3,943 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Parameterized Concurrent Multi-Party Session Types

    Full text link
    Session types have been proposed as a means of statically verifying implementations of communication protocols. Although prior work has been successful in verifying some classes of protocols, it does not cope well with parameterized, multi-actor scenarios with inherent asynchrony. For example, the sliding window protocol is inexpressible in previously proposed session type systems. This paper describes System-A, a new typing language which overcomes many of the expressiveness limitations of prior work. System-A explicitly supports asynchrony and parallelism, as well as multiple forms of parameterization. We define System-A and show how it can be used for the static verification of a large class of asynchronous communication protocols.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Formal semantics for LIPS (Language for Implementing Parallel/distributed Systems)

    Get PDF
    This thesis presents operational semantics and an abstract machine for a point-to-point asynchronous message passing language called LIPS (Language for Implementing Parallel/ distributed Systems). One of the distinctive features of LIPS is its capability to handle computation and communication independently. Taking advantage of this capability, a two steps strategy has been adopted to define the operational semantics. The two steps are as follows: • A big-step semantics with single-step re-writes is used to relate the expressions and their evaluated results (computational part of LIPS). • The developed big-step semantics has been extended with Structural Operational Semantics (SOS) to describe the asynchronous message passing of LIPS (communication part of LIPS). The communication in LIPS has been implemented using Asynchronous Message Passing System (AMPS). It makes use of very simple data structures and avoids the use of buffers. While operational semantics is used to specify the meaning of programs, abstract machines are used to provide intermediate representation of the language's implementation. LIPS Abstract Machine (LAM) is defined to execute LIPS programs. The correctness of the execution of the LIPS program/expression written using the operational semantics is verified by comparing it with its equivalent code generated using the abstract machine. Specification of Asynchronous Communicating Systems (SACS) is a process algebra developed to specify the communication in LIPS programs. It is an asynchronous variant of Synchronous Calculus of Communicating Systems (SCCS). This research presents the SOS for SACS and looks at the bisimulation equivalence properties for SACS which can be used to verify the behaviour of a specified process. An implementation is said to be complete when it is equivalent to its specifications. SACS has been used for the high level specification of the communication part of LIPS programs and is implemented using AMPS. This research proves that SACS and AMPS are equivalent by defining a weak bisimulation equivalence relation between the SOS of both SACS and AMPS

    Symbolic semantics and bisimulation for full LOTOS

    Get PDF
    No abstract avaliabl

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties
    corecore