echo-planar imaging (EPI) pulse sequence (TR = 1373 ms, 

TE = 33.4 ms, flip angle = 74°, 96 × 96 matrices, slice thickness = 2 mm, no gap, voxel size 2 

mm × 2 mm × 2 mm, 72 axial slices covering the entire brain, 4 slices acquired at once). The 

first 5 volumes served as dummy scans and were discarded to avoid T1 equilibrium effects. 

Field maps were collected at the end of the experiment (TR = 400 ms, TE = 5.19 ms / 7.65 ms, 

flip angle = 60°, 64 × 64 matrices, slice thickness = 3 mm, 25% gap, resolution 3 mm isotropic, 

32 axial slices). High-resolution anatomical T1-weighted images were acquired for each 

participant using a 3D MPRAGE sequence (192 axial slices, TR = 2250 ms, TI = 900 ms, TE 

= 2.99 ms, flip angle = 9°, field of view = 256 mm × 240 mm × 160 mm, matrix dimensions = 

256 × 240 × 160, 1 mm isotropic resolution). 

The data were preprocessed and analyzed using automatic analysis (aa) pipelines and 

modules (Cusack et al., 2015), which called relevant functions from Statistical Parametric 

Mapping software (SPM 12, http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab (The 

MathWorks, Inc., Natick, MA, USA). EPI images were realigned to correct for head motion 

using rigid-body transformation, unwarped based on the field maps to correct for voxel 
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displacement due to magnetic-field inhomogeneity, and slice time corrected. The T1 image was 

coregistered to the mean EPI, and then coregistered and normalized to the MNI template. The 

normalization parameters of the T1 image were applied to all functional volumes. The model 

incorporated a high-pass filter with a cutoff at 1/128 Hz. Spatial smoothing of 10 mm FWHM 

was applied for univariate analysis, but not for multivariate analysis. 

3.3.4 Regions of interest (ROIs) 

For the primary analysis, we focused on the MD and DMN networks (see Figure 3.4). 

The MD network was taken from Fedorenko et al. (2013), and consisted of regions within the 

lateral prefrontal cortex (LPFC) extending along the anterior, middle, and posterior middle 

frontal gyrus (aMFG, mMFG, and pMFG), a posterior-dorsal region of lateral frontal cortex 

(pdLFC), intraparietal sulcus (IPS), anterior insula (AI), and anterior cingulate cortex (ACC). 

The DMN network was taken from Yeo et al. (2011), combining three subnetworks from the 

17 network parcellation (numbers 15, 16, and 17; Andrews-Hanna 2012). The left and right 

hemispheres were averaged and projected back to both hemispheres to create a symmetrical 

volume (similar to Fedorenko et al (2013)). The combined networks were then smoothed at 4 

mm FWHM, and were split into spatially distinct  ROIs, including the medial prefrontal cortex 

(MPFC) and posterior cingulate cortex (PCC) along the midline, as well as the inferior frontal 

gyrus (IFG), inferior parietal lobule (IPL), parahippocampal cortex (PHC), and parts of the 

lateral temporal cortex extending to the temporal pole (Temp). Overlapping voxels of the AI 

and IFG were excluded from each ROI and their corresponding networks. Analyses were first 

performed at the network level, and then within each individual ROI to examine more fine scale 

differences within each network. 

3.3.5 Univariate analysis 

3.3.5.1 FIR Model 

Statistical analyses were performed first at the individual level, using a general linear 

model (GLM). To capture the BOLD time-course throughout each task episode, as well as 

transitions between episodes, we modeled each consecutive pair of episodes. The first (dummy) 

episode was separately modeled and not analyzed. For the remaining data, a 90 s epoch starting 

from the onset of the first search array of every even number episode to the first search array of 

the next even number episode was modeled using a finite impulse response (FIR) basis set of 

60 1.5 s boxcar regressors. In this way, the response throughout task episodes could be modelled 

without making assumptions about the shape of the hemodynamic response. Episodes with a 
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high proportion of errors (episodes that had > 25% errors) were defined as error episodes, with 

the total number of error episodes per participant ranging from 0-6 (mean = 0.95, SD = 1.43).  

Any two consecutive error episodes were removed from the analysis using a similar but separate 

set of regressors. Effects of cues, and errors on individual search arrays, were also modeled, by 

convolving the duration of their respective events (1 s for cues and 2 s for error events) with a 

canonical hemodynamic response function. Across the 90 s epoch, estimates for each FIR time 

bin were extracted from the two networks of interest, averaged over voxels within the network 

and across the six tasks. These average beta estimates for individual participants were entered 

into a random effects group analysis.  

3.3.5.2 Event-based GLM analysis 

To complement the FIR model, an event-based GLM analysis was performed. In this 

analysis, we aimed to separate phasic activity linked to onset of each step from tonic activity 

across the whole step within each episode. To control for visual differences, each combination 

of cued task × distractor task was modeled separately. For each combination, each step was 

modelled using two regressors, an onset regressor modelled with 0 s duration and an epoch 

regressor modelled with 9 s duration. Additionally, an offset regressor modelled with 0 s 

duration was placed at the end of the episode. Each regressor was convolved with the canonical 

hemodynamic response function. There were accordingly 162 regressors of interest, two (onset 

and epoch) for each of the four steps and one for each offset of the entire episode in each of 

combination of six tasks × three possible distractor tasks from the other room (for example, the 

target episode “make a stew” could be paired with distractor episodes “wash face”, “scrub 

toilet”, or “clean teeth”). Error episodes (defined as episodes that had > 25% errors) were 

removed from the analysis using a similar but separate set of regressors. The cue was modelled 

using a similar combination of onset (0 s duration) and epoch (duration from cue onset to the 

onset of the first task step) components. Beta estimates were averaged across the 18 cued task 

× distractor task combinations for individual participants, and entered into random effects group 

analyses. We first examined the mean effect of onset/offset and epoch regressors versus implicit 

baseline (each FDR corrected across number of comparisons). Next, to determine whether the 

BOLD signal showed significant linear changes towards goal completion, we performed t tests 

on increasing ([-3 -1 +1 +3]) and decreasing ([+3 +1 -1 -3]) linear contrasts across task steps. 

To complement the ROI analyses, contrasts were also carried out at the whole brain level, using 

a voxel-wise FDR-corrected threshold of p < 0.05.  

3.3.6 RSA analysis 



64 
 

We performed representational similarity analysis (RSA) using the linear discriminant 

contrast (LDC) to quantify dissimilarities between activation patterns. The analysis used the 

RSA toolbox (Nili et al., 2014), in conjunction with in-house software. The LDC was chosen 

because it is multivariate noise-normalized, potentially increasing sensitivity, and is a cross-

validated measure which is distributed around zero when the true distance is zero (Nili et al., 

2014; Walther et al., 2016). The LDC also allows inference on contrasts of dissimilarities across 

multiple pairs of task events. A pattern for each step of each combination of cued task and 

distractor task was obtained, by averaging the onset and epoched responses from the event-

based GLM described above. This resulted in 72 patterns in total in each run. For each pair of 

patterns, the patterns from run 1 were projected onto a Fisher discriminant fitted for run 2, with 

the difference between the projected patterns providing a cross-validated estimate of a squared 

Mahalanobis distance. This was repeated projecting run 2 onto run 1, and we took the average 

as the dissimilarity measure between the two patterns. All pairs of pattern dissimilarities 

therefore formed a symmetrical representational dissimilarity matrix (RDM) with zeros on the 

diagonal by definition. To compare dissimilarity magnitude across ROIs of different sizes, the 

LDC values were normalized by dividing by the number of voxels within each ROI. 

3.3.6.1 Coding of information within regions of interest 

We first performed this RSA analysis using activation patterns from our a priori MD 

and DMN network ROIs. A simplified version of the resulting 72 × 72 representational 

dissimilarity matrix (RDM) is shown in Figure 3.2A, with each cell representing a cross-

validated LDC dissimilarity between the corresponding two task events. These included event 

pairs that shared the same episode (red cells; e.g., “take food from fridge” and “wash 

vegetables”); events that shared the same room but different episodes (purple cells; e.g., “take 

food from fridge” and “hand mix batter”); and events that differed in both episodes and rooms 

(orange cells; “take food from fridge” and “use facial wash”). All event pairs additionally 

differed in item. Saturation of the colors is used to indicate the difference in steps between event 

pairs. The cells on the diagonal (white) are zero by definition as they do not reflect a distance 

between different task events.  We additionally modelled the amount of visual overlap for each 

event pair in the RDM as a nuisance regressor (which could be 0%, 50%, or 100%; e.g., an 

episode with cued task “make a stew” and distractor task “wash face” would have 50% overlap 

with an episode containing cued task “wash face” and distractor task “bake cupcakes”. For the 

illustration of the full model with the visual confounds, see Appendix B. Figure B.1). 
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For each ROI of each participant, we fit a linear regression to quantify the influence of 

differences in room, episode, step, visual difference, and item to the measured pattern 

dissimilarity (Figure 3.2B). Regressors were created for each possible feature, including 

episode (0 or 1 indicating same or different episode), room (0 or 1 indicating same or different 

room), step (step difference 0, 1, 2, or 3), and visual difference (0%, 50%, or 100% different), 

while the observed LDC values served as the dependent variable. Coefficients were estimated 

for room, episode, and step, as an index of the strength of representational coding. 

Representation of visual difference was not of primary interest, but was included as a nuisance 

regressor to model potential visual confounds. Since all items were unique, item coding could 

be estimated from the intercept of the model, i.e. the cross-validated pattern dissimilarity in the 

absence of episode, room, step, or visual differences. Multiple comparisons across ROIs were 

corrected using FDR < 0.05 for each coding type. 

3.3.6.2 Searchlight analyses 

Next, to obtain more specific localization of regions that contained information, and to 

test for additional regions outside the predefined networks, we implemented a whole brain 

searchlight procedure (Kriegeskorte et al., 2006) to perform pattern analyses in small spherical 

ROIs (radius = 10 mm) centered on every voxel of the brain in turn. The procedure was identical 

to that described in the ROI analysis. Pairwise dissimilarities for each cell type were derived 

from the 72 × 72 RDM in each sphere, and were assigned to the center voxel. This resulted in 

whole-brain maps of information coding for each subject. These individual subject maps were 

smoothed with a 10 mm FWHM Gaussian filter before performing second-level random effects 

analyses to identify voxels that coded for different types of information across subjects. Unless 

otherwise specified, all results are reported at the FDR-corrected threshold of p < 0.05. 
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Figure 3.2. Illustration of representational similarity analysis. A. Conceptual RDM. LDC 

dissimilarities were computed between every possible pair of events (6 cued tasks × 4 steps × 

3 distractor combinations per episode), generating a 72 × 72 RDM. Diagonal cells of the RDM 
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are zero by definition as they do not reflect a dissimilarity between different events. Off-

diagonal cells reflect pattern dissimilarity between events that differ in room, episode, step, 

item, and/or visual difference. B. Hypothetical distances resulting from episode, room, and item 

coding across step differences. Item coding can be estimated as the intercept, i.e., in the absence 

of episode, room, step, or visual differences.  

 

3.4 Results 

3.4.1 Behavioral results 

Group behavioral performance and reaction time results are shown in Figure 3.3. Errors 

were calculated after removal of error episodes (defined as episodes that had > 25% errors), and 

reaction time was calculated for only correct trials. Overall accuracy was 97.5% ± 0.4% (mean 

± SEM) and overall reaction time was 849 ± 23 ms. Error responses were broken into four error 

types: choosing an item from same episode different step, different episode same step, different 

episode different step, and missed response. Results show poorest performance for the first 

search array of each step, when participants were required to switch from one step to the next. 

A step (steps 1-4) × search array (first, second, third within each step) ANOVA was performed 

for each type of error. All error types showed a main effect of step (all F(3,123) > 3.79, all ps 

< 0.03,  all ηp
2 > 0.08), and linear trend analyses indicated an overall increase in error across 

steps (all F(1,41) > 7.70, all ps < 0.01, all ηp
2 > 0.15). A main effect of search array was found 

for same episode different step errors, as well as for missed responses (both F(2,82) > 14.36; 

both ps < 0.001, both ηp
2 > 0.25), reflecting higher errors on the first search array of each step. 

Finally, same episode different step errors showed a significant step × array interaction 

(F(6,246) = 5.96, p < 0.001, ηp
2 = 0.13). A similar ANOVA for reaction time also showed a 

significant main effect for step (F(3,123) = 17.21, p < 0.001, ηp
2 = 0.30), a significant main 

effect for search array (F(2,82) = 234.42, p < 0.001, ηp
2 = 0.85), and a significant step × array 

interaction (F(6,246) = 9.83, p < 0.001, ηp
2 = 0.19). 
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Figure 3.3. Behavioral performance summarized according to four possible error types 

(choosing an item from same episode different step, different episode same step, different 

episode different step, and missed response), as well as reaction time for correct trials. For 

each step, the three bars indicate performance on each of the three successive search arrays. 

Error bars indicate standard error of the mean.  

 

3.4.2 Univariate results 

3.4.2.1 ROI analysis 

The FIR model provided estimates of the observed BOLD response timecourse across 

a pair of task episodes, in successive 1.5 s windows starting from the onset of the first step. In 

the main analysis, we extracted these FIR responses from a priori networks (Figure 3.4) The 

MD network exhibited positive activity throughout each episode, along with four peaks 

corresponding to the four steps. These results suggest involvement in setting up and executing 

individual task steps. Additionally, overall MD activity gradually increased throughout the task 

episode, suggesting that the MD network is also sensitive to progress through the episode. For 

DMN regions, in contrast, tonic activation began below baseline but gradually increased 

through the episode, culminating in a large phasic response at episode completion.  For both 

networks, the signal clearly resets between episodes. 

To quantify the phasic and tonic components contributing to the BOLD response at each 

task step, we performed a complementary GLM analysis with onset and epoch regressors 

modelling each task step. Four onset regressors were designed to reflect phasic activity at the 
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onset of each task step. The offset regressor was included to capture the phasic activity at the 

end of the episode. Finally, epoch regressors were designed to reflect tonic activity throughout 

each step.  

Within the MD network, there were strong onset responses, in line with FIR results. 

Contrasts with baseline showed that all four step onsets were significantly greater than baseline 

(all ts > 10.91, all ps < 0.001, all ds > 1.68) and there was a smaller yet significant offset 

response (t = 2.48, p = 0.02, d = 0.38). A one-way repeated measures ANOVA showed a 

significant difference across the four step onsets (F(3,123) = 5.60, p < 0.01, ηp
2 = 0.12), with a 

quadratic (F(1,41) = 21.61, p < 0.001, ηp
2 = 0.35) but not linear (F(1,41) = 0.22, p = 0.64, ηp

2 < 

0.01) trend across steps, reflecting an increasing response across steps 2-4, but a 

disproportionate response to the onset of the first step, i.e. the onset of the entire episode. 

Looking at epoch regressors, all four epoch responses were greater than baseline (all ts > 3.96, 

all ps < 0.001, all ds > 0.61). ANOVA showed a significant main effect of step (F3,123) = 7.73, 

p = 0.01, ηp
2 = 0.16), as well as a significant linear (F(1,41) = 9.48, p < 0.01, ηp

2 = 0.19) and 

quadratic trend (F(1,41) = 5.08, p = 0.03, ηp
2 = 0.11), reflecting an increasing but saturating 

response.  

The DMN network showed a different profile. Only the onset of the first step (t = 3.22, 

p < 0.01, d = 0.50) and the offset response at the end of the episode (t = 4.38, p < 0.001, d = 

0.68) were greater than baseline. Step onsets 2-4 were not significantly different from baseline 

(all |t|s < 2.09, all ps > 0.07, all |d|s < 0.33). ANOVA of the four step onsets showed a significant 

main effect of step (F(3,123) = 9.87, p < 0.001, ηp
2 = 0.19), as well as significant linear (F(1,41) 

= 9.70, p < 0.01, ηp
2 = 0.19) and quadratic (F(1,41) = 7.16, p = 0.01, ηp

2 = 0.15) trends, 

confirming the larger response to the first onset. Among the epoch responses, the first step was 

significantly lower than baseline (t = -3.21, p = 0.01, d = -0.49; for steps 2-4 all |t|s < 1.60, all 

ps > 0.23, all |d|s < 0.19). ANOVA showed a significant main effect of step (F(3,123) = 18.42, 

p < 0.001, ηp
2 = 0.31), as well as a significant linear trend (F(1,41) = 38.89, p < 0.001, ηp

2 = 

0.49), suggesting an increase in activation across steps. As seen in the FIR time-course, this 

implies a gradual release of tonic deactivation across the duration of the task episode. 

To examine whether the profiles of different regions within each network showed 

unique responses, we performed the same analyses (FIR timecourse modelling and event-based 

GLM) on individual ROIs (see Appendix B. Figure B.3). Results showed that trends of 

activation across the four steps for individual ROIs were largely similar to the network in which 
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they belong, though there were some individual differences between ROIs. The aMFG and AI 

showed negative epoch responses, in contrast to other MD regions. The PHC showed positive 

epoched responses, in contrast to other DMN regions.  

 

 

Figure 3.4. Univariate analysis of the MD network and DMN responses across task episodes. 

The left plot shows results of the FIR analysis, with BOLD response as a function of time as 

participants progressed across two consecutive episodes. The upper middle plot shows beta 

estimates associated with the step onsets (bars 1-4), and with the end of the episode (bar 5). 

The lower middle plot shows beta estimates for epoch regressors for each step. Error bars 

indicate standard error of the mean. The right panel depicts the location of regions within each 

network. 

 

3.4.2.2 Whole-brain analysis 

Results from the whole-brain analysis, again separating onset and epoch regressors, are 

shown in Figure 3.5. Panels Ai and Aii show contrasts of average onset and epoch regressors 

against baseline, with regions in red and blue indicating above and below baseline responses. 

Panels Bi and Bii show increasing (red) and decreasing (blue) linear trends across task steps. 
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In comparison to baseline, the mean step onset response (Figure 3.5Ai) was significantly 

positive in large parts of the MD network, including regions of lateral frontal, insular, 

dorsomedial frontal, and lateral parietal cortex. A mean step onset response was also seen in 

visual cortex and subcortical structures including the cerebellum. The mean step onset response 

was significantly negative in many core DMN regions. Mean epoch responses greater than 

baseline (Figure 3.5Aii) were more restricted, including parietal and dorsomedial frontal 

regions overlapping with the MD ROIs, as well as expected regions of visual and motor cortex. 

Again, we see negative epoch responses in parts of the DMN. We next examined activity 

changes across steps 1-4. Onset regressors showed a linear increase across successive task steps 

in a restricted subset of MD regions (Figure 3.5Bi). Linear decreases were extensive, including 

many parts of the DMN (Figure 3.5Bi; compare Figure 3.4). Epoch regressors showed a linear 

decrease in visual cortex, but otherwise, an extensive pattern of linear increase across much of 

the brain (Figure 3.5Bii). 

 

 

Figure 3.5. Whole brain univariate analysis. (A) shows (i) mean phasic responses to the onset 

of each step and (ii) mean tonic responses to the duration of each step, versus implicit baseline. 

Red indicated the positive contrast, while blue indicates the negative contrast. (B) Increasing 

(red) and decreasing (blue) linear trends of (i) onset and (ii) epoch regressors across step. 

Colors indicate t-values. All activation maps are thresholded at FDR < 0.05. 

 

We further examined activation in response to transitions from one step to another 

(Appendix B. Figure B.3). Of particular interest was the onset of the first step (initiation of an 
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episode) and the offset of the fourth step (completion of an episode). Step 1 onset showed a 

greater activation than baseline as well as the step 2 onset in many parts of the MD, DMN, and 

visual cortex. Episode completion responses were also significantly greater than baseline in 

many brain regions, including parts of both MD and DMN networks; though in MD, the offset 

response was weaker than the preceding onset response, while in DMN, the offset was 

significantly higher than the previous onset. 

The results may be summarized as follows. Most MD regions showed positive onset 

and epoch responses to all steps, suggesting direct involvement in setting up and executing task 

steps, along with visual cortex. Other salient aspects of brain activity concerned the large-scale 

structure of the episode, including gradually increasing activity as the episode progressed, along 

with phasic responses at onset and offset of the whole episode. Interestingly, these were 

apparent in both the DMN and MD network, as well as other brain regions. 

3.4.3 RSA results 

Results of the RSA analysis are shown in Figure 3.6. Coding of different types of 

information: room, episode, step, and item are plotted for each network in the left panels. Right 

panels show whole-brain searchlight results. Analyses of individual ROIs within the two 

networks are shown in Appendix B. Figure B.4. 
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Figure 3.6. LDC contrasts representing strength of (A) room, (B) episode, (C) step, and (D) 

item coding in (i) MD and DMN ROIs and (ii) the whole-brain searchlight. Error bars represent 

standard error. *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05 for 1-

tailed t-tests against zero. Whole-brain maps for step and item coding are thresholded at FDR 

< 0.05, whereas room coding is thresholded at p < 0.05 (uncorrected), and episode coding is 

thresholded at p < 0.001 (uncorrected). 
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Room coding 

Neither the MD nor DMN network showed significant room coding (both |t|s < 0.04, 

both ps > 0.78, both |d|s < 0.05). Similarly, none of the individual ROIs showed significant 

room coding (all |t|s < 1.86, all ps > 0.79, |d|s < 0.29). In the searchlight analysis, we did not 

find room coding in any region after FDR correction. At the lenient threshold of uncorrected p 

< 0.05, the most prominent was the MPFC, as well as some regions around the IFG and AI. 

Episode coding 

The DMN network showed significant coding of episode (t = 2.79, p = 0.02, d = 0.43), 

while MD did not (t = 1.37, p = 0.18, d = 0.21); however, the difference between networks was 

not significant (t = 1.55, p = 0.13, d = 0.19). None of the individual ROIs showed significant 

episode coding after FDR correction for multiple comparisons across ROIs. PCC, PHC, and 

ACC showed task coding before correction (all ts > 2.05, all ps < 0.05, all ds > 0.31). In the 

whole-brain searchlight, we did not find any regions that showed episode coding using FDR < 

0.05; however, the right PHC and right middle occipital cortex was significant at p < 0.001 

uncorrected. 

It is possible that the response to regressors modelling adjacent steps could be similar 

due to imperfect temporal separation of the signal, such that pairs of steps within the same task 

appear more similar than those from different tasks due to differences in temporal separation in 

addition to differences in task episode. We examined this possibility by fitting four separate 

linear regression models using subsets of cells, chosen to differ in separation of zero, one, two, 

or three steps. That is, we extracted LDC values from cells of the RDM that represented one 

(step 1 vs. step 2, step 2 vs. step 3, and step 3 vs. step 4), two (steps 1 vs. step 3 and step 2 vs. 

step 4), or three (step 1 vs. step 4) steps apart, and fitted a model with room, episode, and visual 

overlap regressors. If temporal leakage were contributing to activity patterns, and hence to 

apparent episode coding in the DMN, we should expect a stronger effect for steps closer 

together in time. However, we found no evidence of any difference in episode coding in these 

four conditions (F(3,123) = 0.39, p = 0.61, ηp
2 = 0.01), nor a linear trend as a function of step 

(F(1,41) = 0.44, p = 0.51, ηp
2  = 0.01). Episode coding as a function of step difference is shown 

in Appendix B. Figure B.5. 

Step coding 

Step coding was significant in both the MD (t = 7.98, p < 0.001, d = 1.23) and DMN (t 

= 6.85, p < 0.001, d = 1.06) networks. The MD network showed greater step coding compared 
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to the DMN (t = 2.93, p < 0.01, d = 0.44). Step coding was also significant in all the individual 

ROIs (all ts > 2.49, all ps < 0.02, all ds> 0.38). Searchlight analysis showed that step coding 

was widespread in all regions of the brain. This was not surprising, as in our univariate analysis, 

we observed significant linear trends across the task episode for much of the brain (see Figure 

3.5B; visual cortex showed decreasing activity, while most other regions showed increasing 

activity). 

Item coding 

Both MD (t = 3.31, p < 0.01, d = 0.51) and DMN (t = 2.68, p = 0.01, d = 0.41) networks 

showed significant coding of item. The two networks did not significantly differ in item coding 

(t = 1.09, p = 0.28, d = 0.10). In the individual ROIs, only IPS showed significant item coding 

after FDR correction for multiple comparisons across ROIs (t = 4.02, p < 0.01, d = 0.62). In the 

searchlight analysis, we observed significant item coding predominantly in the visual cortex 

and IPS.  

 

3.5 Discussion 

The present study used fMRI to examine how different cortical networks represent task 

episodes. Specifically, we focused on the MD and DMN networks. Using FIR analysis to 

capture the evolution of the BOLD response throughout a multistep episode, we found that MD 

regions showed positive activity throughout the episode, with separate peaks for successive 

steps. These results suggest involvement in setting up and executing individual task steps. In 

contrast, the DMN showed overall deactivation. Along with widespread other regions, both 

DMN and MD showed sensitivity to the large-scale structure of the episode, with phasic 

responses to onset and offset, and gradually increasing activity as the episode progressed. 

Representational similarity analysis suggested that MD regions showed strong coding 

of individual items but not the entire task episode, while for DMN, both item and episode coding 

were significant. Both networks additionally showed strong step coding, which was 

significantly greater in the MD network than the DMN. The RSA searchlight analysis 

confirmed differential representation of task features. The content of individual task steps (item 

coding) was represented in visual cortex and the IPS of the MD network. Task identity was 

most strongly represented in the PHC and lateral occipital cortex, though visible only at a 

lenient statistical threshold. A lenient threshold also suggested a hint of room coding in the 
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MPFC. Step was widely represented across most of the brain, in line with strong changes in 

univariate activity as the task progressed. 

The finding that MD regions are especially sensitive to the identity of a current task step 

and its specific item content is consistent with prior research. Many previous experiments have 

shown coding of task-relevant information in MD regions that can rapidly change according to 

task demands (e.g., Li et al., 2007; Woolgar et al., 2011; Freedman et al., 2001), including 

radical reorganization between successive task steps (Sigala et al., 2008). fMRI studies show 

strong MD activity when a subgoal is completed and in transitions from one event to another 

(Sridharan et al., 2007; Farooqui et al., 2012), with progressively increasing activity as a goal 

is approached (Farooqui et al., 2012; Desrochers et al., 2018). The pattern of MD activation in 

our study is consistent with these previous findings. The results suggest that, as a task episode 

progresses, MD representations are in constant flux, reorganizing to encode the detailed 

contents of each task step.  

Univariate results showed a significant peak of DMN activity at the beginning of each 

episode, but no significant onset responses to subsequent steps. At the completion of the 

episode, DMN also exhibited a strong offset response. These findings are consistent with prior 

reports of transient DMN activation at event boundaries (Ben-Yakov et al., 2013, 2014; 

Baldassano et al., 2018). Our data show, however, that both onset and offset responses are 

widespread in the brain. It has been proposed that the mental programs required for carrying 

out a task are assembled at the beginning of task execution (Schneider and Logan, 2006; 

Farooqui and Manly, 2018a). It is possible that DMN, along with multiple other brain regions, 

is involved in long-term memory retrieval for the entire task sequence prior to episode initiation. 

To some extent, our results match the observation that the DMN has long temporal receptive 

windows and can code for information accumulated over longer time scales (Hasson et al. 2008; 

Lerner et al. 2011; Manning et al., 2015). 

As a whole, the DMN showed significant coding of whole task episodes, with more 

similar activity patterns for steps from the same compared to different episodes. Searchlight 

RSA, using more lenient thresholds, revealed a hint of both episode and room coding in specific 

DMN sub-regions. Episode coding was found in the right PHC and nearby occipital cortex. The 

PHC is a key component of the DMN, and has been shown to be involved in representation of 

“situation models”, which are higher-level cognitive representations of relationships between 

different elements of an episode (Diana et al., 2007; Ranganath, 2010b; Ranganath and Ritchey, 

2012; Reagh and Ranganath, 2018). Meanwhile, some hint of room coding was found in the 
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MPFC. This is consistent with the suggestion that the MPFC is implicated in schema 

representation, capturing similarities across particular episodes at a higher level (Preston and 

Eichenbaum, 2013; Ghosh and Gilboa, 2014a; Robin and Moscovitch, 2017).  

We also found that the DMN showed significant coding for items. These results show 

some DMN representation not just for full task episodes, but also for specific contents within 

the episode. It has been suggested that the hippocampus, a key region in the DMN, is involved 

in binding items to contextual episodes (O’Reilly and Rudy 2001; Diana et al. 2007; Manning 

et al., 2015; Hsieh et al., 2014). Although we found both item and episode representations 

coexisting in the DMN, consistent with a compositional code, this experiment cannot determine 

whether and where items and episodes might be bound into a conjunctive representation: 

because items were unique to each task, item-episode conjunctions are indistinguishable from 

item coding. Disentangling these different forms of co-representation requires designs where 

the same item appears in different contexts. As well as item-context conjunctions in the 

hippocampus (Hsieh et al., 2014) such designs have associated various frontal and temporal 

regions with item-order associations (e.g., Reverberi et al. 2012; Kalm and Norris 2014), and 

rule-rule compositionality (e.g., Cole et al. 2011).  

Both MD and DMN, along with most regions of the brain, tracked progress through the 

task episode, shown by increasing linear trends in the univariate data and step coding in the 

RSA analysis. These observations are consistent with previous studies that tracked activity and 

step representation throughout a task episode in MD (Farooqui et al., 2012; Desrochers et al., 

2018) and DMN (Hsieh and Ranganath, 2015) ROIs, but suggest that it might be a much more 

global property of brain function. While visual cortex showed a decrease in sustained activity 

over time, which may reflect adaptation to the sensory input (Grill-Spector and Malach, 2001; 

Grill-Spector et al., 2006), most other cortical regions showed an increase in sustained activity 

over the episode. As this effect was so widespread, it is difficult to offer a precise interpretation, 

and different areas may increase for different reasons (Kalm and Norris, 2017). For example, it 

is possible that increased activations in some regions reflect revision and reconfiguration of 

control representations that may increase in demand as larger portions of the task are complete 

(Farooqui et al., 2012; Desrochers et al., 2015, 2016). These activity changes could also reflect 

gradual assembly of an episode representation (Dumontheil et al., 2011) or accumulation of 

new information (Hasson et al., 2008; Lerner et al., 2011). 

A hierarchical control structure is an organized representation of control elements 

(Rosenbaum et al., 1983; Schneider and Logan, 2006) with task identity, local entities, and 
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serial position codes. Our results describe how broad brain networks are involved in the 

execution of task sequences, with MD and DMN regions exhibiting differential timecourses 

throughout the episode. The DMN, we suggest, may establish overall cognitive context, 

representing both individual cognitive operations and their broader context, and perhaps 

involved in binding them together. These functions may be consistent with representing a 

“situation model” (Ranganath and Ritchey, 2012). At the same time, the MD system, along with 

sensory regions, contributes the detailed content of individual cognitive operations. Activity in 

both networks reflect the broad temporal structure of behavior, with phasic activity at task onset 

and offset, and gradually increasing activity as the whole sequence of behavior progresses. 

Acting together, multiple brain regions manage the hierarchical structure of goal-directed 

behavior. 
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Chapter 4 The functional convergence and heterogeneity of 

social, episodic, and self-referential thought in 

the default mode network 

 

4.1 Abstract 

The default mode network (DMN) is engaged in a variety of cognitive settings, 

including social, semantic, temporal, spatial, and self-related tasks. Andrews-Hanna et al. 

(2010, 2012) proposed that the DMN consists of three distinct functional-anatomical 

subsystems – a dorsal medial prefrontal cortex (dMPFC) subsystem that supports social 

processing and introspection about mental states; a medial temporal lobe (MTL) subsystem that 

contributes to memory retrieval and construction of mental scenes; and a set of midline core 

hubs that are involved in processing self-referential information. In male and female 

participants, we examined activity in the DMN subsystems during six different tasks: (1) theory 

of mind and (2) moral dilemmas (for social cognition), (3) autobiogrpahical memory and (4) 

spatial navigation (for memory-based construction/simulation), the (5) self/other adjective 

judgement (for self-related cognition), and finally, a (6) rest condition compared to a working 

memory task.  At a broad level, we observed similar whole-brain activity maps for the six 

contrasts, and some response to every contrast in each of the three subsystems. In more detail, 

both univariate analysis and multivariate activity patterns showed partial functional separation, 

much of it in close accord with the proposals of separate dMPFC and MTL subsystems, though 

with less support for common activity across anterior and posterior regions of a midline core. 

Integrating social, spatial, self-related, and other aspects of a cognitive situation or episode, 

multiple components of the DMN may work closely together to provide the broad context for 

current mental activity. 

 

4.2 Introduction 

The default mode network (DMN) was originally discovered as a collection of medial 

prefrontal, lateral temporal, lateral parietal, and posterior medial cortical regions that reliably 

exhibit enhanced activity during passive rest compared to simple, externally oriented tasks 

(Shulman et al., 1997; Raichle et al., 2001). Raichle et al. (2001) postulated that the DMN is 
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involved in cognitive states that are suspended during many attentionally-demanding tasks. A 

large body of literature has now provided evidence that the DMN supports several aspects of 

spontaneous and deliberate self-generated thought that transcend the immediate sensory 

environment (Christoff et al., 2004, 2009; Buckner et al., 2008; Andrews-Hanna, 2012; 

Andrews-Hanna et al., 2014b). Complementing this strong activity during rest, subsequent 

work has shown DMN activity across a variety of high-level tasks, including social (Greene 

and Haidt, 2002; Mars et al., 2012; Molenberghs et al., 2016), semantic (Binder et al., 2009; 

Humphreys and Lambon Ralph, 2017), episodic (Ranganath and Ritchey, 2012; Rugg and 

Vilberg, 2013), and self-referential (Kelley et al., 2002) cognition.  

One common proposal is that the DMN represents broad features of a cognitive episode, 

scene or context (Hassabis and Maguire, 2007; Ranganath and Ritchey, 2012; Manning et al., 

2014; Baldassano et al., 2017). This episode might be imagined, as in spontaneous mind-

wandering or recollection of a previous event, or currently perceived (Ranganath and Ritchey, 

2012; Manning et al., 2014; Baldassano et al., 2017). Contextual representations might include 

spatial, social, temporal, self-related and other features, with reduced processing of these 

features during focused attention on the details of a simple task, but enhancement during 

spontaneous, self-generated cognition at rest.  

A core question is the degree of heterogeneity across DMN regions. Early reviews 

(Buckner and Carroll, 2007; Buckner et al., 2008), meta-analyses (Spreng et al., 2009; 

Andrews-Hanna et al., 2014b), as well as experimental data (Spreng and Grady, 2010; Axelrod 

et al., 2017) suggested that spatial, social, memory and imagination tasks produce substantially 

overlapping DMN activity. More recently, consistent with the multiple features of a cognitive 

context, some studies suggest that the DMN exhibits heterogeneous functional components 

(Andrews-Hanna et al., 2010b, 2014a; Andrews-Hanna, 2012). In an important synthsis, 

Andrew-Hanna et al. (2010b) partitioned the DMN into three subsystems. A dorsal medial 

prefrontal cortex (dMPFC) subsystem, composed of the dorsal medial prefrontal cortex 

(dMPFC), the temporoparietal junction (TJP), the lateral temporal cortex (LTC), and the 

temporal pole (TempP), is involved in “introspection about mental states”, including theory of 

mind, moral decision making, social reasoning, story comprehension, and conceptual 

processing. A medial temporal lobe (MTL) subsystem, consisting of the ventromedial 

prefrontal cortex (vMPFC), the posterior inferior parietal lobe (pIPL), the retrosplenial cortex 

(RSC), the parahippocampal cortex (PHC), and the hippocampal formation (HF+). subserves 

“memory-based construction/simulation”, including autobiographical memory, episodic future 
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thinking, contextual retrieval, imagery, and navigation. These two are proposed to converge on 

a midline core, consisting of the anterior prefrontal cortex (aMPFC) and the posterior cingulate 

cortex (PCC). The core subserves valuation of “personally significant information”, as well as 

linking social and mnemonic processes shared with the dMPFC and MTL subsystems. 

The current study further investigates separation and integration across the DMN. To 

this end we examined patterns of univariate and multivoxel activity across six tasks, aiming to 

separate social cognition, memory-based construction/simulation, self-related cognition and 

rest. Across this combination of tasks and analysis methods, we found a degree of functional 

separation between DMN regions, largely consistent with the Andrews-Hanna (2010b) dMPFC 

and MTL subsystems, though less so with their concept of the midline core. To a degree, 

however, we also found overlapping activity across the whole DMN, with each task producing 

some activation in each subsystem. While subsystems of the DMN system appear somewhat 

specialized, our data also suggest collaboration in assembling the multiple components of a 

cognitive situation or context. 

 

4.3 Methods 

4.3.1 Participants 

27 participants (13 male, 14 female; ages 20-39, mean = 24.8, SD = 4.3) were included 

in the experiment at the MRC Cognition and Brain Sciences Unit. An additional participant was 

excluded due to excessive head motion (> 5 mm). All participants were fluent English speakers, 

neurologically healthy, right-handed, with normal or corrected-to-normal vision. Participants 

were also required to be familiar with navigating in Cambridge city centre. Procedures were 

carried out in accordance with ethical approval obtained from the Cambridge Psychology 

Research Ethics Committee, and participants provided written, informed consent before the 

start of the experiment. 

4.3.2 Stimuli and task procedures 

This study consisted of six tasks that were previously found to engage the DMN. These 

tasks were: a theory of mind task, a moral dilemmas task, an autobiographical memory task, a 

spatial imagery task, a self/other adjective judgement task, and a comparison of rest with 

working memory (Figure 4.1). For the first five tasks, each run contained two conditions (one 

condition that has been associated with DMN activity and a matched control condition), along 
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with periods of fixation between trials or blocks. Conditions were presented in randomized 

order, with the restriction of a maximum of two consecutive trials or blocks of the same 

condition. For the working memory task, each run contained alternating periods of working 

memory and periods of fixation. In all runs, participants were instructed to relax and clear their 

minds of any thought during fixation periods, and fixation periods were jittered and sampled 

from a random uniform distribution (see details below for each task). Before entering the 

scanner, participants practiced a shortened version of each task (containing 1~2 trials or blocks 

of each condition). Participants were also asked to practice writing down digital numbers until 

they were able to write all of them in the correct format, and to clarify that they were familiar 

with all 20 landmark locations used in the spatial imagery task. Inside the scanner, there were 

two scanning runs for each task. Run order was randomized with the constraint that repeats of 

the same task were between four and seven runs apart. Before the start of each run, participants 

were played audio-recorded task instructions to remind them of what to do during that run. Each 

run lasted approximately 5~7 minutes.  

All tasks were coded and presented using the Psychophysics Toolbox (Brainard, 1997) 

in Matlab 2014a (The MathWorks, Inc.). Stimuli were projected on a 1920 × 1080 screen inside 

the scanner, and participants indicated their responses using a button box, with one finger from 

each hand in tasks that had two-choice decisions (all tasks except autobiographical memory).  

According to Andrews-Hanna (2012), the chosen tasks would be hypothesized to 

differently engage the dMPFC and MTL subsystems, with all tasks engaging the core hubs. The 

theory of mind and moral dilemmas tasks were chosen as tasks requiring “introspection about 

mental states” and were hypothesized to recruit the dMPFC subsystem. The autobiographical 

memory and spatial imagery tasks were chosen as tasks that required “memory-based 

construction/simulation” and were hypothesized to recruit the MTL subsystem. The self/other 

judgement task was chosen as a task that involved “personally significant information”, and 

was hypothesized to recruit predominantly the core hubs. Finally, the working-memory task 

was chosen to examine the activity of the DMN during passive rest compared to an external 

task. 
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Figure 4.1. Example trial/block from each of the six tasks: theory of mind, moral dilemmas, 

autobiographical memory, spatial imagery, self/other adjective judgement, and working 

memory. All stimuli were shown on a 1920 × 1080 screen (stimulus size and width/height ratio 
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has been adjusted for this figure for illustration purposes). The examples in the 

autobiographical memory task were shortened to fit in the figure.  

 

4.3.2.1 Theory of Mind task 

The theory of mind task was adapted from Dodell-Feder et al. (2010). On each trial, 

participants were presented with a short story to read for 10 seconds. Afterwards participants 

were given a statement related to the story and were asked to judge whether it was ‘true’ or 

‘false’ by pressing a button (left or right). Some trials involved making judgements about other 

people’s beliefs, while others involved making non-belief judgements. Each question stayed on 

the screen up to ten seconds, or until the participant made a button press. This was then followed 

by a 10~24 second fixation period before the next trial began. Each run consisted of five trials 

of each condition (belief and non-belief). 

4.3.2.2 Moral Dilemmas task 

The moral dilemmas task was adapted from Greene et al. (2001). On every trial, 

participants were presented with a hypothetical situation that posed a dilemma, which could 

either be a moral-personal dilemma or a non-moral dilemma. Each dilemma was presented as 

text through a series of three displays, with the first two describing a scenario and the third 

posing a question about the appropriateness of an action one might perform in such a situation. 

The maximum time one display could be on screen was 16 seconds, but when participants 

finished reading the text, they were allowed to press any button to move on to the next display. 

On the third display, participants made the appropriateness judgement by pressing a button (left 

or right). They were told that there was no correct answer for many of the questions, and were 

asked to consider each situation carefully and provide their best answer. A 6~8 second fixation 

cross was presented in between each trial. Each run consisted of 5 trials of each condition 

(moral-personal dilemma (MPD) or a non-moral dilemma (NMD)). 

4.3.2.3 Autobiographical Memory task 

Prior to the experiment, participants were asked to provide 12 written personal 

memories, each with a title that provided a general description of its contents. Participants were 

given specific instructions to provide clear memories, where they were able to remember the 

people, objects, and location details featured in the corresponding memory. Each memory was 

required to be between 100~150 words long. All events were required to be temporally and 

contextually specific, occurring over minutes or hours, but not more than one day. The 
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memories were then edited by the experimenter such that 13~17 critical words were removed 

and replaced with a blank underscore line. Occasionally, if the memories participants sent were 

too long, they were shortened; or if the memories were too short or contained too few details, a 

new sentence with a prompt was added (e.g., “I was wearing a _____”, “It was around _____ 

o’clock”, “I felt very _____”). 

During the task, on a given trial, participants were given a 100~150-word long text to 

read with 13~17 critical words missing, and were asked to fill in the blanks in their mind. Half 

of the trials used text adapted from the participants’ autobiographical memories; the other half 

contained text related to general knowledge (either procedural tasks, such as “how to make 

chocolate chip cookies”, or knowledge about a common topic, such as “alcoholic beverages”). 

Before the onset of the text display, a 1 second cue was presented to indicate the upcoming 

condition. For autobiographical memory trials, participants were told to try to “really get into 

the memory” while filling in the blanks. They were asked to try to imagine themselves reliving 

that experience. In the general knowledge condition, participants were asked to fill in the blanks 

with anything appropriate, and to try to “think carefully for good answers”. All trials were 

terminated after 20 seconds. However, participants were told that there was no need to rush to 

try to finish all the blanks, and it was more important to be accurate than fast. This was designed 

to encourage participants to be engaged as much as possible throughout the 20 seconds. After 

the 20 seconds were over, participants were given two rating questions ('Were you recollecting 

a specific event?' and 'How difficult did you find this trial?'). They were given five seconds to 

provide each rating on a scale of 1 to 4. Since it involved four buttons, participants gave 

responses with the four fingers of their right hand. This was then followed by an 8~12 second 

fixation period between trials. There were five trials of each condition (autobiographical 

memory and general knowledge) in each run. 

4.3.2.4 Spatial Imagery task 

In the spatial imagery task, there were two types of mental imagery conditions, each 

presented in blocks of trials. One type of block involved judging relative locations of landmarks 

in Cambridge (this task was adapted from Vass & Epstein, 2017). On each trial, there was first 

a four second instruction to imagine standing at the landmark indicated in the first line (e.g., 

Botanic Garden) while facing the landmark indicated in the second line (e.g., King’s College). 

Afterwards, participants were shown a second screen with a new landmark location (e.g., 

Parker’s Piece), and were asked to indicate whether it would be on their left or right (in this 

example the correct answer would be right). The question stayed on the screen for up to 10 
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seconds, or until participants made a button press. The other type of block involved judging 

how many fragments were needed to complete a target digital number. At the beginning of each 

trial, a four second instruction was given to imagine a digital number indicated in the first line 

(e.g., three) with either an additional fragment or a fragment missing indicated in the second 

line (e.g., top-right fragment missing). Afterwards, participants were shown a new screen 

indicating a new target digit (e.g., five), and were asked how many more fragments would need 

to be added to their original mental image to complete the target (in this example the correct 

answer would be 1). Participants had up to 10 seconds to answer 1 or 2 (left and right buttons). 

The two conditions (landmarks and digits) were presented in blocks of four trials, with a 6~16 

second fixation period in between each block. There were four blocks of each condition per 

run. 

4.3.2.5 Self/Other Adjective Judgement task 

The self/other judgement task was adapted from Kelley et al. (2002). A total of 160 

adjectives were selected from a pool of normalized personality trait adjectives (Anderson, 

1968). Half of the words were positive traits and half were negative. On each trial, participants 

were asked to make a yes/no judgement via button press to indicate whether an adjective shown 

on the bottom of the screen described the person indicated on the top of the screen (self or the 

Queen). Each trial was presented for a fixed period of two seconds followed by a 0.5 second 

fixation. The task was grouped into blocks according to “self” and “the Queen”, with each block 

consisting of five trials. There were eight blocks of each condition per run. A 6~16 second 

fixation period separated each block. 

4.3.2.6 Working Memory task 

The working memory task was adapted from Fedorenko et al. (2013). On each trial, 

participants were presented with four consecutive displays. Each display was a 4 × 4 grid, with 

two of the cells colored red and the remaining white. Each display was presented for two 

seconds. Afterwards, participants were presented two choice displays, on the left and right of 

the screen, one of which had eight red cells in locations corresponding to those from the 

previous four displays, while the other was similar but with one cell misplaced. Participants 

were given 3.75 seconds to indicate the correct display by pressing left or right. This was 

followed by a 0.25 second feedback on the accuracy of their choice. There was a 12~16 second 

fixation period between trials. Each run consisted of 16 trials. 
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4.3.3 fMRI data acquisition and preprocessing 

Scanning took place in a 3T Siemens Prisma scanner with a 32-channel head coil. 

Functional images were acquired using a standard gradient-echo echo-planar imaging (EPI) 

pulse sequence (TR = 2000 ms, TE = 30 ms, flip angle = 78°, 64 × 64 matrices, slice thickness 

= 3 mm, 25% slice gap, voxel size 3 mm × 3 mm × 3 mm, 32 axial slices covering the entire 

brain). The first five volumes served as dummy scans and were discarded to avoid T1 

equilibrium effects. Field maps were collected at the end of the experiment (TR = 400 ms, TE 

= 5.19 ms / 7.65 ms, flip angle = 60°, 64 × 64 matrices, slice thickness = 3 mm, 25% gap, 

resolution 3 mm isotropic, 32 axial slices). High-resolution anatomical T1-weighted images 

were acquired for each participant using a 3D MPRAGE sequence (192 axial slices, TR = 2250 

ms, TI = 900 ms, TE = 2.99 ms, flip angle = 9°, field of view = 256 mm × 240 mm × 160 mm, 

matrix dimensions = 256 × 240 × 160, 1 mm isotropic resolution). 

The data were preprocessed and analyzed using automatic analysis (aa) pipelines and 

modules (Cusack et al. 2014), which called relevant functions from Statistical Parametric 

Mapping software (SPM 12, http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab (The 

MathWorks, Inc., Natick, MA, USA). EPI images were realigned to correct for head motion 

using rigid-body transformation, unwarped based on the field maps to correct for voxel 

displacement due to magnetic-field inhomogeneity, and slice time corrected. The T1 image was 

coregistered to the mean EPI, and then coregistered and normalized to the MNI template. The 

normalization parameters of the T1 image were applied to all functional volumes. Spatial 

smoothing of 10 mm FWHM was applied for whole-brain univariate second-level analysis, but 

no smoothing was applied for ROI-based analyses or multi-voxel pattern analysis. 

A general linear model (GLM) was estimated per participant and per voxel for each of 

the six tasks. A high-pass filter with 1/128Hz cutoff was applied to both the data and the model. 

For the first five tasks, regressors were created for each condition, with fixation periods serving 

as implicit baseline. In the working memory task, one regressor was created for the fixation 

periods to model passive fixation as the contrast against active task as implicit baseline. Error 

trials (only applicable for the theory of mind and spatial imagery tasks) and no-response trials 

were modelled using a separate regressor. All regressors were created by convolving the 

interval between stimulus onset and response (or display offset when no responses were 

required) with the canonical hemodynamic response function. Run means and movement 

parameters were included as covariates of no interest. The resulting beta-estimates were used 
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to construct contrasts between the two conditions of each task, or for working memory, the 

contrast of rest against task as implicit baseline.  

4.3.4 Whole-brain univariate analysis 

The between-condition contrasts that were used to examine DMN activity were: (1) 

belief > non-belief in the theory of mind task; (2) moral-personal dilemmas > non-moral 

dilemmas in the moral dilemmas task; (3) autobiographical memory > general knowledge in 

the autobiographical memory task; (4) landmarks > digits in the spatial imagery task; (5) self > 

other in the self/other adjective judgement task; and (6) rest > working memory.  

A second level whole-brain analysis (one-sample t-test across subjects) was conducted 

on each of the six within-subject contrasts above, to obtain group activation maps for each 

contrast separately. Activation maps were thresholded at p < 0.05, controlling the false 

discovery rate (FDR; Benjamini and Yekutieli, 2001). A whole-brain analysis was conducted 

to examine individual participant activations for each of the 6 contrasts. For each voxel, we 

computed the number of participants with significant activation, applying FDR correction 

across all voxels of all participants (Heller et al., 2007). This resulted in a whole-brain map 

showing the number of participants with significant activation within each voxel. Based on the 

6 random-effects analyses above, a similar map was constructed to show the number of 

significant task contrasts at each voxel (Heller et al., 2007). MRIcroN (Rorden et al., 2007) was 

used for visualization of whole-brain maps. 

4.3.5 Regions of interest and ROI analysis 

A DMN mask was constructed using the 17 network parcellation from Yeo et al. (2011), 

concatenating networks 10, 15, 16, and 17. Networks 15, 16, and 17 largely corresponded to 

the three DMN subnetworks described in Andrews-Hanna (2012), which are the MTL 

subsystem, the dMPFC subsystem, and the core hubs. Network 10 was described in Yeo et al. 

(2011) as the orbital frontal-temporopolar network, which consists of temporopolar and orbital 

frontal regions. This network was added to the three DMN networks from Yeo et al. (2011) to 

include the vMPFC region described by Andrews-Hanna (2011). To create a single symmetrical 

volume, ROI masks (1 for voxels within the region; 0 outside) from the left and right 

hemispheres were combined using a logical OR operation, then projected back to both 

hemispheres. The combined network was then slightly smoothed (4 mm FWHM), and voxels 

with values > 0.5 after smoothing were retained. Finally, the combined network was parcellated 

into 20 smaller subregions by assigning each voxel to its closest DMN coordinate described by 
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Andrews-Hanna et al. (2010b). The coordinates are listed in Table 1. In cases where non-

contiguous volumes were assigned to the same region, any volumes of < 45 voxels were 

discarded, and the remaining volume with center of mass closest to the Andrews-Hanna 

coordinate was chosen. The resulting ROIs are shown in Figure 4.2.  

 

Table 4.1. Peak DMN coordinates described in Andrews-Hanna et al. (2010b). Coordinates are based 

on the Montreal Neurological Institute coordinate system. 

Region Abbreviation x y z 

dMPFC subsystem     

Dorsal medial prefrontal cortex dMPFC 0 52 26 

Temporal parietal junction TPJ -/+54 -54 28 

Lateral temporal cortex LTC -/+60 -24 -18 

Temporal pole TempP -50/+50 14 -40 

MTL subsystem     

Ventral medial prefrontal cortex vMPFC 0 26 -18 

Posterior inferior parietal lobule pIPL -/+44 -74 32 

Retrosplenial cortex Rsp -/+14 -52 8 

Parahippocampal cortex PHC -/+28 -40 -12 

Hippocampal formation HF+ -/+22 -20 -26 

Core hubs     

Anterior medial prefrontal cortex aMPFC -/+6 52 -2 

Posterior cingulate cortex PCC -/+8 -56 26 
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Figure 4.2. DMN ROIs used the in the current experiment. The ROIs are derived from networks 10, 15, 

16, 17 described in the 17 network parcellation in Yeo et al. (2011) and devided according to 

coordinates described in Andrews-Hanna et al. (2010). Regions in blue are part of the dMPFC 

subsystem, and include the midline dMPFC and bilateral TPJ, LTC, and TempP. Regions in green are 

part of the MTL subsystem, and include the midline vMPFC and bilateral pIPL, Rsp, PHC, and HF+. 

The core hubs are represented in yellow, and include the bilateral aMPFC and PCC. For abbreviations 

see Table 4.1. 

 

For each task, the contrast between the two conditions was averaged within each ROI 

using the MarsBAR toolbox (Brett et al., 2002). For working memory, the relevant contrast was 

simply rest against implicit baseline (active task). Contrasts were tested against zero using two-

tailed t-tests across subjects, corrected using FDR < 0.05 for multiple comparisons across ROIs. 

ROI x task ANOVAs were used to examine differences in ROI activity across different 

contrasts. Finally, the vector of contrast values from all tasks (six in total) was compared across 

ROIs. Distances between activation profiles for each pair of ROIs were calculated using 1 - 

Pearson’s r, and classical multidimensional scaling (MDS) was used to visualize the differences 

in activation pattern between ROIs as 2-dimensional distances.  
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4.3.6 Task-wise multi-voxel pattern similarity 

For each ROI, we wished to examine similarity of voxelwise activity patterns across the 

six tasks. For each participant, we extracted the beta-values for each contrast for each task, and 

compared the multivoxel patterns of these values between tasks. The similarity between each 

pair of tasks was measured by Pearson’s r, producing a symmetrical 6 x 6 matrix of similarities 

for each ROI. For each ROI, we quantified which regions showed (1) greater pattern similarity 

between the two tasks that required “introspection about mental states” (theory of mind and 

moral dilemmas), compared to similarity of these tasks to others, (2) greater pattern similarity 

between the two tasks that required “memory-based construction/simulation” (autobiographical 

memory and spatial imagery), compared to similarity of these tasks to others, (3) a relatively 

unique pattern for the self/other judgement task (greater similarity for task pairs not including 

self/other), and (4) a relatively unique pattern for rest (greater similarity for task pairs not 

including rest). To do this, we created four model similarity matrices based on these a priori 

groupings and evaluated fits to each ROI’s task similarity matrix using Kendall’s tau-a for each 

subject, as recommended when the model similarity matrix has ties (Nili et al., 2014). 

Correlations were tested against zero using 2-tailed t-tests across subjects, and all tests were 

corrected for multiple comparisons (FDR < 0.05) across the number of ROIs.  

To compare patterns of task similarities between ROIs, we used vectors of between-task 

correlation from the above analysis (15 between-task correlations for each ROI). Similarly to 

the univariate analysis, distances between each pair of ROIs were calculated using 1 minus the 

correlation (Pearson’s r) between these vectors. Again, multidimensional scaling (MDS) was 

used for visualization. 

 

4.4 Results 

4.4.1 Behavioral results 

Mean reaction times (RT) for all responses are summarized in Table 4.2. The first three 

subjects’ RTs for the working memory task were not recorded due to technical error and were 

excluded in the analysis. Mean accuracies for the theory of mind, mental imagery, and working 

memory tasks are also summarized in Table 4.2, along with mean ratings of recollection and 

difficulty for the autobiographical memory task.  
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Paired t-tests were conducted between the two conditions of the first five tasks, with no 

correction for multiple comparisons, to examine how well-matched each of the two conditions 

were within a task. There were no differences in reaction time between the pairs of conditions 

in the theory of mind, moral dilemmas, autobiographical memory, and self/other adjective 

judgement task (all |t|s < 1.45, all ps >= 0.16). In the spatial imagery task, RTs were shorter for 

the landmarks condition than for the digits condition (t = -2.74, p = 0.01). There were no 

differences in accuracy between the pairs of conditions in the theory of mind and spatial 

imagery task (both |t|s < 1.62, both ps >= 0.12). As expected, ratings of recollection were 

significantly greater in the autobiographical memory condition than in the general knowledge 

condition (t = 21.01, p < 0.001); autobiographical memory was also rated less difficult than 

general knowledge (t = -4.47, p = 0.001).  

 

Table 4.2. Reaction times (RT), accuracies, and ratings of each condition (mean ± standard error). 

 Theory of Mind Moral 

Dilemmas 

Autobiographical 

memory 

Spatial imagery Self/Other 

Adjective 

Judgement 

Working 

memory 

 Belief Non-

belief 

MPD NMD Memory Knowledge Landmarks Digits Self Other Working 

memory 

RT (s) 3.24 ± 

0.03 

3.10 ± 

0.02 

3.50 ± 

0.03 

3.26 ± 

0.04 

1.84 ± 

0.02 

1.90 ± 

0.02 

2.30 ± 

0.02 

3.02 ± 

0.05  

1.44 ± 

0.01 

1.47 ± 

0.01 

1.84 ± 

0.02 

Accuracy 

(% correct) 

87.4 ± 

6.2 

91.1 ± 

4.7 

N/A N/A N/A N/A 91.7 ± 5.7 84.3 ± 

8.6 

N/A N/A 76.4 ± 

5.0 

Rating N/A N/A N/A N/A Recollection 

3.65 ± 

0.02 

Difficulty 

1.41 ± 

0.02 

Recollection 

1.36 ± 

0.01 

Difficulty 

1.91 ± 

0.02 

N/A N/A N/A N/A N/A 

 

 

4.4.2 Whole-brain univariate analysis 

A whole-brain random effects analysis was conducted separately for each of the six 

contrasts of interest (Figure 4.3A; belief > non-belief; moral-personal dilemmas > non-moral 

dilemmas; autobiographical memory > general knowledge; landmarks > digits; self > other; 

and rest > task). Consistent with previous findings, the group analysis revealed many regions 
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that are commonly associated with the DMN. In most tasks, we see activation in the medial 

prefrontal cortex (MPFC) and posterior medial cortex including PCC, precuneus, and Rsp, as 

well as temporal and parietal regions on the lateral surface, including pIPL, TPJ, and LTC. 

Activity for the self/other adjective judgement task was less typical of the DMN, though 

strongly activated a large portion of the MPFC.  

To further quantify consistency across subjects, we computed a whole-brain overlay 

map for each task, where warmer colors indicate greater number of participants with significant 

activations (Figure 4.3B). The subject overlay map is largely consistent with the random effects 

results, as expected, but also indicates variability across participants.  

Next, we identified regions that were consistently significantly activated across multiple 

contrasts (Figure 4.3C). No region was found to be active in all six contrasts after correcting 

for multiple comparisons (FDR < 0.05). However, several regions showed significant 

involvement in at least five contrasts. These include the MPFC (including dMPFC, aMPFC, 

and vMPFC), PCC, pIPL, TPJ, and parts of the LTC. 

The results show that all six manipulations activated much of the DMN, and in 

particular, voxels within the MPFC, PCC, pIPL, TPJ, and LTC were significantly active for at 

least five manipulations. The theory of mind and moral dilemmas tasks showed strong 

activation of dMPFC, while the autobiographical memory and spatial imagery tasks showed 

peaks in vMPFC. These differences correspond to Andrews-Hanna’s (2012) observation of the 

dMPFC being involved in “introspection about mental states” and the vMPFC being involved 

in “memory-based construction/simulation”. Furthermore, the theory of mind and moral 

dilemmas tasks activated more anterior portions of the IPL than the autobiographical memory 

and spatial imagery tasks. This again corresponds to the separation of the TPJ (more anterior) 

and pIPL (more posterior) regions of the IPL, and matches their assignment to the dMPFC and 

MTL subsystems. The self > other contrast most consistently activated the MPFC across 

subjects, one of the core hubs identified by Andrews-Hanna (2012) to be responsive to 

“personally significant information”. However, the other hub region, the PCC, was only weakly 

activated. Our results show activity across much of the DMN for multiple contrasts, along with 

a degree of differentiation between dMPFC and MTL subsystems. 
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Figure 4.3. Univariate activity showing recruitment of the DMN network by all six tasks. (A) Whole-

brain t-maps of the contrasts of interest in the six tasks. This includes belief > non-belief in the theory 

of mind task; moral-personal dilemmas > non-moral dilemmas in the moral dilemmas task; 

autobiographical memory > general knowledge in the autobiographical memory task; landmarks > 
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digits in the spatial imagery task; self > other in the self/other adjective judgement task; and rest > task 

in the working memory task (working memory as implicit baseline). t-maps were thresholded at p < 0.05 

(FDR corrected). (B) Overlay map of significant activations found in single subjects in the contrasts of 

interest. The color of each voxel represents the number of subjects that had significant activation in that 

voxel for a particular contrast, thresholded at 1 subject. (C) Overlay map of the number of significant 

contrasts from the six second-level analyses. The color of each voxel represents the number of contrasts 

that had significant activation in that voxel, thresholded at 2 contrasts.  

 

4.4.3 ROI analysis of univariate activation level 

For each of our six contrasts, profiles of activity across DMN ROIs are shown in Figure 

4.4A(1). All contrasts were compared against zero using t-tests and were corrected for multiple 

comparisons with FDR < 0.05.  

Examined in detail, profiles suggest some of the anticipated differences between DMN 

regions, but also some surprises. As expected, theory of mind and moral dilemmas showed 

significant activation in most regions of the dMPFC and core networks. Activations were also 

seen in some regions of the MTL subsystem, however, including vMPFC, pIPL and PHC. 

Averaged contrasts within each network (Figure 4.4A(2)) showed significant activation just for 

the dMPFC subsystem and core. As anticipated, autobiographical memory and spatial imagery 

showed strong activations in the MTL subsystem, especially Rsp, and again in the core hubs, 

but significant activations were also seen in most dMPFC regions. Averaged within subsystems, 

the response of dMPFC was significantly lower than the other subsystems, but significantly 

greater than zero. For self-other, activations were more restricted, but included all three regions 

of the MPFC. Averaged within networks, this contrast was significant in the core and dMPFC 

subsystem, and, again as anticipated, strongest in the core subsystem. Unlike the previous four 

contrasts, core activation for self/other was stronger in aMPFC than in PCC. 

Perhaps surprisingly, the contrast of rest with working memory showed rather weak 

activations, significant only in the core and dMPFC subsystem, and significantly negative for 

some regions of the MTL network. Overall, these results provide broad support for the division 

into three subsystems, with the dMPFC subsystem especially involved in “introspection about 

mental states”, the MTL subsystem especially involved in “memory-based 

construction/simulation”, and the core hubs involved in all tasks but with particular sensitivity 

to “personally significant information”. At the same time, the results show that separation of 

networks is far from complete, with at least part of each network activated by every contrast. 
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Within each network, there are also some clear variations in response. Notably, although the 

MTL subsystem as a whole was only active in the autobiographical memory and spatial imagery 

tasks, the pIPL and vMPFC were active for five of the six tasks, similar to the core hubs and 

dMPFC subsystem. 

To compare profiles statistically, the data were entered into a repeated measures ROI 

(20) × task (6) ANOVA. Consistent with the different profiles suggested by Figure 4.4A(1), 

there was a strong interaction between ROI and task (F(95,2470) = 55.57, p < 0.001). There 

were also significant main effects for task (F(5,130) = 46.66, p < 0.001) and ROI (F(19,494) = 

25.61, p < 0.001). The interaction in part reflects differences between the three subsystems, so 

we next repeated the ANOVA using the subsystem average profiles shown in Figure 4.4A(2). 

The significant interaction (F(10,260)=100.05, p < 0.001) confirms that this subnetwork 

grouping captures different functional profiles across the tasks. There were also main effects 

for networks (F(2,52) = 15.09, p < 0.001) and task (F(5,130) = 35.01, p < 0.001). We also 

wished to test for possible heterogeneity within each subsystem. To this end, ROI × task 

ANOVAs were repeated for each network separately. For the dMPFC subsystem, there was a 

significant interaction between ROI and task (F(30,780) = 9.21, p < 0.001), as well as main 

effects for ROI (F(6,156) = 27.54, p < 0.001) and task (F(5,130) = 12.50, p < 0.001). For the 

MTL subsystem, we also observed a significant interaction between ROI and task (F(40,1000) 

= 34.15, p < 0.001), as well as main effects for ROI (F(8,208) = 29.78, p < 0.001) and task 

(F(5,130) = 110.86, p < 0.001). Finally, there was also a significant interaction (F(15,390) = 

22.92, p < 0.001) as well as main effects of ROI (F(3,78) = 25.42, p < 0.001) and task (F(5,130) 

= 12.87, p < 0.001) in the core hubs.  

The distance matrix (Figure 4.4B), based on the dissimilarity of activation profiles for 

the 20 ROIs, showed distinct clusters. Profiles were largely similar for all regions in the dMPFC 

subsystem (Figure 4.4B, upper left), while dMPFC itself was somewhat separated from the 

cluster, being displaced towards aMPFC. In addition, the activation profile for L-LTC 

resembled the MTL as well as the other regions in the dMPFC subsystems. Regions in the MTL 

network also had largely similar profiles (Figure 4.4B, middle), but with other notable features. 

vMPFC resembled not only other MTL regions, but also aMPFC, while for pIPL, there was 

high similarity not only to other MTL regions, but also to much of the dMPFC subsystem and 

conspicuously also to PCC. Within the core regions, aMPFC had a relatively distinct profile, 

but was most similar to other frontal regions, while PCC instead showed results closely similar 

to those of pIPL, with similarity to all other regions except for aMPFC, dMPFC, and TempP. 
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These results are summarized in the MDS plot in Figure 4.4C. As expected, regions of 

the dMPFC network largely cluster together, but with dMPFC shifted towards other frontal 

regions. Regions of the MTL network are again close together, with vMPFC somewhat apart 

from the main cluster. PCC, instead of clustering with its partner core region, is placed between 

dMPFC and MTL networks, in a position close to pIPL. aMPFC occupies a position between 

the other two frontal regions, as perhaps expected from anatomical proximity. 
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Figure 4.4. (A) DMN ROIs recruited by each condition within the 6 tasks. Error bars represent standard 

error. t-tests against zero were conducted for each contrast in each (1) ROI or (2) subnetwork. *** 

indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05 (all tests were corrected for multiple 

comparisons using FDR). (B) Dissimilarity matrix calculated using 1 – Pearson’s r between ROIs based 
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on their activity profile across the 6 tasks. (C) Multidimensional scaling (MDS) to visualize the 

dissimilarity between regions. 

 

4.4.4 Task-wise multi-voxel pattern similarity 

To compare the similarity of voxelwise activity patterns across tasks (e.g., belief > non-

belief vs. self > other), we correlated patterns of beta-values across voxels, for each pair of 

tasks, within each ROI and subnetwork (Figure 4.5A). Four model similarity matrices were 

constructed to test (1) whether the two “introspection of mental states” tasks were especially 

similar, (2) whether the two “memory-based construction/simulation” tasks were especially 

similar, (3) whether the self/other adjective judgment task was especially dissimilar to other 

contrasts, and (4) whether rest > working memory was especially dissimilar to other contrasts. 

Results showed that the dMPFC subsystem (dMPFC, R-TPL, R-LTC, and R-TempP), as well 

as pIPL and PCC had strong pattern similarity between the two “introspection” tasks. On the 

other hand, the MTL subsystem (pIPL, Rsp, PHC, HF+), as well as aMPFC and PCC showed 

strong pattern similarity between the two “memory-based construction” tasks. Across many 

ROIs of the three subsystems, there was a strong tendency for the self > other pattern to be 

distinct from others (greater similarity for contrast pairs not involving self/other). Few regions, 

however, showed the rest > working memory pattern to be distinct from the others (only R-

Rsp). Together, these data complement the findings in Figure 4.4. Though regions in each 

subsystem contain voxels responding to each contrast, the pattern of these activations is 

organized along the lines proposed by Andrews-Hanna (2012), with more dissimilar activation 

patterns for contrasts predominantly associated with different networks. 

The distance matrix (Figure 4.5B) and MDS plot (Figure 4.5C), based on correlations 

of the pattern-similarity matrices shown in Figure 4.5A, showed distinct clusters, largely similar 

to those based on univariate activity profiles. The ROIs of the dMPFC subsystem clustered with 

each other, as did many of the MTL ROIs. Again, however, PCC and IPL regions clustered 

close together, between dMPFC and MTL clusters, and again, despite putative assignment to 

different networks, there was some similarity of the three MPFC regions.  
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Figure 4.5. (A) Correlations between each pair of activation patterns in each (1) ROI (subnetworks in 

columns) or (2) subnetwork. The upper row shows the four model similarity matrices (white indicates 

empty cells that were not used in the comparisons, grays indicate 1s, and blank indicate 0s). In each 

matrix, tasks are ordered (top to bottom and left to right) as follows: theory of mind, moral dilemmas, 
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autobiographical memory, spatial imagery, self/other and working memory. Leftmost columns show the 

average rank-transformed similarity matrices across subjects. Bar graphs represent  Kendall’s tau-a 

correlation between each participant’s empirical and model similarity matrices tested against zero 

(corrected for multiple comparisons at FDR < 0.05). *** indicates p < 0.001, ** indicates p < 0.01, 

and * indicates p < 0.05. (B) Dissimilarity matrix calculated using 1 – Pearson’s correlation between 

ROIs based on their correlation profiles across 15 task pairs. (C) Multidimensional scaling (MDS) to 

visualize the dissimilarity between regions. 

 

4.5 Discussion 

Many complex cognitive processes have been linked to the DMN, supporting its role in 

high-level thought (Buckner and Carroll, 2007; Buckner et al., 2008; Spreng et al., 2009; 

Andrews-Hanna, 2012; Andrews-Hanna et al., 2014b). Among the most established of these 

cognitive functions are social, semantic, episodic, and self-relevant processing (Frith and Frith, 

2006; Binder et al., 2009; McDermott et al., 2009; Spreng et al., 2009; Humphreys and Lambon 

Ralph, 2017). Recent findings suggest that the DMN consists of anatomically and functionally 

heterogeneous subsystems (Andrews-Hanna, 2012; Andrews-Hanna et al, 2014b; Yeo et al., 

2011; Braga et al., 2017; Axelrod et al., 2017). Here, we used six diverse tasks to examine 

functional similarities and differences between DMN regions. 

In many respects, our results matched the tripartite division proposed by Andrews-

Hanna et al. (2010b, 2014b; 2012). In terms of univariate activity, regions of the dMPFC 

subsystem had largely similar activity profiles (Figure 4.4B), with strong response to our two 

social tasks, consistent with a particular role in social cognition or introspection about mental 

states. A partial exception was dMPFC itself, whose activity profile was shifted towards that of 

aMPFC (Figure 4.4B, C). In addition to their strong response to social contrasts, however, 

dMPFC regions also showed some response to most other contrasts (Figure 4.4A). Thus, 

specialization was quantitative rather than qualitative. Analysis of multivoxel activity patterns 

also largely supported the proposals of Andrews-Hanna et al. (2010b, 2014b; 2012), with 

regions of the dMPFC subsystem showing similar voxelwise activity patterns for our two social 

contrasts (Figure 4.5A), and again, largely similar profiles of between-task distances (Figure 

4.5B, C). 

Our results also support the proposal of an MTL subsystem, though with some caveats. 

In terms of univariate activity, regions of the MTL subsystem had largely similar activity 

profiles (Figure 4.4B), with strong response to the autobiographical memory and spatial 
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imagery tasks, and in most cases little response to other contrasts (Figure 4.4A). The most 

conspicuous exceptions were vMPFC, whose activity profile was shifted towards that of 

aMPFC, and pIPL, which responded to most contrasts (Figure 4.4B, C). Analysis of multivoxel 

patterns showed a largely similar picture. For MTL regions except vMPFC, voxelwise activity 

patterns were especially similar for the memory and imagery contrasts (Figure 4.5A), and across 

all task pairs, there were largely similar profiles of between-task distances (Figure 4.5B, C). 

Again, though, the distance profile of pIPL was rather different, with some similarity to other 

regions of both MTL and dMPFC subsystems, and again, vMPFC was shifted towards aMPFC 

(Figure 4.5B, C). 

Our results give less support to the concept of a midline core consisting of aMPFC and 

PCC. In terms of both univariate and multivariate activity, aMPFC was more similar to the 

adjacent dMPFC and vMPFC regions than to PCC. In terms of univariate activity, its strongest 

response was to the self-other contrast (Figure 4.4A). In contrast, both univariate and 

multivariate analyses placed PCC between dMPFC and MTL subsystems, with results closely 

similar to those of pIPL (Figure 4.4C, 4.5C). If anything, these results suggest pIPL and PCC 

as a DMN functional “core” (consistent with Buckner et al. (2008, 2009)), while MPFC regions 

show some dorsal-ventral gradient but also resemblances to one another, and relatively distinct 

profiles compared to the other ROIs, including PCC. 

Some important caveats should be considered. Undoubtedly, our a priori ROIs would 

not match the exact functional regions of individual participants, meaning that results for 

adjacent regions will to some extent blur together. One region where this consideration could 

be especially significant is the inferior parietal lobule, represented here by pIPL and TPJ ROIs 

(Figure 4.2). Our univariate data agreed with the proposals of Andrews-Hanna et al. (2010b) in 

broadly separating pIPL and TPJ. At a finer scale, however, it is possible that pIPL should be 

further subdivided, as suggested by some functional connectivity data (Yeo et al., 2011). 

Blurring of functionally separate regions within the pIPL might contribute to our findings of 

similarity to both dMPFC and MTL subsystems, resembling PCC. Similar considerations apply 

to our finding of broad similarities between the three MPFC regions. Of particular relevance 

here are the results of Braga & Buckner (2017), who scanned four individuals 24 times using 

fMRI. The authors found that two distinct networks, showing resemblance with the dMPFC 

and MTL subsystems in Andrews-Hanna et al. (2010), could be identified in each individual. 

However, a unique finding from this study was that spatially juxtaposed regions of the two 

networks were found in each of the three MPFC regions, dMPFC, aMPFC, and vMPFC, which 
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may be blurred together by spatial averaging in a group analysis. Despite these concerns, our 

results confirmed a dorsal-ventral gradient within the MPFC, with the dMPFC being more more 

involved in tasks requiring “introspection of mental states” and vMPFC more involved in tasks 

requiring “memory-based construction/simulation”. 

Other aspects of our results cannot be explained by spatial blurring. In particular, a 

conspicuous result was a significant response to non-social contrasts throughout most regions 

of the dMPFC subsystem, including those far from the MTL or core hubs. Along with the broad 

similarity of whole-brain maps for each contrast (Figure 4.3), apart from self > other, such 

results confirm partial, but not complete separation of response patterns for different DMN 

subsystems. 

As noted earlier, several authors have proposed that the DMN represents broad features 

of a cognitive episode, situation or context (Hassabis and Maguire, 2007; Ranganath and 

Ritchey, 2012; Manning et al., 2014). Our results suggest both partial functional separation but 

also integration within this context representation. Matching many other findings (Andrews-

Hanna et al., 2014a; Axelrod et al., 2017), our results link regions of the dMPFC subsystem to 

social cognition, and regions of the MTL subsystem to spatial or scene representation. To 

represent a cognitive episode, it is plausible that social and spatial representations are often 

integrated, for example to indicate who is where in the represented episode. Such integration 

may be achieved through communication between dMPFC and MTL subsystems, perhaps 

especially mediated by the pIPL and PCC. The self is also likely to be a core part of any episode 

representation, perhaps especially dependent on MPFC. In this way, the DMN acts partly as an 

integrated whole, but binding together aspects of the episode representation that are 

predominantly contributed by separate subregions. 

Two other regions are worthy of further consideration. The first is the inferior frontal 

gyrus (IFG), which was not part of our a priori ROIs. Our whole-brain results (Figure 4.3A) 

showed that although IFG activity was weak in second-level analyses for most tasks (with the 

exception of self > other), a substantial minority of individual participants showed reliable 

recruitment for most tasks (Figure 4.3B). In the semantic literature, it has been shown that the 

semantic network, including the IFG, consists of many regions overlapping with the DMN 

(Binder et al., 2009; Noonan et al., 2013). In a dataset of 1000 participants, Yeo et al. (2011) 

identified the IFG as part of the dMPFC subsystem (Andrews-Hanna et al., 2014b). Given these 

findings, future studies should consider further the relation between the IFG and the DMN. 
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The second region requiring further consideration is the hippocampus. The hippocampal 

peak (HF+) defined in Andrews-Hanna et al. (2010b) is not located in the hippocampus proper, 

but lies between the PHC and perirhinal cortex (PRC) (Moore et al., 2014; Ritchey et al., 2015; 

https://neurovault.org/collections/3731/). The PHC has been linked to the “posterior medial 

system”, a network closely related to the DMN, while the PRC has been linked to the “anterior 

temporal system”, along with the temporal poles and orbitofrontal cortex (Ranganath and 

Ritchey, 2012). The role of the current HF+ ROI is therefore unclear as it may span functionally 

heterogeneous regions. Another question is whether the hippocampus is part of the DMN at all. 

Our results show a mixed picture, as only some contrasts activated parts of the hippocampus. 

Although the hippocampus has been associated with episodic memory and spatial navigation 

(Maguire et al., 1998; Addis et al., 2007; Rugg et al., 2012; Brown et al., 2016), it has been 

proposed to play a different role from other regions in the MTL subsystem. In particular, the 

hippocampus may integrate information across the anterior temporal and posterior medial 

systems (Ranganath and Ritchey, 2012).  

Our findings provide a mixed answer to the question of functional specialization within 

the DMN. On the one hand, there is evidence of a largely integrated whole, with similar whole-

brain activity maps for multiple contrasts, and some response to every contrast in each of the 

proposed subsystems, supporting classical accounts (e.g. Buckner and Carroll, 2007; Spreng et 

al., 2009). On the other hand, there is partial functional separation, in close accord with the 

proposals of separate dMPFC and MTL subsystems (Andrews-Hanna et al., 2010b, 2014a; 

Andrews-Hanna, 2012), though with remaining uncertainties over the concept of a midline core. 

Integrating social, spatial, self-related, and other aspects of a cognitive situation or episode, the 

DMN may provide the broad context for current mental activity. 
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Chapter 5 Discussion 

 

 The experiments described in this thesis explored representations in the human brain at 

varying levels of temporal granularity and abstraction. In Chapter 2, an experiment using high-

temporal resolution EEG/MEG showed that different components of attentional representation 

unfold sequentially throughout an event within hundreds of milliseconds as a behaviorally-

relevant target is selected. Chapter 3 employed fMRI to examine to what extent different brain 

regions represent individual items, steps, and episodes over a sequence of goal-directed actions. 

The visual cortex, MD network, and DMN network were all found to code for the currently 

relevant event, while the DMN additionally represented the broader episode. The DMN has 

been observed to be involved in many high-level abstract tasks, and Chapter 4 examined 

functional overlaps and specificity across different cognitive domains. The current studies, 

however, are insufficient to give a conclusive picture of the cognitive and neural mechanisms 

within the cortical networks that were investigated. This chapter will discuss various 

unexplored issues and possibilities arising from these studies. 

 

5.1 Dynamic versus sustained coding of latent events 

 While the results in Chapter 2 showed multiple representational components during 

attentional selection of a visual target, the representation during the period between the cue 

onset and visual presentation did not seem to extend beyond the auditory representation of the 

cue. Yet it is during this period that participants set up a mental representation of the target. As 

discussed earlier in the context of preparatory attention, classical models of working memory 

have proposed that persistent spiking supports maintenance of working memory during a delay 

period, such that the neural firing patterns during the delay resemble the patterns in response to 

seeing the target itself (Fuster and Alexander, 1971; Chelazzi et al., 1993a). However, recent 

empirical data looking at single trial analysis of neural recordings in visual cortex (Kucewicz 

et al., 2017), parietal cortex (Shafi et al., 2007; Cromer et al., 2010), and prefrontal cortex (Shafi 

et al., 2007; Stokes et al., 2013; Lundqvist et al., 2016b) suggest that spiking activity during the 

delay period can be very sparse, and that activity travels through a continuous series of states 

rather than maintaining a stable pattern across time (Stokes et al., 2013; Stokes, 2015). 

Furthermore, while neuronal recordings have shown that delay activity is not locally persistent, 
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noninvasive EEG recordings of global activity have also revealed that, for extended periods of 

time, information held in working memory cannot be decoded (e.g., Wolff et al., 2015, 2017). 

A statically sustained template may also be theoretically unlikely, as it has mechanistic 

problems, such as vulnerability to interference from distractors (Lundqvist et al., 2010, 2018; 

Miller et al., 2018). In laboratory experiments, the delay period is usually associated with a 

blank screen with a fixation cross, where there is little interference. However, under real-world 

conditions, we are constantly processing a continuous stream of incoming information; such 

that it would be difficult for neural patterns to maintain stability while processing new 

information at the same time. Parthasarathy et al. (2017) have shown that classifiers trained on 

times before an additional input do not generalize well to the times following it.  

Another issue is that persistent spiking is metabolically expensive (Lundqvist et al., 

2018; Miller et al., 2018). Although there are some examples in the literature showing single 

neurons that seem to show persistent activity on individual trials (e.g., Funahashi et al., 1989; 

Meyer et al., 2011), it has been shown with multiple-electrode studies that the majority of 

neurons spike sparsely (Lundqvist et al., 2018). The timescales used in working memory 

experiments are typically a few seconds at most. While it is conceivable for a neuron to 

persistently fire for short timescales, would we expect the neuron to persistently fire over 

several hours if the experiment demanded it?  

Recently, there has been much theoretical development in how information is held in 

working memory (Stokes, 2015; Miller et al., 2018); however, it is still unknown how long-

term memory and temporally extended episodes are coded. Imagine one morning you open the 

fridge and notice that the milk has run out and you tell yourself that you will need to buy milk 

on your way back from work in the evening. The requirement to buy milk will need to be stored 

somewhere in memory while you go about your day with many intervening activities and 

distracting information. The time between morning and leaving work may be several hours 

long. In our subjective experience, one would not actively maintain the mental representation 

of the goal in working memory throughout the entire period, but we are still able to maintain it 

for when it is needed. Is the coding of this long-term prospective memory mechanistically 

similar to how working memory is stored? Or does it involve a different mechanism? To 

investigate this, one would need to record high temporal resolution data over long timescales 

in naturalistic settings. 
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As reviewed in the Introduction, Baldassano et al. (2017) used naturalistic movie clips 

to examine how events are represented in the brain with fMRI. Another paper using the same 

approach has found similar results with EEG (Silva et al., 2019). Both studies suggest that 

events are represented in high-level regions as stable patterns of neural activity over an extended 

timescale, in spite of fluctuations in ongoing sensory input, only to rapidly shift at event 

boundaries. This is an interesting finding, which provides a neural mechanism of how slowly 

drifting thoughts, such as representations of situation models or schemas, are represented. 

However, as reviewed in https://nikokriegeskorte.org/2016/12/12/, although those papers claim 

that events are represented by stable patterns, it is a model assumption rather than a result 

demonstrated by the data. To explore to what extent events during naturalistic perception are 

coded using dynamic or stable patterns, cross-temporal generalizations of event representation 

using high temporal resolution recordings will be additionally needed.  

 

5.2 How is information transferred across regions? 

In Chapters 2 and 3, large scale cortical networks, including sensory, MD, and DMN 

regions are engaged during behaviorally complex tasks, but representing different kinds of 

information to different degrees and at different times. In particular, in Chapter 3, it was found 

that while sensory and MD regions are especially sensitive to the currently relevant information, 

DMN regions additionally represented the broader task episode. This finding suggests that as 

we experience the world, our thoughts are evolving at different timescales simultaneously, such 

that we are not thinking just one thing at a time (Manning et al., 2014; Baldassano et al., 2017; 

Manning, 2019). Most laboratory experiments have relied on trial-based paradigms, where 

participants are presented with independent displays of words or images, to examine how the 

brain responds to a single display in isolation. But to fully understand how the brain represents 

the world, it is insufficient to look at only one isolated moment; instead, we need to consider 

how that moment is temporally, semantically, and spatially related to other moments during the 

experience (Manning et al., 2014). If different brain regions use different timescales to together 

represent our experience, then these regions would need to have connections to transfer 

information to one another. 

Studies of temporal processing hierarchies have led to the hypothesis that high-level 

regions accumulate and integrate information over time that is inputted into primary sensory 

regions (Hasson et al., 2008, 2015; Lerner et al., 2011). Baldassano et al. (2017) showed that 

https://nikokriegeskorte.org/2016/12/12/
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events are nested in a hierarchical structure from low level to high-level regions, as a significant 

proportion of boundaries in a given layer were also present in lower layers of the hierarchy. In 

an elegant study, Yeshurun et al. (2017) found that the brain accumulates and integrates locally 

small word changes to construct unique neural representations for different stories. They 

constructed distinct narratives by changing only a few words in each sentence (e.g., “he” to 

“she”; “sobbing” to “laughing”), and found that neural responses to small word changes become 

increasingly amplified in long-timescale regions. These studies provide evidence that high-level 

regions have access to information from lower level regions, but additional studies are needed 

to investigate how information is transferred, and to what extent low-level regions can access 

information from high-level regions.  

A few recurrent neural network models have been built to explore what mechanisms 

might support nested hierarchical structure of timescales. For example, Chaudhuri et al. (2015) 

constructed a large-scale dynamical model based on anatomical connectivity in the macaque 

neocortex. By varying the density of excitatory connection strengths for each area according to 

the position of that area in the cortical hierarchy, their model was able to show that decay times 

in response to stimulus input increased progressively from sensory areas to association areas in 

the hierarchy (Chaudhuri et al., 2015; Chen et al., 2015). Chung et al. (2017) developed a novel 

updating mechanism in a recurrent neural network, where chunks of information are transmitted 

from lower to higher levels primarily at event boundaries. Their model was able to capture 

temporal dependencies by discovering the latent hierarchical structure of the inputted sequence. 

In empirical data, one approach to examining information flow is effective (or directed) 

connectivity (Friston et al., 1993; Friston, 2011). A commonly used approach is Granger 

causality (Granger, 1988; Ding et al., 2006). According to Granger causality, time series X 

Granger-causes time series Y if the past values of X help predict the future of Y better than the 

past values of Y alone (Seth et al., 2015; Bastos and Schoffelen, 2016). One can therefore test 

whether time series in one region predicts the activation in another region at a later time. 

Goddard et al. (2016) extended this idea to examine how one region’s representational patterns 

influence another region’s representational patterns across time. The authors identified an early 

feedforward flow and later feedback between peri-frontal and peri-occipital sensors during 

object recognition. Other methods, such as dynamic causal modeling, can also examine directed 

connectivity between multiple brain regions, and comparing a large range of possible models, 

finally selecting the best model using Bayesian model comparison (Friston et al., 2003). It 

would be interesting to explore using such methods how different regions within the cortical 
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processing hierarchy transfer information over extended timescales. A tentative Granger 

causality analysis was performed using the data from Chapter 2, but encountered difficulties 

defining the optimal size of time windows and number of previous time points to put in the 

model. Similar challenges must be overcome when examining information flow across 

temporal hierarchies. 

It has been shown that functional connectivity patterns in large-scale networks can 

flexibly reassemble to meet a variety of task demands (Cole et al., 2013a). More recent research 

has shown that activations evoked by cognitive tasks can be predicted in held-out brain regions 

via estimated activity flow over resting-state functional connectivity networks (Cole et al., 

2016). This suggests that resting-state functional connectivity networks shape activity flow in 

task contexts. Building on this finding, the authors developed a new technique, known as 

information transfer mapping, to quantify the amount of information transferred between pairs 

of brain regions via resting-state functional connectivity. This approach accurately predicted 

the activation pattern in response to a task in a target region based on a source region’s 

activation pattern (Ito et al., 2017). However, the task they used was a laboratory task which 

required participants to respond to three rule domains (logic, sensory, and motor) on a trial-by-

trial basis. It is unknown whether this approach would be able to predict information flow across 

cortical networks for continuous naturalistic data where information is unfolding at multiple 

timescales. 

 

5.3 Progression through steps, and special status of the first and the last step 

 Although not explored in detail in the experimental chapters, there could be multiple 

ongoing processes that evolve as one progresses through a task episode. Similar to previous 

studies (e.g., Farooqui et al., 2012; Desrochers et al., 2015) that observed an increase in activity 

in various regions throughout the task episode, the experiment in Chapter 3 showed an 

increasing linear trend in MD and DMN regions using FIR analysis.  However, after separately 

characterizing onset and epoch responses, different networks showed different linear trends of 

increasing and decreasing onset and epoch activity. It is difficult to completely interpret how 

these univariate changes relate to cognition, and the various progressive cognitive processes 

during execution of a task episode may not be mutually exclusive. It is unknown to what extent 

such processes have contributed to the results in Chapter 3, as well as to other studies. More 

targeted experimental designs would be necessary to distinguish these processes, and future 
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studies would benefit from designs that directly examine changes in information representation 

over the course of an episode. A few possible processes will be discussed here.  

Decreasing cognitive load over time 

 Anderson & Matessa (1990) described a production system theory of serial memory, 

suggesting that serial lists are represented as hierarchical structures in which items are 

embedded, and that recall depends on a limited-capacity activation process (also see Baddeley, 

1990) where activation is divided among elements within the hierarchical structure. Their 

empirical data from a task where participants memorized lists of digits that were chunked during 

presentation, showed that recall latency depended on chunking of the items and increased 

according to the length of the sequence (Anderson and Matessa, 1990). The idea of a 

hierarchical control structure can be extended to active task sequence execution. Such studies 

have shown that reaction times are longer when executing events marking the beginning of a 

task sequence, compared to identical events within the sequence, and the reaction time increase 

for the first step is directly related to the complexity of the sequence (Rogers and Monsell, 

1995; Wylie and Allport, 2000; Schneider and Logan, 2006; Farooqui and Manly, 2018b). For 

example, Schneider & Logan (2006) found that the sequence initiation time for the sequence 

ABBA is longer than AABB (where A and B represent task rules), where although the two 

sequences contained the same elements they differed in rule transition frequency.  

Based on these observations, Farooqui & Manly (2018b) suggested that representations 

of task episodes are assembled at the beginning of execution and are initially represented as one 

cognitive unit. They further suggested that, consequently, the cognitive load related to the 

mental program is highest at the beginning of the episode and decreases as more parts of the 

episode are executed (Farooqui and Manly, 2018a, 2018b). Supporting their hypothesis, they 

found that deactivation in the DMN (a region known to deactivate in response to cognitive load) 

was strongest at the start of the episode, but gradually returned to baseline as sequential steps 

were completed. Similar decrease in deactivation was also found in the DMN epoch regressors 

in Chapter 3; and it was additionally observed that the onset regressor was strongest at the 

beginning of the first step (possibly related to retrieval) and decreased over time.  

Increasing cognitive control over time 

 Desrochers et al. (2015) found that the rostrolateral prefrontal cortex exhibited a 

ramping pattern of activation as a function of progression through a task sequence that was not 

influenced by task complexity or switching. To examine the role of the increased rostrolateral 
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prefrontal activity, the authors performed a follow-up experiment where TMS was delivered at 

different temporal positions within the task sequence. Results showed that rostrolateral frontal 

stimulation resulted in increased error rates that increased as a function of position. Combining 

these findings, the authors proposed that the increasing rostrolateral prefrontal activity over 

time reflects a source of top-down control to resolve uncertainty throughout the sequence. If 

task representations are assembled or refreshed at the initiation of the episode, there is no 

uncertainty of position at the first event; however, as each subsequent step is executed, there is 

a greater probability of losing track of one’s position. Therefore, greater cognitive control may 

be needed at further steps into the episode.   

 Farooqui et al. (2012) proposed another possible explanation for why additional 

cognitive control is required as the episode progresses. Using a hierarchically structured task 

episode paradigm where the episode contained subtasks (e.g., search for “CAT” then “X”), they 

observed in MD regions that activity was greater when completing a higher order task. The 

authors suggested that a task episode is characterized by a unique neurocognitive configuration 

of multiple mental processes. Therefore, completion of each task would result in a revision of 

the mental program, and the completion of a higher level task would require a greater revision. 

End of task episode 

 In Chapter 3, the DMN regions showed rapid increase of activity at the end of the task 

episode, which can be seen from the FIR timecourses, and characterized by the offset regressor. 

This finding is consistent with studies of event segmentation, which showed increased DMN 

activity at time points where participants perceived an event boundary (Speer et al., 2007; Ben-

Yakov et al., 2013; Baldassano et al., 2017; Ben-Yakov and Henson, 2018). It has been 

suggested that the posterior medial regions of the DMN are involved in coding for situation 

models, and a rapid shift in the contents of the situation would result in changes in DMN activity 

(Baldassano et al., 2017; DuBrow et al., 2017; Brunec et al., 2018). It is possible that different 

regions within the DMN increase their activity at event boundaries for different reasons, such 

as reflecting prediction error or encoding of the event into memory (Baldassano et al., 2017; 

Brunec et al., 2018; Silva et al., 2019). Future studies would be needed to disentangle the 

various possibilities.  

 

5.4 Dissociating action sets and task goals 
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 Chapter 3 showed that regions within the DMN code for task episodes. However, a 

limitation of this study is that each episode contained unique sets of actions to achieve 

completion; therefore, we could not know whether different brain regions differently code for 

sequences of items and task goals. For example, when making coffee, one might need to boil 

water, add sugar, and add milk. However, this collection of acts is not restricted to the goal of 

making coffee. Other schemas, for example making tea, could require carrying out the parts of 

the same sequence of actions. This example illustrates that task episodes are more than the sum 

of each individual act, and our mental programs must be able to represent the current schema 

in order to carry out the correct goal. Furthermore, it is possible for different action sets to lead 

to the same goal. For example, if the goal is to make coffee, one could make instant coffee, 

French press coffee, or go to Starbucks to buy coffee. It is possible that some brain regions 

could represent the general goal regardless of the specific actions or number of steps it took to 

reach the goal. 

Further experiments will be needed to understand how the brain represents task goals 

(e.g., making coffee vs. making tea) and action sets (e.g., boil water, add sugar, and add milk). 

A possible way to approach this would be to build on the experiment in Chapter 3. The proposed 

experiment is presented in Figure 5.1, where the same items (from step 2 and onwards) can 

occur in different goals, and the same goal can be achieved by assembling different items. While 

the task structure would be similar to the experiment in Chapter 3, a prompt would be needed 

at the end of the task episode to verify that participants had kept the correct goal in mind. 

Additionally, it would be interesting to vary the number of steps required to complete a task 

episode, such that goal completion can be distinguished from step number (e.g., step 3 in 

sequences “add instant coffee  add water  drink coffee” and “add instant coffee  add 

water  add milk  drink coffee” differ in whether the goal is completed). 
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Figure 5.1 Extension of the experiment in Chapter 3 to dissociate action sets and task goals. (A) stimulus 

sets used in the experiment. Same schemas can contain different items, and the same sequences of items 

(from step 2 and onwards) can belong to different schemas. (B) Structure of an example task episode. 

The participant would be asked to choose at the end of the episode the correct schema to validate they 

had kept the scheme in mind. 

 

 It is a plausible hypothesis that the posterior medial network and MPFC are differently 

sensitive to action sets and task goals. The posterior medial network is proposed to be involved 

in representing situation models (Ranganath and Ritchey, 2012). A situation model is a higher-

level cognitive representation of relationships between different elements of a particular 

episode. Schemas differ from situation models in that they describe extracted commonalities 

across multiple episodes and lack unit detail (Radvansky and Zacks, 2011; Ghosh and Gilboa, 

2014b). It has been proposed that the MPFC accumulates information about the context of 

interrelated episodes, and is involved in the representation of schemas (Preston and 

Eichenbaum, 2013; Ghosh and Gilboa, 2014b; Spalding et al., 2015; Gilboa and Marlatte, 2017; 

Robin and Moscovitch, 2017). Studies have suggested a dissociation between the MPFC and 

MTL when encoding new information, such that MPFC acts to detect the congruency of new 

information with existing schemas, while MTL captures novel experiences and incongruent 

information (van Kesteren et al., 2012, 2013). For example, patient studies found that those 

with focal lesions within the MTL show congruency benefits when learning new information 

that is consistent with existing schema, while patients with additional lesions in semantic areas 

do not show such benefits (Kan et al., 2009). A dissociation between these regions was shown 

in a recent fMRI study (Reagh, SfN 2018), where participants were shown movie clips of actors 
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in two different cafes and two different grocery stores. The researchers found that the posterior 

medial network showed increased pattern similarity for repetitions of movies of the same 

context compared to related and different contexts, and the MPFC showed increased pattern 

similarity for both same and related contexts but not different contexts. These observations 

suggest that the posterior medial network may code for specific detailed episodes, while the 

MPFC codes for more general schemas. Future research will be needed to test whether this 

dissociation occurs in active goal-directed tasks. In Chapter 3, there was a hint of room 

encoding in MPFC, but it did not survive FDR correction. However, the tasks in the same room 

were quite different from each other, and all had different goals. It is plausible that MPFC 

coding for room would increase if there were a clearer abstraction that differentiated the goals 

between kitchen and bathroom tasks. 

 

5.5 What are the functions of the DMN? 

 In Chapter 3, the focus was on the role of the DMN in representing task episodes. 

However, in Chapter 4, it was shown that the DMN was engaged during the performance of 

multiple tasks from various cognitive domains (including theory of mind, solving moral 

dilemmas, autobiographical memory, spatial navigation, and judging self attributes). The DMN 

was also found to be more active during a passive rest versus a working memory task. Due to 

its involvement in vastly different tasks as well as passive rest, it is difficult to pinpoint its 

engagement to a specific function. The role of the DMN in human cognition is still debated, 

and some of the proposed hypotheses will be reviewed below.  

 The DMN has often been characterized as a network that increases its activity during 

passive rest compared to externally-oriented, goal-directed tasks (Shulman et al., 1997; 

Mazoyer et al., 2001; Raichle et al., 2001). It has also been found to show increased activity 

during easy tasks compared to difficult tasks (Mazoyer et al., 2002; McKiernan et al., 2003, 

2006). Such studies suggest that the DMN is associated with mental processes that occur during 

rest but are suspended during cognitive tasks (Raichle et al., 2001; Christoff et al., 2004; 

Goldberg et al., 2006). Two possibilities are illustrated in Figure 5.2. As described by William 

James (1890) as the “stream of consciousness”, when left without an immediate task that 

demands full attention, our minds wander from one passing thought to the next (Figure 5.2A). 

Using thought sampling and fMRI, researchers have found that people’s minds tend to wander 

during rest or when task demands are low, and individuals’ reports of the tendency of their 
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minds to wander correlated with activity in the DMN (Christoff et al., 2004; McKiernan et al., 

2006; Mason et al., 2007). The context of mental activity during rest has often been reported to 

be associated with reminiscence of past experiences, making future plans, and other personal 

thoughts and experiences (Andreasen et al., 1995; Binder et al., 1999; Mazoyer et al., 2001; 

Andrews-Hanna et al., 2010a). These observations show that the DMN is active during 

spontaneous introspective cognition, also referred to as stimulus-independent thought or mind-

wandering (Buckner et al., 2008; Andrews-Hanna, 2012).  

 However, while the DMN is appreciated for its elevated activity during passive control 

states, most of these paradigms consist of tasks that require performing cognitive operations on 

external sensory input on the current trial. Reviews of the literature reveal that experimental 

tasks that require participants to engage in various forms of internal mentation also engage the 

DMN (Buckner and Carroll, 2007; Buckner et al., 2008; Andrews-Hanna, 2012; Andrews-

Hanna et al., 2014b). A quantitative meta-analysis focused on four domains, including 

autobiographical memory, navigation, theory of mind, and “default mode” showed relatively 

high correspondence with the DMN (Spreng et al., 2009). This was followed by a direct test of 

some of these domains in a single experimental setup (Spreng and Grady, 2010), again revealing 

a common neural pattern resembling the DMN. Although autobiographical memory, 

prospection, navigation, and theory of mind seem to be very different cognitive domains, 

Buckner & Carroll (2007) observed that each requires the ability to mentally project oneself 

from the present moment into a simulation of another time, place, or perspective. Goal-directed 

tasks that engage DMN activity also share in common the process of one’s attention being 

inward, as opposed to external stimuli (Golland et al., 2008; Spreng et al., 2010; Andrews-

Hanna, 2012). These observations are consistent with the “internal mentation hypothesis” 

(Buckner et al., 2008; Andrews-Hanna, 2012) that proposes that the DMN contributes directly 

to internal mentation, in particular of self-relevant events (Kelley et al., 2002; Buckner et al., 

2008; Benoit et al., 2010).  

 Another hypothesis is the “sentinel hypothesis” which suggests that the DMN functions 

to support monitoring of internal and external environments when focused attention is relaxed 

(Figure 5.2B; Shulman et al., 1997; Gusnard and Raichle, 2001; Gusnard et al., 2001; Gilbert 

et al., 2006, 2007; Buckner et al., 2008). Studies of the PCC indicate a role in continuously 

gathering information about the world around us including sensory events, and also one’s 

behavior in the service of spatial orientation and memory (Vogt et al., 1992; Gusnard and 

Raichle, 2001). Most experimental tasks require focused attention on the imperative stimulus, 
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and by contrast, passive conditions release the participant to broadly monitor the environment. 

This broad low-level focus has been termed an “exploratory state” (Shulman et al., 1997) or 

“watchfulness” (Gilbert et al., 2007). Several studies have found that increased DMN activity 

during baseline was predictive of faster reaction times in the upcoming trial in diffuse attention 

conditions, suggesting a passive role in monitoring the environment (Small et al., 2003; Gilbert 

et al., 2006; Hahn et al., 2007).  

 

 

Figure 5.2 The functions of the default network have been difficult to unravel because passive tasks, 

which engage the default network, differ from active tasks on multiple dimensions. As one goes from an 

active task demanding focused attention (left panel) to a passive task (right panel), there is both a change 

in mental content (A) and level of attention to the external world (B). Spontaneous thoughts unrelated 

to the external world increase (A). There is also a shift from focused attention to a diffuse low‐level of 

attention (B). Hypotheses about the functions of the default network have variably focused on one or the 

other of these two distinct correlates of internally directed cognition. Reproduced from Buckner et al. 

(2008). 

 

 The “internal mentation hypothesis” and “sentinel hypothesis” may not be mutually 

exclusive, and some research emphasizes the importance of representations of both the self and 

the environment (Stawarczyk et al., 2011; Mantini and Vanduffel, 2013). Both our internal and 

external awareness may reflect complementary and coexisting aspects of conscious experience 

(Mantini and Vanduffel, 2013). It has been suggested that the DMN plays a role in supporting 

conscious experience, and it has been shown that altered states of consciousness, such as 
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anesthesia (Martuzzi et al., 2010), sleep (Sämann et al., 2011), and out-of-body experiences (De 

Ridder et al., 2007) result in changes to DMN activity and connectivity. 

 A similar yet alternative view of summarizing the DMN’s function in representing both 

internal mentation and external environment is that it represents context (Manning et al., 2014). 

Researchers have argued that the posterior medial network, including the PHC, and other 

regions of the DMN, is involved in contextual representation (Diana et al., 2007; Ranganath, 

2010b; Ranganath and Ritchey, 2012). However, context is one of the most fundamental yet 

elusive concepts in memory research, as researchers often define context by exclusion: in an 

experiment, there is a set of items that the participant is asked to memorize, and there is context 

which reflects everything else that is represented in the participant’s brain during the 

experiment (Manning et al., 2014). Context, therefore, may include, for example, information 

about the external environment, mood, thoughts about recently encountered events, contents of 

mind-wandering, and incidental features of the encoded stimuli (Smith and Vela, 2001; 

Manning et al., 2014). Under this definition, anything could be context. For example, Wang et 

al. (2013) examined functional dissociations in the PHC and PRC by experimentally 

manipulating meaningless visual fractal stimulus pairs, where one fractal in each pair was 

treated as an item and the other as context during encoding. The context fractals were shown in 

the background and remained on the screen for four consecutive trials, while the item fractals 

were transiently presented in the foreground. In accordance with the BIC model, they found 

that the PHC was involved in representing context and PRC in representing item, despite the 

context and item sharing the same stimulus material. These studies suggest that “context” is a 

useful way to summarize the contents of representations within the DMN; however, a better 

operational definition for context would be helpful to systematically study it. One possible 

definition of context is as slowly varying information, a perspective which is discussed in the 

next section. 

 

5.6 Temporal context 

 Temporal context has been a core theme in this thesis, and will be elaborated here. 

Temporal context can be defined according to the timescale of information processing, and can 

be operationally defined as slowly drifting mental representation (Manning et al., 2014). It has 

been suggested that generally speaking, there are two different (and non-mutually exclusive) 

ways for mental context to slowly drift (Manning et al., 2014). The first could arise from the 
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brain representing slowly drifting features of the external world, for example, as one travels 

through space (because we cannot physically teleport, our location in one moment will be 

similar to our location in the next moment, and similarly for the objects we observe). The second 

source is our internal mentation, which the common phase “train of thought” well characterizes 

the interconnection in the sequence of thought where one idea leads to another. As reviewed in 

the introduction, studies using audiovisual movies have shown a hierarchy of temporal 

receptive windows in the human cortex, with the shortest receptive windows in the sensory 

regions, and long timescale processing corresponding to high-level regions, in particular the 

DMN (Hasson et al., 2008; Lerner et al., 2011).  

According to this view of temporal context (Howard and Kahana, 2002; Polyn and 

Kahana, 2008; Manning et al., 2014), slowly-drifting contextual information serves to organize 

more transient or quickly changing information (items). For example, when recalling an event, 

people tend to not only recover the features of the event itself, but they also recover the 

information associated with other events that occurred nearby in time. Manning et al. (2011) 

showed that the events and thoughts surrounding a target event may be considered a context for 

the target event. The authors isolated candidate context representations by identifying 

temporally autocorrelated neural patterns recorded from ECoG as patients studied a list of 

words. During recall of an item, the authors found that neural patterns matched not only the 

target item itself, but showed similarity to neighboring items, with similarity decreasing as a 

function of temporal distance. Similar results were found in a related study, where extracellular 

recordings were taken from MTL regions of epileptic patients (Howard et al., 2012). These 

findings provide neural match to the contiguity effects in episodic memory, and align with 

retrieved context models suggesting that contiguity effects are a result of a gradually changing 

state of temporal context (Howard and Kahana, 2002; Polyn and Kahana, 2008; Howard and 

Eichenbaum, 2013). 

Furthermore, it has been suggested that MTL, DMN, and some PFC regions play a 

crucial role in representing the sequences of events that are experienced (Jenkins and 

Ranganath, 2010; Howard and Eichenbaum, 2013; Hsieh et al., 2014; Cohn-Sheehy and 

Ranganath, 2017). Although our everyday experiences often overlap in the contents of events 

(e.g., turning on the tap to wash vegetables and turning on the tap to wash your face), 

representation of a sequence is one way to address the differentiation between these overlapping 

events. It has been shown that MTL and DMN regions show increased activity when 

successfully learning and retrieving overlapping sequences (Kumaran and Maguire, 2006; Ross 
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et al., 2009; Brown et al., 2010). With MVPA, Hsieh et al. (2014) found that the hippocampal 

activity patterns are more similar for adjacent items in a learned sequence, but hippocampal 

patterns for objects were not affected by temporal proximity in a random sequence. In the same 

study, the authors also found that the hippocampal activation patterns are sensitive to sequence 

boundaries, showing decreased pattern similarity between items when transitioning to another 

learned sequence. These findings are in line with those suggesting DMN regions exhibit long 

temporal receptive windows (Hasson et al., 2008; Lerner et al., 2011), and exhibit stable 

patterns of activity within an event (Baldassano et al., 2017). These studies suggest that the 

DMN is involved in a higher-order conceptual representation of events, which transcends the 

immediate environment, and can bind information across multiple overlapping events (Murphy 

et al., 2018).  

It is plausible that temporal context is just one form of context that is represented in the 

DMN. Although the concept of context may be difficult to define, some insights could be 

derived from previous studies. In the Context Maintenance and Retrieval (CMR) model (Polyn 

et al., 2008), the authors describe context as “a pattern of activity in the cognitive system, 

separate from the pattern immediately evoked by the perception of a studied item, that changes 

over time and is associated with other coactive patterns”. Examples of context could be source 

(e.g., Johnson, 2006; Mitchell and Johnson, 2009), task (e.g., Polyn et al., 2009; Crittenden et 

al., 2015), semantic (e.g., Polyn et al., 2005), or temporal information (e.g., Ezzyat and Davachi, 

2014; Hsieh et al., 2014; Manning et al., 2016). These studies have shown that regions of the 

DMN, in particular, MTL and PFC regions are involved in context representation. fMRI studies 

have shown that a shift in task or temporal context is associated with increased DMN activity 

(Speer et al., 2007; Crittenden et al., 2015; Baldassano et al., 2017). Furthermore, it has been 

shown that the semantic network highly overlaps with the DMN, especially with the core hubs 

and the dMPFC subsystem (Binder et al., 2009; Humphreys et al., 2015), and that similarity of 

neural patterns of pictured objects or words in these areas reflected their semantic similarity 

(Fairhall and Caramazza, 2013). A characteristic of mental context is that it groups individual 

items in terms of similarity/association along a particular dimension (e.g., semantic context may 

group “nurse, ambulance, medicine” and “flower, shovel, hose” as hospital and gardening 

contexts; temporal context may group together events with close temporal proximity in the 

same context). These observations fall in line with Badre et al.’s (Badre and D’Esposito, 2007; 

Badre, 2008; Badre and Nee, 2018) ideas of representational and temporal abstraction, with 

representations higher in the hierarchy recruiting higher-level regions.  More research would 
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be needed to establish the overlapping and different neural mechanisms for representing 

temporal, task, and semantic contexts.  

 

5.7 Implications and extensions 

 This thesis has explored representational dynamics within a single event and across 

temporally extended episodes during purposeful behavior. It has also examined possible 

functional roles and the types of representations that occur within sensory regions, the MD 

network, and the DMN. The experiments conducted in this thesis share interesting overlaps 

with other cognitive domains, and a few of these overlaps will be discussed below.  

Biased competition in other domains – memory as an example 

 The experiment in Chapter 2 examined the timecourses of component processes of 

selective attention. When attending for a target, visual input must compete for cognitive 

resources, and features most relevant to the target gain the most attentional weight. When 

multiple objects compete, an enhanced representation of a particular object will be at the 

expense of other objects’ representations (Duncan, 1996, 2006; Beck and Kastner, 2009). This 

is known as the biased competition theory of selective attention. For example, Siedl et al. (Seidl 

et al., 2012) investigated with fMRI how such target category enhancement and distractor 

suppression is implemented at a neural level during visual search. They found using pattern 

similarity analysis that target information was significantly increased, while the information 

about the distractor object was significantly decreased, relative to a neutral category. However, 

competition is a quite ubiquitous phenomenon, and can occur in other cognitive domains when 

mental representations are competing for limited resources.  

 Competition is found in memory when a cue is linked to more than one item in memory; 

in this situation, those items compete for access to conscious awareness (Anderson et al., 1994; 

Anderson and Neely, 1996). Any negative effect on memory performance associated with 

competition is referred to as interference. For example, competition can be experienced in daily 

life when you are prompted to type in a password on the computer and accidentally type an old 

password even though you have changed it already to a new one. Anderson and colleagues’ 

hypothesis suggests that successfully retrieving a target item depends not only on how strongly 

the cue is associated with the target, but also on whether the cue is related to other items in 

memory as well (Anderson and Neely, 1996). During competition, inhibitory control 

mechanisms are engaged to suppress the distractor items during selective memory retrieval, and 
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can lead to the forgetting of competing memories (Anderson et al., 1994; Anderson and 

Spellman, 1995; Levy and Anderson, 2002). Several paired-associate paradigms, such as the 

AB/AC paradigm have been used to examine memory competition. In these experiments, 

participants are given cue-target pairs to remember, such as “fruit-orange”, and later another 

pair with a shared cue, such a “fruit-apple”. Researchers found that selectively practicing 

retrieval on one pair causes impaired recall of the other pair compared to a control pair that was 

never practiced (Anderson et al., 1994). Using multivariate pattern analysis in fMRI, 

researchers have shown simultaneous reactivation of competing memories during selective 

retrieval, and that greater reactivation of the competing memory was associated with less 

accurate target memory (Kuhl et al., 2011, 2012). Furthermore, Wimber et al. (2015) developed 

a canonical template tracking method to quantify the activation state of individual target and 

competitor memories during repeated retrieval practice, and found that repeatedly retrieving 

target memories lead to enhanced representation of target patterns and suppression of 

competitor patterns over time.  

 The consequence of memory competition is enhanced memory for the target compared 

to distractors, but it is assumed that multiple component processes are involved. For example, 

behavioral studies have found that there are some precise conditions necessary for distractor 

inhibition to occur, including target retrieval, competitor interference, and recall testing 

(Anderson and Spellman, 1995). It is particularly interesting to note that competitor interference 

is necessary for distractor inhibition to occur. Studies have found that distractor inhibition 

requires a moderate similarity of targets and competitors, and there would be facilitation for 

competitors sharing highly overlapping features, while very little competition for highly distinct 

competitors (Anderson and Spellman, 1995; Anderson et al., 2000). This phenomenon has been 

characterized by a U-shaped function relating the degree of memory activation to change in 

memory strength. One account is known as the nonmonotonic plasticity hypothesis, where 

compared to lower and higher levels of memory activation, moderate levels of activation lead 

to weakening of the memory (Detre et al., 2013). A prediction of the nonmonotonic plasticity 

hypothesis is that close competition can result in strengthening of the winning memory and 

trigger weakening of memories that lose the competition. This has been shown using MVPA 

analysis in fMRI, where trials that elicited similar levels of classifier evidence (indicating close 

competition) for two items held in working memory resulted in worse subsequent memory 

performance (Lewis-Peacock and Norman, 2014).  
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 It has been proposed that biased competition in memory retrieval and selective attention 

share the same mechanisms (Anderson and Spellman, 1995). However, research on neural 

mechanisms of memory competition has so far mostly used fMRI. It would be interesting to 

characterize the timecourse of memory competition with high temporal resolution decoding 

methods, and in particular to test the hypothesized serial effect of competitor interference 

followed by enhancement/inhibition of target and distractor, as well as test which phases of 

competition are related to subsequent memory.  

Navigation 

 The cognitive map hypothesis, originally proposed by Tolman (1948), describes how 

the brain forms a systematically organized representation of the environment that can be used 

to flexibly guide purposeful behavior. Research on cognitive maps originally highlighted the 

roles of the hippocampus, MTL, and posterior medial regions in navigation (e.g., Hartley et al., 

2003; Spiers and Maguire, 2006; Spiers and Gilbert, 2015). However, more recent research has 

demonstrated that the mechanisms involved in navigation may apply to navigating in 

nonphysical spaces, and that the cognitive maps may be applied broadly to many cognitive 

domains (Schiller et al., 2015; Epstein et al., 2017), including social (Tavares et al., 2015), 

conceptual (Constantinescu et al., 2016), and temporal space (Ezzyat and Davachi, 2014; 

Ekstrom and Ranganath, 2017).  

 When carrying out a task episode, one must keep the goal in mind (e.g., “make a stew”) 

while performing the immediate tasks at hand (e.g., “take food from fridge”, “wash vegetables”, 

etc.) as one navigates towards the goal. Real world navigation can be seen as cognitively similar 

to performing a task with sequential steps. Similarly, one would need to keep a destinational 

goal in mind (e.g., “London”) while traveling the routes to get there (e.g., “walk to train station”, 

“sit on the train”, etc) and interacting with various objects along the way.  

Relevant to the experiment described in Chapter 3, a spatial experiment has been 

conducted by Kim & Maguire (2018). Participants in the study were passively moved in a 3D 

virtual building, and the authors found that the anterior hippocampus represented local 

information within a room, and the RSC, PHC, and posterior hippocampus represented room 

information within the wider building. Their findings of DMN regions showing a greater 

representation of the wider building compared to local information is analogous to the DMN in 

representing episodes compared to items. Another experiment by Brown et al. (2016) employed 

virtual reality to investigate how the brain codes prospective navigational goals. Participants 
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learned five goal locations before the scan, and inside the scanner, participants began each trial 

at one of the locations and were cued to plan navigation of the shortest route to the cued goal 

before actively navigating. MVPA during the planning period showed that the hippocampus 

coded for both current location and future goals, as well as for intervening locations along the 

route. Furthermore, the strength of hippocampal goal representations covaried with goal-related 

coding in MPFC, MTL, and RSC. These findings illuminate the mechanistic role of the 

hippocampus, MTL, and DMN regions in hierarchical coding for environments as well as goal-

directed planning.  

Most of the past research on navigation has focused on relationships between object and 

space during passive viewing or planning, and more research would be needed to investigate 

how the brain codes for information during active navigation. For example, the MTL is 

important in not only navigating via familiar routes but also in enabling the person to come up 

with new shortcuts through path integration (McNaughton et al., 2006; Howett et al., 2019; e.g., 

if a person moves from location 1 to location 2 to location 3 that are positioned in a triangular 

configuration, it is possible to figure out how to go from location 3 to location 1 in a straight 

line even though the person has never traveled that route). One interesting follow-up would be 

to use a virtual reality paradigm to look at how the hippocampus and interrelated cortical 

structures support prospective representation of navigational goals, routes, and orientation 

when planning a shortcut or traveling through the original route. It would be possible to ask 

questions such as which brain regions code for the goal regardless of the route, and which brain 

regions code for overlapping routes regardless of the goal? Another interesting extension would 

be to examine how the brain solves detours in navigation (Spiers and Gilbert, 2015) and tasks 

(for example, when a learned route is blocked, or an ingredient has run out when making a stew, 

and additional actions are required to reach the goal). Detours are especially interesting, as they 

often first take the person away from the goal in order to be able to reach the goal subsequently. 

It could enable us to ask questions such as which brain regions keep the goal in mind, and which 

brain regions code for (absolute versus stepwise) distance towards the goal? 

Real-world tasks 

 A topic that has been lightly touched on in previous sections is laboratory versus real-

world naturalistic experiments. Laboratory experiments often require participants to make 

decisions on shapes or words on a trial-by-trial basis; however, in real-world settings, our 

ongoing sensory experience and internal thoughts are continuous and embedded within each 

other. In real life tasks, such as “making a stew” or “baking cupcakes”, one must be able to self-
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initiate switches between various sub-activities while keeping the overall rules and goals in 

mind (Burgess, 2000; Logie et al., 2010; Rothbart and Posner, 2015). Several key studies have 

found that patients with rostral prefrontal lobe damage (in approximately Brodmann area 10) 

show deficits in performing everyday tasks (such as planning a dinner or doing grocery 

shopping), even though some had superior IQ and intact performances on neuropsychological 

tests of attention, memory, and executive functions (also known as ‘dysexecutive syndrome’; 

Shallice and Burgess, 1991; Burgess, 2000; Roca et al., 2011). This suggests read-world tasks 

require an aspect of executive function that is not captured by most standardized laboratory 

tests (Manly et al., 2002; Roca et al., 2009, 2011, 2012).  

Several tests have been designed to emulate everyday goal management demands, 

including the Six Elements Test (Shallice and Burgess, 1991), the Multiple Errands Test 

(Shallice and Burgess, 1991), and the Hotel Test (Manly et al., 2002). In the Hotel Test, for 

example, participants were asked to imagine working in a hotel and were asked to perform six 

subtasks within 15 minutes, which included compiling individual bills, sorting the charity 

collection, looking up telephone numbers, sorting conference labels, proofreading the hotel 

leaflet, and opening and closing garage doors. As completing all tasks is designed to take much 

longer than 15 minutes, participants were asked to do something from each within the total time 

available and spend as long as possible on each of the six tasks. The critical measure of the test 

is the management of the higher-level goal (to complete all tasks) when simultaneously dealing 

with competing demands of ongoing tasks.  

However, not many neuroimaging studies have used naturalistic active tasks, possibly 

due to previous analytical challenges (Spiers and Maguire, 2007) and obvious practical 

constraints given that these tasks often involve participants actively moving to manipulate 

objects or travel to various locations (Logie et al., 2011). A few computer-based tasks have 

been developed to explore realistic tasks in the laboratory, including the Virtual Errands Test 

(McGeorge et al., 2001), and the Edinburgh Virtual Errands Test (Logie et al., 2011), and, 

recently, Cullen et al. (2016) created a Computerised Multiple Elements Test to investigate goal 

management in the scanner. In a pilot study, Cullen et al. (2016) contrasted brain activity when 

participants were required to manage switching across all tasks in the Computerised Multiple 

Elements Test compared to a condition where switching was prompted, and found that the 

rostral prefrontal cortex was more active in the former condition.  

Many more interesting questions can be explored by bringing naturalistic tasks into the 

scanner; indeed, many key neuroscience questions cannot be addressed effectively in 
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conventional laboratory paradigms (Maguire, 2012). For example, Manly et al. (2002) found 

that by giving patients interrupting tones during the Hotel Task, patients were able to perform 

better on the task. The authors suggested that perhaps the tones drew attention away from the 

task at hand and the higher-level goal could be expressed. This reinstatement of the latent goal 

is especially interesting. Previous studies have shown that working memory can be “activity 

silent” (Stokes, 2015), but if a perturbation is administered (by giving participants a high-

contrast task-irrelevant stimulus during the maintenance period), the contents of working 

memory become decodable (Wolff et al., 2015, 2017). It would be interesting to test whether 

interrupting tones would similarly make high-level goals more decodable. Another interesting 

research avenue would be to apply event models such as the model developed in Baldassano et 

al. (2017) to explore which brain regions are involved in managing different tasks as well as 

which regions are involved in self-generated compared to experimenter-prompted switches.  

Temporal perception and clinical implications 

 The thesis has investigated some of the functional roles of the MD and DMN networks. 

Menon (2011) suggested a unifying triple network model of psychopathology, including in this 

model the frontoparietal central executive network (FPN; which is part of the MD network, and 

includes MFG, dlPFC, and IPS), DMN, and salience network (SN; also another part of the MD 

network and includes AI and ACC). Among the many networks identified by resting-state 

analyses, these networks have been particularly important in understanding cognitive function. 

Menon’s (2011) review suggested that deficits in access, engagement, or disengagement of 

these three networks play a prominent role in multiple neurological disorders, including 

schizophrenia, depression, anxiety, bipolar, dementia, autism, etc. However, most studies have 

mainly focused on group differences within regions or individual networks, and more studies 

are needed to understand the relationships between networks, and how they relate to behavior 

in clinical populations. 

The studies reviewed, as well as the experiment in Chapter 3, suggest a distinction 

between the MD and DMN networks in their sensitivity to fine details and coarse context. 

Although everyday life consists of a stream of continuous information, people are able to 

experience and selectively retrieve discrete events in memory, suggesting that event 

segmentation is an integral part of how we experience the world (Zacks et al., 2001b, 2007; 

Reynolds et al., 2007). The understanding of human cognition, and how it can go wrong, would 

benefit from studying temporal episodes, beyond trial-by-trial studies. In an interesting applied 

study, Zacks et al. (2006) examined the relationship between event perception and memory in 
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Alzheimer patients. Compared with young adults and healthy age-matched controls, patients 

with Alzheimer’s disease showed deficits in parsing ongoing activity into appropriate events, 

in particular, poor agreement with others’ event segmentation was associated with poorer 

memory for stimuli used in the tasks, as well as poor memory for the temporal order of the 

events. It would be interesting to extend this type of research into fMRI to understand the 

involvement of these functional networks in event perception in other populations, which may 

give insight into how they experience the world. 

 

5.8 Concluding remarks 

This thesis explored human cognition at multiple scales. On one hand, the chapters 

characterized brain regions involved in increasingly abstract levels of cognitive thought, 

ranging from simple visual selection to executing task episodes to complex social cognition. 

On the other hand, there had been much focus on processing timescales. EEG/MEG and fMRI 

have been used to characterize dynamic representational changes over time. Although the 

physical world is continuously changing, and our inner thoughts drift in and out, we are able to 

integrate as well as segment this information into meaningful units. The cortical organization 

of both processing timescales and cognitive abstraction seem to form a processing hierarchy 

from sensory regions to the MD network and finally to the DMN. As we interact with the world, 

these regions must work together to together represent our “experience”.  
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Appendices 

 

Appendix A. Supplementary materials for Chapter 2 

 

Since complex objects were used in the experiment, and higher visual regions are specialized 

for object-level processing, we additionally examined a broad extrastriate visual cortex (ESV) 

ROI from the Fedorenko et al. (2013) template, which encompasses object, face, and scene 

processing regions.  In all cases, results were very similar to those from V1, presumably 

reflecting the relatively low resolution of EEG/MEG. We report the results from ESV here. 

 

Coding of the attentional cue/attentional template during the preparatory phase 

 

Figure A.1. (A) Vertices within source space ESV ROI. (B) Decoding time-course of auditory 

stimulus/attentional cue from ESV ROI. Curves on the left show decoding when training and 

testing on matched time-points. Colored dots beneath the decoding curves show times where 

decoding on the diagonal is significantly above chance for each condition (p < 0.05). 

Translucent bands represent standard error of the mean. Matrices on the right show temporal 

generalization of decoding across all pairs of training and testing times. Black contours 

indicate regions of significant decoding (p<0.05). Significance is corrected for multiple 

comparisons across time using TFCE and permutation testing. 

 

To test whether activity during any stage of the preparatory phase might reflect the 

representation of the upcoming trial target, we performed a cross-task and cross-time 

classification analysis trained using the visual localizer task. Replicating the results of the three 

ROIs used in the main experiment, we did not find any significant clusters where the visual 

template cross-generalized to the preparatory phase in ESV.  
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Coding of visual properties of 1-item displays 

 

Figure A.2. Coding of visual properties of 1-item displays. Decoding time-courses of object 

identity, in (a) sensor and (b) source space, when training/testing using matched time-points, 

and (c) generalizing across training/testing times. Dark colored dots beneath the decoding 

curves show times where decoding is significantly above chance for each condition (p < 0.05), 

corrected for multiple comparisons along the diagonal of the cross-temporal generalization 

matrix; faint colored dots represent additional time-points where the diagonal of the cross-

temporal generalization matrix is significant when corrected for multiple comparisons across 

the whole matrix. Translucent bands represent standard error of the mean. Matrices on the 

right show temporal generalization of decoding across all pairs of training and testing times. 

Black contours indicate regions of significant decoding (p<0.05). Significance is corrected for 

multiple comparisons across time using TFCE and permutation testing. 

 

 

Coding of behavioral properties of 1-item displays 

 

Figure A.3. Coding of behavioral properties of 1-item displays. Same format as figure above. 
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Coding of target location in 3-item displays 

 

Figure A.4. Coding of target location in 3-item displays. Same format as figure above. 

 

Coding of target identity during presentation of 3-item displays 

 

Figure A.5. Decoding of attentional cue/target identity during presentation of 3-item displays. 

Same format as figure above. 

 

Reawakening of the attentional cue/template during presentation of consistent non-targets 

 

Figure A.6. Decoding time-course of attention cue during presentation of Nc displays. Same 

format as figure above. 
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Figure A.7. Response to the attentional cue without subsampling the preparatory phase data. 

(A) Decoding time-course of auditory stimulus/attentional cue using all sensors combining 

EEG and MEG across the whole brain. Curves on the left show decoding when training and 

testing on matched time-points. Dark colored dots beneath the decoding curves show times 

where decoding is significantly above chance for each condition (p < 0.05), corrected for 

multiple comparisons along the diagonal of the cross-temporal generalization matrix; faint 

colored dots represent additional time-points where the diagonal of the cross-temporal 

generalization matrix is significant when corrected for multiple comparisons across the whole 

matrix Translucent bands represent standard error of the mean. Matrices on the right show 
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temporal generalization of decoding across all pairs of training and testing times. Black 

contours indicate regions of significant decoding (p<0.05). (B) Vertices within source space 

ROIs (auditory cortex, lateral prefrontal cortex (LPFC), and visual cortex). (C) Decoding time-

courses from these source space ROIs; same format as (A). Significance is corrected for 

multiple comparisons across time using TFCE and permutation testing. 
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Appendix B. Supplementary materials for Chapter 3 

 

 

Figure B.1. Illustration of representational similarity analysis. A. Conceptual RDM. LDC 

dissimilarities were computed between every possible pair of events (6 cued tasks × 4 steps × 

3 distractor combinations per episode), generating a 72 × 72 RDM. Diagonal cells of the RDM 

are zero by definition as they do not reflect a dissimilarity between different events. Off-

diagonal cells reflect pattern dissimilarity between events that differ in room, episode, step, 

item, and/or visual difference. These included event pairs that shared the same episode (red 

cells); events that shared the same room but different episodes (purple cells); and events that 
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differed in both episodes and rooms (orange cells). All event pairs additionally differed in item. 

Saturation is used to indicate the difference in steps between event pairs, and brightness is used 

to indicate the difference in the possible stimuli presented in the visual search arrays. The visual 

stimuli in each search array contains a target and distractor drawn from the cued task, and two 

distractors drawn from a distractor task from a different room. The six tasks are labeled K1, 

K2, K3, B1, B2, and B3 (with K indicating a kitchen task and B indicating a bathroom task). B. 

Regressors used to quantify the influence of room, episode, step, and visual difference. 
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Figure B.2. FIR timecourses and activation profiles of onset and epoch responses in individual 

ROIs in the MD (red) and DMN (yellow) networks. The layout is the same as Figure 3.4. 
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Figure B.3. Pairwise comparisons of onset/offset regressors for each transition across the 

episode, from A. baseline to step 1, B. step 1 to step 2, C. step 2 to step 3, D. step 3 to step 4, E. 

step 4 to episode offset, and F. episode offset to baseline. Positive contrasts (red) were regions 

that increased activation after a transition, while negative contrasts (blue) were regions that 

deactivated after transition. Colors indicate t-values. All activation maps are thresholded at 

FDR < 0.05. 
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Figure B.4. Coding of room, episode, step, and item information in individual ROIs in the MD 

(red) and DMN (yellow) networks. Results were FDR corrected across the number of ROIs 

separately for each information type. Error bars represent standard error. *** indicates p < 

0.001, ** indicates p < 0.01, and * indicates p < 0.05 for 1-tailed t-tests against zero. 
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Figure B.5. Episode coding as a function of step difference in the DMN.  

 

 


