
"

Mi~dles.ex
University
London

Middlesex University Research Repository:
an open access repository of
Middlesex University research

http://epri nts. mdx.ac.uk

Rajan, Amala Vijaya Selvi, 2009.
Formal semantics for LIPS (language for implementing

parallel/distributed systems).
Available from Middlesex University's Research Repository.

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

..

Copyright and moral rights to this thesis/research project are retained by the author and/or other
copyright owners. The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in writing from the
copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

ForITlal SeITlantics for LIPS
(Language for Implementing Parallel/distributed Systems)

A thesis submitted to Middlesex University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Amala Vijaya Selvi Rajan

School of Engineering and Information Sciences

Middlesex University

May 2009

Dedicated to Almighty

1

Abstract

This thesis presents operational semantics and an abstract machine for a point-to-point

asynchronous message passing language called LIPS (Language for Implementing Paral­

lel/ distributed Systems). One of the distinctive features of LIPS is its capability to handle

computation and communication independently. Taking advantage of this capability, a

two steps strategy has been adopted to define the operational semantics. The two steps

are as follows:

• A big-step semantics with single-step re-writes is used to relate the expressions and

their evaluated results (computational part of LIPS) .

• The developed big-step semantics has been extended with Structural Operational

Semantics (SOS) to describe the asynchronous message passing of LIPS (communi­

cation part of LIPS).

The communication in LIPS has been implemented using Asynchronous Message Passing

System (AMPS). It makes use of very simple data structures and avoids the use of buffers.

While operational semantics is used to specify the meaning of programs, abstract ma­

chines are used to provide intermediate representation of the language's implementation.

LIPS Abstract Machine (LAM) is defined to execute LIPS programs. The correctness of

the execution of the LIPS program/expression written using the operational semantics is

verified by comparing it with its equivalent code generated using the abstract machine.

Specification of Asynchronous Communicating Systems (SACS) is a process algebra de­

veloped to specify the communication in LIPS programs. It is an asynchronous variant

of Synchronous Calculus of Communicating Systems (SCCS). This research presents the

SOS for SACS and looks at the bisimulation equivalence properties for SACS which can

be used to verify the behaviour of a specified process.

An implementation is said to be complete when it is equivalent to its specifications. SACS

has been used for the high level specification of the communication part of LIPS programs

and is implemented using AMPS. This research proves that SACS and AMPS are equiva­

lent by defining a weak bisimulation equivalence relation between the SOS of both SACS

and AMPS.

11

Acknowledgements

I express my deep and sincere gratitude to my supervisors Dr. Geetha Abeysinghe and Dr.

Siri Bavan for their outstanding guidance and encouragement throughout all the stages

of this work. Both of them have been wonderful supervisors. Throughout this work, they

provided encouragement, sound advice, good teaching, good company, and lots of valu­

able ideas. I would have been lost without their supervision and support. They taught

me how to write and patiently guided me regardless of their very busy schedules. I am

most grateful to both of them.

I am thankful to the School of Engineering and Information Sciences, Middlesex Univer­

sity, for their financial support during my study.

I am grateful to Dr. Foster, Dmitri, Dr. Ever, and Niveditha for their feedback on the

draft of this thesis.

I thank my friends Dhawal, Satish, Yoney, Anjum, Lindsey, Yan, David, Yonal, and Aju.

The friendship I have with them is what kept me going through tough times.

I owe my parents, Mary and Santiago, much of what I have become. I thank them for

their patience, love and support. They took over a large part of my family responsibilities

and encouraged me to concentrate on my studies.

I am deeply indebted to my husband Rajan for his friendship, trust, encouragement, and

end urance of my bad temper.

My daughter Roshni Benedicta is my powerful source of inspiration and energy. Special

gratitude is due to my nephew Rohit.

I fondly thank my sister, Jasmine and my brothers, Babu, Armstrong and Christopher

and their families for their loving support.

I also thank my in-laws for their support.

III

List of Publications

The results presented in this thesis have also appeared in the following publications:

• A.V.S. Raj an, A. S. Bavan, and G. Abeysinghe (2008), "An Equivalence Theorem

for the Specification of Asynchronous Communication Systems (SACS) and Asyn­

chronous Message Passing System (AMPS)", accepted for the International Joint

Conferences on Computer, Information, and Systems Sciences, and Engineering

(CISSE 2008) to be held in December 5 - 13, 2008, to be published in Springer.

• A.V.S. Raj an, A. S. Bavan, and G. Abeysinghe (2008), "Semantics for the Specifi­

cation of Asynchronous Communicating Systems (SACS)", Advances in Computer

and Information Sciences and Engineering, Springer, Sobh, Tarek (Ed.), 2008, pp.

33-38, ISBN: 978-1-4020-8740-0.

• A.V.S. Raj an, A. S. Bavan, and G. Abeysinghe (2007), "Semantics for a Distributed

Programming Language Using SACS and Weakest Pre-Conditions", International

Journal on Information Processing (IJIP) , I K International Publisher, New Delhi

- 110 016, India.

• A.V.S. Raj an, A. S. Bavan, and G. Abeysinghe (2007), "Semantics for an Asyn­

chronous Message Passing System", Advances and Innovations in Systems, Com­

puting Sciences and Software Engineering, Springer, Elleithy, Khaled (Ed.), pp.

83-88, ISBN: 978-1-4020-6263-6.

• S. Bavan, E. Illingworth, A.V.S. Raj an, and G. Abeysinghe (2007), "Specification

of Asynchronous Communicating Systems", In Proceedings of IADIS Applied Com­

puting 2007, Nuno Guimaraes and Pedro Isaias(Ed.), pp. 274-281, ISBN: 978-972-

8924-30-0.

• S. Bavan, A.V.S. Rajan, and G. Abeysinghe (2007), "Asynchronous Message Passing

Architecture for a Distributed Programming Language", In Proceedings of IADIS

Applied Computing 2007, Nuno Guimaraes and Pedro Isaias (Ed.), pp. 674-678,

ISBN: 978-972-8924-30-0.

• A.V.S. Raj an, A. S. Bavan, and G. Abeysinghe (2006), "Semantics for a Distributed

Programming Language Using SACS and Weakest Pre-Conditions", in the Proceed­

ings of the 14th International conference on Advanced Computing and Communi­

cations, IEEE Press, pp. 434-439, ISBN: 1-4244-0715-X.

IV

Contents

1 Introduction 1

1.1 Distributed Programming Languages 1

1.2 Language for Implementing Parallel/distributed Systems (LIPS) 4

1.3 Formal Semantics of Programming Languages 5

1.4 Scope of Work. 6

1.4.1 Operational Semantics for LIPS 6

1.4.2 Operational Semantics for the Specification of Asynchronous Com-

municating Systems (SACS) 8

1.5 Contribution...... 9

1.6 Structure of the Thesis 10

2 Literature Review 11

2.1 Parallel/Distributed Programming Languages 11

2.1.1 Occam.... 16

2.2

2.3

2.4

2.1.2 Ada

2.1.3 Concurrent C

2.1.4 NIL

Operational Semantics and Abstract Machine

2.2.1 Big-step semantics

2.2.2 Small-step semantics

Formalism for High Level Specification of Parallel/Distributed Languages

2.3.1 Specification of Communication Part of Distributed Languages.

2.3.2 Formal Semantics for SACS

2.3.3 Verifying the correctness of SACS specification.

Summary

3 An Introduction to LIPS and AMPS

3.1 Structure of a LIPS Program

3.1.1 Network Definition

3.1.2 Nodes Definition

3.2 Programming LIPS ...

v

17

19

20

22

24

24

27

28

31

32

33

34

35

35

37

40

3.2.1 Programming the Network Definition .. 40
3.2.2 Programming the Nodes Definition . . . 41

3.2.3 Compiling and Running a LIPS program 42

3.3 Architecture of the Asynchronous Message Passing System (AMPS) 43

3.3.1 The Data Structure of the AMPS 43

3.3.2 The Driver Matrix of the AMPS. 44

3.4 The Operation of the AMPS. 45

3.5 Case Studies 46

3.5.1 Case Study 1: Vending Machine Problem.

3.6 Summary

47

48

4 Operational Semantics for LIPS 50

4.1 Operational Semantics for the Computational Part of LIPS . 52

4.1.1 Abstract Syntax for the Computational Part of LIPS 52

4.1.2 Types in LIPS. 56

4.1.3 Operational Semantics for the Computational part of LIPS 59

4.2 Abstract Machine for the Computational Part of LIPS 63

4.2.1 Compilation of LIPS Program Expressions into LAM Codes 67

4.3 Operational Semantics for the Communication Part of LIPS 68

4.3.1 Primitives and Communication Schema for the Asynchronous Mes-

sage Passing in the LIPS 69

4.3.2

4.3.3

4.3.4

Communication Schema for Asynchronous Communication

Syntactic Categories for Asynchronous Communication . .

Structural Operational Semantics (SOS) for the Asynchronous Com-

70

73

munication 80

4.4 Re-write Rules and LAM Codes for the Communication Part of LIPS .. 85

4.4.1 Compilation of Communication Part of LIPS into the LAM codes 87

4.4.2 Correctness of the LAM . 88

4.4.3 Executing the LAM Code 89

4.5 Summary

5 Operational Semantics for SACS

5.1 SACS - An Introduction

5.2 Structural Operational Semantics for SACS

5.2.1 Syntactic Categories of SACS

5.2.2 Labelled Transition System Configurations for SACS

5.3 Equivalence Relation Properties of SACS

5.3.1 Trace Equivalence

5.3.2 Bisimulation Equivalence

5.L1 An Equivalence Relation for the SACS and AMPS.

VI

92

94

95

97

97

100

109

109

111

120

5.5 Summary

6 Conclusion

6.1 Contributions to the Knowledge

6.2 Future Work.

127

127

129

Appendices 132

A Sample LIPS Programs 133

A.l Sample LIPS program - 1: Finding the area under a curve using Simpson's

rule. 133

A.2 Sample LIPS program - 2: Vending Machine Problem 134

B Case Study - 2 - Post Office Scenario 136

\·11

List of Figures

1.1 Syntactic Structure of a LIPS Program ..

3.1 Connect process.

3.2 Data flow graph illustrating fan-in and fan-out effect via connect.

3.3 Channel with Multiple Outputs

4

36

36

37

3.4 Channel with Multiple Inputs . 37

3.5 Looping Channel 38

3.6 Execution Sequence of Guards. 39

3.7 Network Diagram for the Simpson's Rule problem 40

3.8 Data Structure of the AMPS. 44

3.9 Data Structure of the AMPS. 45

3.10 Vending Machine. 47

3.11 Data Structure for the Vending Machine Problem. 48

4.1 Syntax Trees for "if P then P1 else (P2; P3)" and "(if P then P1 else

P2) ; P3". 56

5.1 SACS specification for Simpson's Rule. 96

5.2 SACS specification for the vending Machine Problem. 97

5.3 VENDING_MACHINEl.............. 103

5.4 SACS specification for VENDING~ACHINEl. 104

5.5 VENDING_MACHINE2.............. 106

5.6 SACS specification for VENDING_MACHINE2. 107

5.7 Example - Trace Equivalence. 110

5.8 Example - Strong Bisimulation 112

5.9 1: a1 : 0 + a2 : 0 and a1 : 0 + a2 : 0 117

5.10 Summary of the proof of equivalence between SACS and AMPS 120

B.l Pictorial representation for the Post Office Problem. . 137

B.2 Data Structure of the AMPS. 139

\'111

List of Tables

2.1 Comparison big-step semantics and small-step semantics.

3.1 Input and Output Channel table for the Simpson's rule

3.2 Driver Matrix for the Vending Machine Problem. . ..

4.1 Syntactic Categories for the Computational Part of LIPS

4.2 Set of Operators of LIPS

4.3 LIPS Statements/Expressions ..

4.4 Set of Operators of LIPS

4.5 Exp of LIPS Program Expressions

4.6 Type Assignments P :: (j of LIPS

4.7 Compilation of LIPS Expressions into LAM Code

4.8 Extended Data Types for the Communication Part of LIPS .

4.9 Functions Used in the AMPS of LIPS

4.10 Extended Type Assignments P :: (j of LIPS

5.1 Operators used in SACS

5.2 Syntactic Categories of the SACS

B.1 Driver Matrix for the Post Office Problem

L"X

26

40

48

53

53

54

54

55

57

68

69

70

78

95

99

138

Chapter 1

Introd uction

The software industry is continuously making efforts to improve the quality of distributed

programming languages. Formally specifying the syntax and semantics of programming

languages offer a solution towards this goal. Formal specifications present a worthwhile

subject of study due to the following reasons:

• They are used in requirement specification.

• They serve as a precise standard for compiler implementation.

• They provide a vehicle for verification and validation.

• They assist in language design.

• They provide useful user documentation.

This research aims to develop formal semantics for Language for Implementing Paral­

lel/distrubuted Systems (LIPS) [Bavan and Illingworth, 2001].

1.1 Distributed Programming Languages

Programming languages can be classified into two main groups: sequential and distributed.

Sequential programming languages such as FORTRAN, Pascal, and C are executed on a

single processor. Distributed programming languages such as Occam [Inmos, 1988], Ada

[Ledgard, 1983], NIL [Strom and Yemini, 1983, 1985], and Concurrent C [Gehani, 1990,

Gehani and Roome, 1992] consist of number of simultaneous sequential processes which

can be executed on a number of processors.

Different distributed programming languages exhibit different distinct features which

include parallelism, communication, fault tolerance, architecture independency, under­

standability, implementability, optimality, functionality, and security [Bal et al., 1989,

Skillicorn and Talia, 1998, Haridi et al., 1998]. This work considers three main issues

1

that distinguish a distributed language from a sequential language namely: ability to

handle parallelism, communication, and separation of communication and computational

components. They are considered briefly below:

1. Parallelism: This refers to the possible methods of running more than one part of

program simultaneously. One important factor to be considered while designing a

programming language is what to use as the unit of parallelism. A unit of paral­

lelism can be expressed in terms of processes, objects, statements, expressions, and

AND/OR clauses [Bal, 1990].

For example, Ada handles parallelism through sequential processes called tasks,

Emerald and Smalltalk use objects, while Occam uses statements. This work views

parallelism as a set of processes executing simultaneously on different processors

co-operating closely by communicating with each other.

2. Communication: This involves interaction between processes and their synchroni­

sation. Communication between processes can be achieved by either shared memory

or message passmg .

• Shared memory multi-processor systems: Shared memory multi-processor

systems provide a shared memory abstraction in which an application is writ­

ten as if it were using a global address space. In other words, these systems are

built using multiple high performance microprocessors which logically share a

common memory [Stenstram and Dahlgren, 1996]. The fundamental features

of shared memory are that the inter-process communication is implicit, syn­

chronisation is explicit and the physical location of the data is completely

unspecified [Kubiatowicz, 1998]. Though it is easy to program distributed ap­

plications using global address space which results in fast data sharing, shared

memory systems require major communication overheads which degrade the

efficiency of message passing and increase the cost. Concurrent Pascal [Brinch­

Hansen, 1975], Algol 68 [Wijngaarden, 1981]' Linda [Ahuja et al., 1986], Split-C

[Culler et al., 1993], and Orca [Bal, 1996] are a few languages which use shared

memory for inter-process communication.

• Message passing: Message passing is a paradigm used to establish inter­

process communications via messages explicitly [Kubiatowicz, 1998]. The pro­

cessors have their own local memory. They send and receive data indepen­

dently to other processors directly or through an intermediate process that

mimics point-to-point transfer of data. A defining feature of the message

passing model is that data (the message) transfer from the local memory of

one process to the local memory of another process requires operations to

be performed by both processes. Languages such as Distributed Processes

(DP) [Hansen, 1978], NIL, Occam, Ada, concurrent C, Fortran ~I [Foster and

2

Chandy, 1995], PFL [Holmstrom, 1983], and Bulk Synchronous Parallel (BSP)

model [Krizanc and Saarimaki, 1996] employ message passing for communica­
tion.

Both shared-memory and message passing are dominant communication paradigms.

Each approach has its own advantages and disadvantages. Several studies have been

carried out analysing the performance of shared memory and message passing pro­

gramming [Lin and Snyder, 1990, Ngo and Snyder, 1992, Klaiber and Levy, 1994,

Kubiatowicz, 1998] and researchers have come up with a hybrid distributed shared

memory communication model by combining the advantages of both paradigms.

There is also another type of system based on distributed data structure. A dis­

tributed data structure is a data structure that can be manipulated by many parallel

processes simultaneously [Carriero et al., 1986]. Languages such as Linda [Carriero

et al., 1986] and Orca [Bal, 1996] use distributed data structures.

The work presented in this report is based on message passing and does not delve

much into either shared-memory or distributed data structures. There are four

main message passing models: point-to-point, rendezvous, Remote Procedure Call

(RPC), and one-to-many. Point-to-point communication can be either synchronous

or asynchronous. Occam passes messages in a point-to-point synchronous fashion.

Ada and Concurrent C pass messages in rendezvous manner. NIL uses point-to­

point message passing in either a queued synchronous or an asynchronous fashion.

In synchronous communications, the sender waits for the receiver to receive the mes­

sage. The sender and receiver must synchronise to exchange data. In asynchronous

communication, the sender does not wait after sending data. The communication

between processes is usually buffered using buffers of unlimited size. The need for

large buffers results in memory overheads and loss of data. To address this issue,

Bavan et al. [2007b] have introduced a new message passing strategy, AMPS (Asyn­

chronous Message Passing System). It makes use of very simple data structures and

avoids the use of buffers. A detailed description of AMPS is given in Chapter :3.

3. Separation of communication and computation: Yet a further issue, when de­

veloping a distributed programming environment, is the separation of the communi­

cation and computational components. Such separation better accommodates mul­

tiple communication and computational components. Most of the languages which

achieve such separation employ different techniques/tools/language constructs for

each of the two parts.

In the programming language Regis [Magee et al., 1994] the communication and

computation are handled independently as below:

3

• the communication components are expressed using Darwin [~Iagee et al.,

1993] and

• the computational elements are designed using C++.

Java has been extended with CORBA to provide a tool for developing concurrent

systems [Hasselbring, 2000].

Considering the above issues, Bavan and Illingworth [2001] have taken a constructive

approach to developing a distributed language to express parallelism using processes,

pass messages asynchronously without message buffers, and handle communication and

computational parts independently. This has led to the development of LIPS.

1.2 Language for Implementing Parallel/distributed

Systems (LIPS)

Language for Implementing Parallel/distributed Systems (LIPS) is an asynchronous mes­

sage passing distributed programming language which is simple and portable. One of the

distinct feature of LIPS is that it handles communication and computation independently.

A LIPS program consists of a network of nodes described by a network definition and

node definitions. The syntactic structure of a LIPS program is shown in Figure 1.1.

Communication

Computation

Structural Syntax

PROGRA.11 <identifier>;
BEGIN

<network_definition>
<node_defnition>

END.

Figure 1.1: Syntactic Structure of a LIPS Program.

The network definition describes the topology of the program by naming each node/process

and its relationships (in terms of input and output data) to other nodes in the system.

A node consists of one or more guarded processes which perform computations using the

data that arrive as input and produces outputs that are sent to other relevant nodes.

LIPS offers distinct advantages: it is simple, portable, and it handles communication

efficiently so that it avoids deadlock and livelock problems. Detailed description on LIPS

can be found in [Bavan and Illingworth, 2001]. This research continues on the work al­

ready done on LIPS and seeks to develop the formal semantics and specifications which

are currently lacking. This topic is expanded upon in subsequent sections.

1

1.3 Formal Semantics of Programming Languages

Formal semantics of a programming language is concerned with the rigorous mathematical

study of meanings to programming languages and models of computation. \Vork on

defining formal semantics for programming languages started in early 1960s [Papaspyrou,

1998, Jones, 2001]. There are number of approaches to formally specify the semantics

of programming languages. They can be grouped into three categories [Andrew and

Andrew, 1998] as given below:

1. Denotational Semantics defines the meaning of programs using suitable mathe­

matical notations, typically functions from inputs to outputs. Denotational seman­

tics maps a program directly to its meaning, its denotation [Schmidt, 1986].

Denotational semantics was originally described by Scott and Strachey [1971]. It

was used to devise methods for the analysis of programming languages. Further

developments helped it to be used as a powerful tool for the design and implemen­

tation of programming languages [Slonneger and Kurtz, 1995].

2. Axiomatic Semantics defines the meaning by describing the properties about the

language constructs which hold before and after the execution of the programming

constructs. The properties of the language constructs are expressed in terms of

predicates and deduction rules using symbolic logic and they support program ver­

ification.

Floyd [1967] proposed a method to verify the correctness of programs by represent­

ing a program as a directed graph. Instead of specifying the programs as graphs,

Hoare [1969] proposed a method of program verification which describes programs

using axioms. This formed the basis for axiomatic specification. Even though

Hoare's work was successful, it supported only partial correctness 1 as opposed to

total correctness2 . Dijkstra's [1976] work on weakest precondition algebra overcomes

this problem as it supports total correctness.

3. Operational Semantics defines the meaning of programs in terms of their be­

haviour. For example, it describes the executional behaviour of a programming

language for implementation purposes and gives a computational model for the

programmers to refer to. Operational semantics, where a language is represented as

an abstract machine, is used to define and implement the language [Kramer, 1994].

Denotational semantics is more abstract than operational semantics. Operational se­

mantics gives the computational steps in the form of an algorithm whereas denotational

semantics does not. Axiomatic semantics is far more abstract than denotational and

1 Partial correctness requires that if a result is returned it will be correct
2Total correctness requires a result to be returned along with termination of the program

5

operational. Assertions and inference rules are used to define the language constructs.

It is suitable for program verification. These three semantics are not in competition but

they complement each other and serve different purposes. While denotational semantics

and axiomatic semantics are used to reason about the programs and prove properties of

programs, operational semantics is used to implement a language and prove the correct­

ness of compiler implementation. Operational semantics is mainly used for a theoretical

implementation of a language.

A relatively higher level of description of the semantics is acheived by translating the ab­

stract syntax of a language into instructions of a simple machine using a finite collection

of rules. Such a machine is called an abstract machine [Prasad and Arun-Kumar, 2002].

An abstract machine is a model of a computer system constructed to analyse how the

computer system works [Hannan and Miller, 1992]. It can be proved that abstract ma­

chine is correct for its operational semantics. The correctness can be verified by checking

whether the result of executing a program expression using the operational semantics

matches with that of the abstract machine [Crole, 2006].

1.4 Scope of Work

This work considers the development of formal semantics for the language LIPS. In this

context, we present the operational semantics and abstract machine for LIPS.

1.4.1 Operational Semantics for LIPS

Work on operational semantics started in 1960s. Landin [1963, 1965] created an abstract

machine called the SECD (Stack, Environment, Code, Dump) machine to specify ISWIM

(If you See What I Mean), a functional programming language [taken from [Prasad and

Arun-Kumar, 2002]]. The SECD machine has been used to evaluate the Lambda expres­

sions and formed a basis for the prototype implementations of functional programming

languages [Danvy, 2003]. McCarthy's [1963, 1962, 1967] contributions during the same

time period include the introduction of abstract syntax which has formed the basis for

all the approaches to the semantics of programming languages.

Operational semantics was not highly regarded until radical changes were proposed by

Khan, Milner, Plotkin, and others which led to a Structural approach to Operational

Semantics (SOS) [Andrew and Andrew, 1998].

There are many styles of operational semantics with different terminologies and naming

conventions. Natural semantics, big-step semantics, small-step semantics, transitional

semantics, structural operational semantics are few example terminologies. Generally

big-step semantics refers to natural semantics. But, Glesner [2003] refers to both big-step

and small-step semantics as natural semantics. Peralta et al. [1998] group operational

6

semantics in to two categories: big-step/natural semantics and small-step or Structural

Operational Semantics (SOS).

Big-step semantics describe the computations as large steps providing direct relation be­

tween initial and final states of computation [Slonneger and Kurtz, 1995] whereas, SOS

describe how the individual steps of computation takes place. Big-step semantics is sim­

ple and easy to implement but it can only specify configurations related to the finite

computations which makes it less suitable to specify parallelism.

SOS can

1. convey the order of execution,

2. express the properties of looping programs, and

3. reveal concurrency.

Due to these capabilities, it can be used to specify the communication part of a distributed

language.

Combining the advantages of big-step and Structural Operational Semantics, a mixed

two step strategy has been adopted to develop the operational semantics for LIPS. The

two steps are as below:

• Firstly, big-step semantics is used to specify the expressions and their evaluated

results (computational part of LIPS).

• Secondly, the developed big-step semantics is extended with Structural Operational

Semantics (SOS) to describe the asynchronous message passing of LIPS (communi­

cation part of LIPS implemented using AMPS).

While operational semantics is used to specify the meaning of programs, abstract ma­

chines are used to provide intermediate representation of the language's implementation.

An abstract machine is a re-writing system consisting of re-write rules to explicitly state

the steps involved in the process of execution [Hutton and Wright, 2005]. It can be used

to specify a way of implementing a language on some low-level computing machine or

translating it to a lower-level or machine level language. The correctness of the defined

abstract machine can be verified against its operational semantics. An abstract machine is

considered to be correctly implemented against its operational semantics when an expres­

sion executed according to the operational semantics matches with the result of executing

it with the abstract machine and vice versa.

An abstract machine called the LIPS Abstract Machine (LAM) has been defined to exe­

cute LIPS programs. The LAM was inspired by Crole [2006] and it works on the principle

of re-write rules. Re-write rules are used to describe an abstract machine that maintains

7

a state and transforms it into a final state by repeatedly applying a given set of rules

[Pingali and Ekanadham, 1988]. They explicitly show individual steps of execution and

provide an intermediate level of representation for many practical implementations of

programming languages [Hannan and Miller, 1992].

Using LAM the research proves the correctness of LIPS programs. This will be done by

comparing the result of the code written using the LAM with the result of executing the

same code written using the operatiop.al semantics.

1.4.2 Operational Semantics for the Specification of Asynchronous

Communicating Systems (SACS)

Process algebra can be used to specify the communication between processes in a dis­

tributed environment. Because of its expressiveness and strong theoretical foundations,

process algebra not only refers to algebraic specification but also to a method of verifying

concurrent processes. Few of the well known process algebraic tools include Communicat­

ing Sequential Processes (CSP) [Hoare, 1978], Calculus of Communicating Systems (CCS)

[Milner, 1982], Synchronous Calculus of Communicating Systems (SCCS) [Gray, 2000],

and Language of Temporal Ordering Specifications (LOTOS) [Logrippo et al., 1990].

Since its development many extensions have been proposed for CCS to model different

aspects of concurrent processing [Galpin, 1998] and Specification of Asynchronous Com­

municating Systems (SACS) [Bavan and Illingworth, 2000, Bavan et al., 2007a] is one of

them. SACS is an asynchronous variant of SCCS which uses a point-to-point message

passing system. It is developed to specify the communicating part of LIPS programs so

that the communication and computation parts of LIPS can be handled independently.

SACS uses the same syntax as that of SCCS but its semantics are different and governed

by four design rules. It is developed by applying restrictions to the manner in which

the SCCS is used and these restrictions are given in the form of design rules. These

rules guarantee reliable message passing. The design rules are stated in Section 2.3.1 of

Chapter 2.

Operational semantics is defined for CCS and other process algebras to precisely define

the

1. set of rules for each operator in CCS,

2. execution steps that processes may engage in [Cleaveland and Smolka, 1990].

The semantics may be used to characterise the behaviour of the process algebraic descrip­

tion. Also, operational semantics can be used as the basis of bisimulation equivalence.

Milner has introduced the concept of bisimilarities which have influenced the development

of process calculi [Gordon, 1998]. Two processes are said to be bisimilar if there exists a

binary relation between the two processes such that whenever two processes are related

and one can do an action, the other can match the action in such a way that the result­

ing processes remain related. Bisimulation is based on the idea of processes mimicking

each other's behaviour [Fencott, 1996]. For example, Cleaveland and Smolka [1990] have

defined an Structural Operational Semantics for CCS and shown how the defined seman­

tics characterises the behaviour of CCS. Similarly, Fencott [1996] has defined operational

semantics for CCS and Timed Calculus of Communicating Systems (TCCS) [Chen et al.,

1990]. The behaviour is described using a set of Labelled Transition Systems (LTS) which

consist of a collection of possible system states and transitions which have been used to

study the equivalences. As the operational semantics and equivalences relations are not

defined for SACS, this research considers defining the operational semantics and studying

various bisimulation equivalence properties applicable to SACS.

An implementation is said to be complete one only when we prove that it meets its

specifications and to prove that we need to prove an equivalence relation between the

specification and its implementation. SACS has been used for the high level specification

of the communication part of LIPS programs and is implemented using the Asynchronous

Message Passing Systems (AMPS). It is necessary to study the proof of equivalence of

SACS and AMPS to prove the completeness of AMPS. The operational semantics of both

SACS and AMPS are based on Structural Operational Semantics (SOS) using Labelled

Transition Systems. We then have two labelled transition system semantics: one for

SACS and one for AMPS. To prove that they are equivalent, it is enough if we can prove

the bisimilarity of these two labelled transition systems.

So, by defining the operational semantics for LIPS and SACS, we try to address the

research question,

"Can operational semantics and SACS in combination be a suitable tool to

describe the formal semantics for LIPS?"

1.5 Contribution

The main contribution of this thesis is a formal description for the semantics of the

LIPS programming language. The formal semantics developed has been verified for its

correctness with the main focus on the communication part. This can be found in Chapter

5 where a proof of equivalence of SACS, a tool to specify the asynchronous communication,

and AMPS, its implementation, has been derived using labelled transitions. An abstract

machine has also been developed and it is tested for correctness with its operational

semantics. This can be found in Chapter 4. Additional contributions made as a result of

this research are listed below:

9

• Structural Operational Semantics (SOS) and study of equivalence relation proper­

ties for SACS are described in Chapter 5. This study reveals that SACS with minor

changes can be used to specify any asynchronous communicating system.

• The SOS for the Asynchronous Message Passing System (AMPS) of LIPS defined as

part of the operational semantics for LIPS described in Chapter :1 will make AMPS

a stand alone virtual machine which can be implemented in any asynchronous com­

municating applications without buffers.

• A compiler has been developed using JFlex, CUP and java. It has been tested

with simple applications for its capability to implement AMPS and pass messages

asynchronously.

1.6 Structure of the Thesis

The thesis is structured in the following way:

• Chapter 2 reviews the literature most relevant to the subject of investigation. This

includes the following areas:

1. Few distributed programming languages which involve message passing,

2. Operational Semantics and abstract machine which can be used to describe

distributed programming languages,

3. Specification of Asynchronous Communicating Systems and its formal seman­

tics.

• Chapter 3 introduces the fundamental concepts of LIPS, the language under consid­

eration. It also gives an introduction to the Asynchronous Message Passing System

(AMPS) proposed for LIPS. The AMPS of LIPS has been developed to achieve

asynchronous message passing across platforms without any message buffers.

• Chapter -'1 describes the operational semantics of LIPS and its abstract machine,

LAM. The chapter demonstrates the correctness of the LAM with respect to the

defined operational semantics.

• Chapter 5 gives a brief introduction to SACS, defines the Structural Operational

Semantics (SOS) for SACS and discusses the equivalence relation properties for

SACS. This chapter also verifies the asynchronous message passing implemented

using AMPS against SACS.

• Chapter 6 summarises the findings and contributions of this work and discusses

directions for future research.

10

Chapter 2

Literature Review

Designing a distributed language which can pass messages asynchronously, and handle

communication and computation independently has always been a challenge and formal

methods of specification are generally used for this purpose. This research is concerned

with the development of operational semantics for LIPS, a Language for Implementing

Parallel/ distributed Systems and SACS, the Specification for Asynchronous Communi­

cating Systems. SACS is a process algebraic framework used to specify the asynchronous

communicating processes in a LIPS program.

In this chapter we review the literature relevant to the subject and is divided into the

following subsections:

• Section 2.1 gives an overview on some of the parallel/distributed programmmg

languages which use message passing for communication and justify the need for a

distributed programming language like LIPS.

• Section 2.2 discusses the existing operational semantics that have been used to

specify parallel/distributed programming languages and analyses the necessity for

a mixed approach to specify the semantics of a distributed programming language.

• Section 2.3: discusses about the Specification of Asynchronous Communicating

Systems (SACS). It also considers the correctness of specification using SACS with

its implementation. The objective is to prove that the implementation created

for a system involving asynchronous communication in a LIPS program meets its

requirement specification created using SACS.

• Section 2.4: This section concludes the literature review.

2.1 Parallel/Distributed Programming Languages

A number of parallel/distributed languages have been proposed that employ message

passing for communication. Bal's [1990] sun'ey on programming languages for distributed

11

computing has discussed three main issues that distinguish parallelj distributed languages

from sequential languages, namely parallelism, communication, and partial failures. \Vork

on languages for parallel computation by Skillicorn and Talia [1998] has listed six proper­

ties that a useful parallel programming language should have, which are, programmability,

efficient methodologies, architectural independence, understandability, implementability

and optimality. Haridi et al. 's [1998] survey on programming languages for distributed

applications is concerned with five issues while designing a distributed programming lan­

guage, namely, functionality, distribution structure, open computing!, fault tolerance and

security. Haridi et al. also have proposed a design for a distributed programming language

called Distributed Oz which separates the application functionality from its distribution

structure. A review on the issues listed by these authors would be beyond the scope of

this thesis. This work therefore will consider three main issues namely: ability to handle

parallelism, communication, and separation of communication from computation.

This section describes these issues and reviews some of the popular parallel/distributed

programming languages.

1. Parallelism:

As stated in Chapter 1 parallelism refers to the possible methods of running more

than one part of a program simultaneously. A unit of parallelism can be expressed

in terms of processes, objects, statements, expressions, AND/OR clauses [Bal, 1990]

and they are described below:

(a) Processes: A process is a logic unit consisting of a set of instructions to be

executed sequentially and has its state and own data. Parallelism is based

on processes in many procedural languages for distributed programming [Bal

et al., 1989].

Ada [Ledgard, 1983], concurrent C [Gehani, 1990, Gehani and Roome, 1992]'

Linda [Carriero et al., 1986, Ahuja et al., 1986], Erlang [Armstrong, 2007], and

NIL [Strom and Yemini, 1983, 1985] are some of the languages which use pro­

cess as a unit of parallelism. Using the notion of process gives greater flexibility

to the programmer as they can preset the communication channels between

processes. But individual mechanisms are needed to set up the communication

channels for passing messages and extra efforts are needed to prevent processes

communicating with terminated processes. Some of the techniques used are

setting the status of the channels and guarding the processes, which can be

used independently or in combination.

lOpen computing is a general and inclusiw term that is used to describe a philosophy of building
IT systems. In hardware, open computing manifests itself in the standardization of plug and card
interfaces; and in software, through communication and progTamming interfaces. Open computing allows
for considerable flexibility in modular integration of function and vendor independence [Heintzman, 2003].

12

(b) Objects: They are self contained units with associated data and method.

Languages that use objects to structure their programs are called as object

oriented languages. These languages express parallelism in two ways. One

way is to use an object to express a unit of parallelism and the another way is

to use the tradition notion of processes to express parallelism.

Emerald [Hutchinson, 1987] is an object-based language that allows objects

fixed on a specific processor to be unfixed and moved to a different processor at

runtime. Smalltalk [Horwat, 1988], an object oriented programming language,

allows both objects and processes to express parallelism. Handling objects as

parallel units is similar to using processes as parallel units.

(c) Statements: Statements can be grouped so that they can be used express a

unit of parallelism. There are programming languages which allow statements

to be executed either sequentially or in parallel.

Occam [Inmos, 1988] uses the keywords SEQ (sequential) and PAR (parallel)

before a group of statements to express sequential and parallel executions re­

spectively.

For example, the following code will execute statements 81 and 82 sequen­

tially:

8EQ

81

82

The following code will execute statements 81 and 82 parallely:

PAR

81

82

It is an easy to use but an uncommon method of achieving parallelism.

(d) Functions: A function is a program unit which returns a single value when­

ever called by the main program. Functions are used in both procedural and

functional languages. In functional languages like Haskell [Jones, 2003], the

result of a function depends only on its input values. But in procedural lan­

guages, the result of one function may depend on one or more other functions.

All function calls in a program can be executed in parallel with the exception

to functions which use the result of other functions. It is not a popular method

as it is not good practice to evaluate all the functions in parallel. If a parallel

function is doing a simple task, the oyerheads involved in parallel execution

may outweigh the savings in computer time.

13

Data flow languages such as VAL (Value-oriented Algorithmic Language) [Acher­

man et al., 1979] are based on this principle [Bal et al., 1989].

(e) AND/OR clauses: There are two methods of implementing parallelism in

logic programming namely, OR and AND parallelism. OR parallelism is used

when several alternative clauses for a goal are executed in parallel. AND

parallelism is used when two or more goals of the same clause are executed

simultaneously Ertel [1991]. This method of achieving parallelism is used in

parallel logic languages such as Concurrent Prolog [Shapiro, 1986]. Apart from

AND JOR parallelism, processes are also used to implement parallelism in logic

programming.

Considering the above methods of achieving parallelism, it can be inferred that

using processes to express parallelism is the most commonly used method which is

also used by object oriented and logic programming languages.

Assigning the processes to processors can be fixed at compile time, runtime or any­

time [Bal, 1990]. The advantage of assigning processes at compile time is that the

developer knows which process will be running on a specific processor. But it suf­

fers from a limitation that this method of mapping is less flexible and restricted.

StarMod is a concurrent language which uses this concept [Cook, 1980]. Assigning

processes for parallel processing during runtime may seem to be a flexible method

but it needs extra programming to allocate and reallocate the processes to pro­

cessors automatically. Concurrent PROLOG achieves parallelism using Logo-like2

turtle programs developed by Shapiro Shapiro [1986] where each processor can com­

municate with four neighbour processors. Assigning processes to processors anytime

allows high flexibility as one can switch between compile time and runtime meth­

ods. For example, the language Emerald [Hutchinson, 1987] uses this concept of

non-mapping. Emerald is an object-based language that allows objects fixed on a

specific processor to be relocated to different processors at runtime.

11. Communication:

In order for the parallelj distributed programming languages to execute the pro­

cesses, they must communicate and synchronise. The inter-process communication

in a parallelj distributed language may take place using shared memory or by mes­

sage passing which are two opposing communication models.

(a) Shared memory multi-processor systems:

These systems provide a shared memory abstraction in which an application

2Logo, a dialect of the Lisp language, is a programming language created in 1967. It was used to
control a simple robot called turtle which is represented as a screen turtle on the computer screen in
the recent versions [Friendly, 1988]. Each turtle has state with a position on the screen and a heading
showing the direction it is facing. There are methods for moving the turtle in steps in just four directions
around H grid, and for moving the turtle in all directions with pixel or better accuracy.

14

is written as if it were using a global address space. In other words, these

systems are built using multiple high performance microprocessors which log­

ically share a common memory [Stenstram and Dahlgren, 1996]. Languages

implemented using shared memory multi-processor systems include Concurrent

Pascal (Brinch-Hansen, 1975), Linda [Ahuja et al., 1986, Carriero and Gelern­

ter, 1989], Algol 68 [Wijngaarden, 1981]' Split-C[Culler et al., 1993], Orca [Bal,

1996], and Mesa [Geschke et al., 1977, Andrews and Schneider, 1983, Bal et al.,

1989]. The fundamental features of shared memory are that the inter-process

communication is implicit, synchronisation is explicit and the physical loca­

tion of the data is completely unspecified [Kubiatowicz, 1998]. Though it is

easy to program distributed applications using a global address space which

results in fast data sharing, shared memory systems require major communi­

cation overheads which degrade the efficiency of communication and increase

the cost.

(b) Message Passing:

Message passing is a paradigm used to establish inter-process communica­

tions via messages explicitly [Kubiatowicz, 1998]. The processors have their

own local memory and they send and receive data independently to other

processors directly or through an intermediate process that mimics point-to­

point transfer of data. Languages such as Distributed Processes (DP) [Hansen,

1978], NIL [Strom and Yemini, 1983, 1985] , Occam [Inmos, 1988], Ada [El­

som, 1989], concurrent C [Gehani, 1990], Fortran M [Foster and Chandy, 1995],

PFL [Holmstrom, 1983], and Bulk Synchronous Parallel (BSP) model [Krizanc

and Saarimaki, 1996] employ message passing for communication. The basic

component of message passing is the point-to-point communications to send

and receive data between two processes. Typical point-to-point communica­

tion can be either synchronous or asynchronous.

In synchronous communications, the sender waits until the complete mes­

sage can be accepted by the receiving process and the receiver waits until

the expected message arrives. This type of message passing is also referred

as blocking. Synchronous message passing does not require buffer storage.

Communicating Sequential Processes (CSP) [Hoare, 1978], which is the basic

message passing paradigm is an example of synchronous message passing.

Asynchronous or non-blocking message passing refers to the type of commu­

nication in which data can be transmitted intermittently. The communication

between processes is buffered using buffers of unlimited size. The sender does

not wait after sending the data. The receiver waits only when the buffer is

empty. l\lost of the latest distributed programming languages have adopted

15

asynchronous communication. The major disadvantage of these asynchronous

message passing technique is the necessity for large buffers. These message

buffers must be protected, notified or interrupted when message passing is

complete. Another major problem of buffering is the memory overhead. It

would be ideal to develop a reliable asynchronous message passing system

which does not depend on message buffers.

111. Separation of communication and computation:

Another issue to be considered while developing a distributed programming environ­

ment is the separation of the communication and computational components within

the program structure. Such separation better accommodates multiple communi­

cation and computation components and primitives. Most of the languages which

achieve such separation employ different techniques/tools/language constructs for

each of the two parts. For example, Regis [Magee et al., 1994] is a programming

environment aimed at supporting the development and execution of distributed pro­

grams. The computational elements of a Regis program are designed using C++
and the communication is expressed using Darwin [Magee et al., 1993]. Distributed

Oz has been designed to handle the application functionality and distribution struc­

tures separately. Java is extended with CORBA to provide a tool for developing

concurrent systems [Hasselbring, 2000]. However, more research is required to im­

prove the efficiency of such separation.

There are a number of parallel/distributed programming languages that have been devel­

oped. These languages are generally grouped based on their ability to express parallelism,

pass messages, resource sharing, reliability, performance, and simple design [Tel, 2000].

Following sections review some of the popular distributed programming languages which

demonstrate various ways of message passing.

2.1.1 Occam

Occam, [Inmos, 1988], is a simple concurrent low level programming language devel­

oped for transputers. Although Occam has been developed for transputers, it has also

been implemented on other platforms such as VAX VMS, IBM PC compatibles and SUN

workstations [Hyde, 1995, Tanenbaum et al., 1989]. The implementation is achieved by in­

stalling an additional board containing one or more transputers. Occam was derived from

Communicating Sequential Processes (CSP) [Hoare, 1978] which allows the behaviour of

the language to be specified more formally. CSP aims at having both guarded inputs

and outputs for communication. Implementing communications that are guarded at both

ends poses serious design difficulties which is one of the major setbacks of CSP. Therefore,

Occam provides only guarded inputs.

The execution of processes can be either parallel (PAR) or sequential (SEQ) and must

16

be explicitly stated in Occam. Unlike other mechanisms which express parallelism, PAR

is not a common method even though it is a natural and easy construct to use.

Communication in Occam is achieved indirectly through channels. A channel in Occam

has a unidirectional link between two processes which is only available to one process at a

time. The channels are typed and their names can be passed as parameters to procedure

calls. The message passing is via point-to-point communication and is synchronous. It is

well known that synchronous message passing causes delay in communication which may

in turn affect the overall performance of the system. Though Occam is constructed as a

synchronous message passing language, research to support asynchronous communication

has been carried out [Serbedzija, 1988, Theodoropoulos et al., 1997, Illingworth et al.,

1995].

Due to its static nature of modelling, the mapping between the processors and channels

in Occam are fixed at compile time. Despite the fact that programmers take advantage

of this mapping by knowing about the availability of shared memory for the various pro­

cesses [Bal et al., 1989], it enforces severe restrictions on the communication and affects

the flexibility of its programs [Demaine, 1996] and this is due to the fact that Occam

does not permit new processors to be created dynamically during run time [Carriero and

Gelernter, 1989].

To summarise, Occam is a simple language for embedded systems which,

• Communicates concurrently using channels;

• Mapping between processors and computations are fixed at compile time;

• Passes message between processes synchronously.

Occam has been used extensively for programming applications in the area of signal

processing, image processing, simulation, numerical analysis and neural computing and

efforts are being made to improve its performance in terms of its message passing features

and static nature [Bal et al., 1989, Bal, 1996, Theodoropoulos et al., 1997, Welch and

Barnes, 2005]. The explicit nature of expressing parallelism using the PAR statement

increases the responsibility of the developers during the designing phase. Security in con­

current systems is an important aspect and it is supported in Occam by not having some

of the widely used functions of other programming languages such as pointers, dynamic

memory allocation, dynamic process allocation and recursive functions of programming

languages.

2.1.2 Ada

Ada, [Ledgard, 1983], is a language designed to be used by the US Government for use in

embedded systems. It is loosely based on Pascal with similar syntax and strong-typing.

17

Similar to Occam, Ada also is formally based on CSP [Fidge, 1993] but not too closely due

to its rendezvous nature of communication. The rendezvous model of communication3 is

based on three constructs which are the entry declaration, the entry call and the accept
statement.

Parallelism is achieved through sequential processes known as tasks. The tasks in Ada

are typed. Each task is defined using two parts:

• Task specification - specifies the name of the task and formal parameters that define

the communications interface of tasks of that type

• Task body - defines its execution

Tasks can be created dynamically. Ada was intended to generate embedded systems and

there is no notation to map the tasks to processors, [Jansohn, 1988, Bal et al., 1989].

The main disadvantage of this type of mapping is that it will be expensive to identify the

operations that may need inter-process communication. Therefore, Jansohn [1988] pro­

posed to write several Ada programs, one for each processor and implement the required

communication software.

Communication between the tasks is defined and synchronized by the rendezvous model.

A task may call (entry call) another task by specifying the entry point. The caller task

synchronises with the called task using the accept statement. This is similar to the Re­

mote Procedure Call (RPC) where the entry point and the accept statement are on the

server side and the entry call is on the client side, where the entry call is similar to a

procedure call. Java and concurrent C support this type of rendezvous communication.

When the entry call synchronises with the entry point, the two tasks merge to execute

a guarded code [Carlson et al., 1980]. Tasks can be terminated if the rendezvous does

not occur. Several tasks may call an entry before a corresponding 'accept' statement is

reached and in that case the calls are queued. Each execution of an accept statement

will remove a call from the queue in a First In First Out order (FIFO) of arrival [Brauer

et al., 1981].

Failure detection is possible with Ada's exception handling mechanism. The standard

library of Ada supports portability and it gives the flexibility to the user to add user

defined libraries into the language.

Burns et al. [1987] referenced in [Bal et al., 1989] has reviewed the problems of parallel

and distributed programming in Ada. One of the issues criticised by Burns is the syn­

chronisation mechanism as it is asymmetric, entry calls are served in FIFO order and

3 An interaction between two processes Sand R is called rendezvous when S calls an entry of R, and R
executes an accept statement for that entry. The interaction is fully synchronous so that the first process
that is ready to interact waits for the other. \Vhen the two processes are synchronised, R executes the
do part of the accept statement [Bal, 1990]

18

cannot be accepted conditionally.

According to Bal et al. [1989] and Andrews [1982]' implementing some of the aspects of

concurrent programming of Ada is complex. Rising [1988] has identified that the com­

plexity in developing concurrent applications stem from the interaction between the tasks.

Burns et al. [2001] acknowledged the problem of tasking in Ada and proposed design ab­

stractions such as atomic actions, conversations etc to handle it. The logical correctness

of these abstractions has been validated using Petri nets.

2.1.3 Concurrent C

Concurrent C, [Gehani, 1990, Gehani and Roome, 1992]' is an extension of C to imple­

ment distributed processing based on rendezvous message passing. This is one of the first

concurrent languages based on C which has been influenced by the concurrent facilities

of Ada. The C compiler is added with run-time and system libraries which are used to

translate the Concurrent C programs to C programs. The local C compiler then compiles

the converted programs.

Parallelism in Concurrent C is achieved through sequential processes similar to tasks in

Ada. Each process consists of a specification part and a body. The specification part

consists of the name of the process, a list of formal parameters and a list of transactions.

Processes are created explicitly and a newly created process can be given a priority and

assigned to a specific processor.

A program in Concurrent C comprises one or more processes working together to reach a

solution. Two processes interact by synchronising with each other and then exchanging

information between them and continuing with their individual activities. This synchro­

nisation to exchange information is called rendezvous communication and it is similar to

Ada. A transaction in Concurrent C is different from Ada by its capability to return val­

ues. That is, Concurrent C permits two way information transfer during rendezvous com­

munication which is called extended rendezvous. In addition, it supports asynchronous

message passmg. Concurrent C allows its processes to use shared memory without porta­

bility.

Concurrent C can [Bal et al., 1989, Gehani, 1990, Gehani and Roome, 1992]

• Define and create processes - the creative primitive is used to create processes

explicitly and pass the parameter to the created process. The process which gets

created can be prioritised and can be assigned to a specific processor;

• Specify querying and changing process priorities and accepting transactions in a

user-defined order - accepting transactions conditionally based on the values of their

parameters which is not the case in Ada as it has no conditional accept statement

and it strictly follows FIFO queuing;

19

• Specify timed bidirectional synchronous transactions similar to Ada's timed en­

try call and ordinary / non-timed unidirectional asynchronous transactions with no
return value;

• Handle interrupts and terminate processes collectively - Ada uses declarations to as­

sociate interrupts with transaction calls whereas Concurrent C uses library functions

to make this association. This feature makes it possible to change or discontinue

the association at any time which is not the case in Ada;

Similar to Ada, parallelism, decomposition of programs into distributed processes, map­

ping of processes with computations, and communication and synchronisation have to be

specified explicitly. This makes the process of developing programs difficult as correct­

ness and performance of programs must be achieved by considering a number of factors

[Skillicorn and Tali a , 1998].

In summary, Concurrent C is like Ada in expressing parallelism using processes and it

supports both rendezvous type of message passing and asynchronous message passing.

Designers of the language tried to avoid the complexity of Ada and maintain the con­

current features but Concurrent C does not support shared memory communication and

therefore, it does not have semaphores, condition variables and monitors [Kamran, 1996].

It has been implemented on a UNIX operating system where it is considered as a sequen­

tial program. Context switching and scheduling have to be provided separately apart from

the UNIX scheduler. In order to add object oriented programming capabilities to its con­

current programming capabilities, Concurrent C has been merged with C++ [Gehani and

Roome, 1992]. But Kamran [1996] has found that integrating data abstraction facilities

of C++ and concurrency features of Concurrent C was not a successful experience.

2.1.4 NIL

NIL [Strom and Yemini, 1983, 1985] is a general purpose high level programming lan­

guage developed at IBM to support the construction of distributed programs. Programs

developed using NIL have no pointers or data models. The inter-process communication

can be either synchronous (rendezvous or RPC) or asynchronous [Strom and Yemini,

1983].

Parallelism is achieved through inter-process communication. A NIL program consists

of dynamically evolving network of loosely coupled processes which encapsulate the data

and its state. NIL supports point-to-point communication through channels. The com­

munication channels in NIL are unidirectional and are created dynamically by connecting

input ports with output ports. The synchronous and asynchronous communications are

different from the concepts of CSP and CCS as all communications are queued and there

is no sharing of data across the communication channels [Strom and Yemini, 1983]. At

20

any time a data object can only belong to exactly one process and a data object can be

passed from one process to another. Processes contain only local data which also includes

the input/output ports. Communication ports can be created by the interconnection of

these ports and NIL processes can interact with each other only by these communication

ports. For a NIL program, the environment is determined at run-time and therefore the

choice of which modules to load into a component is also made during run-time.

NIL supports exception handling to manage software failures and it helps the developer in

detecting the errors automatically. This is not the case in Occam where there is very little

information available through static examination of the program. The process model of

NIL is similar to Ada and Occam. The mapping of processors to processes is dynamic

in NIL whereas it is fixed and static in the case of Ada and Occam [Goldszmidt et al.,

1988].

To summarise, NIL is a general purpose distributed programming language which sup­

ports inter-process communication through point-to-point message passing. NIL supports

only queued synchronous and asynchronous communication. Despite all these useful fea­

tures, NIL needs substantial amount of run-time support and there is no evidence of a

broader range of applications developed using NIL.

This section briefly looked into some of the distributed/parallel programming languages

that have influenced the way in which distributed and parallel systems can be pro­

grammed. Although the languages listed here have their own short comings, each of

them offer a number of features, which allow programmers to develop distributed appli­

cations. These features include:

• Point-to-point communication through inter-process communication;

• Dynamic mapping of parallel processes to physical processors;

• Simple and reliable asynchronous message passing without using buffers.

Considering all the above issues, a constructive approach to developing a distributed lan­

guage is to incorporate all of the above properties into a single programming language

together with additional properties like simplicity, expressiveness and support of porta­

bility.

LIPS (Language for Implementing Parallel/distributed Systems) has been developed to

address these issues but currently fails to address the problem of dynamic mapping of pro­

cesses to processors. However, LIPS offers many distinct advantages which includes asyn­

chronous message passing capability, avoidance of deadlock and livelock, ability to handle

communication and computation independently, and portability. The Asynchronous Mes­

sage Passing System (AMPS) [Bavan et al., 2007b] implemented in LIPS allows it to pass

messages as~'nchronously without buffers. A detailed description of LIPS can be found

21

in [Bavan and Illingworth, 2001]. This research continues on the work done already on

LIPS and seeks to develop the formal semantics and specifications which are currently

lacking. The subsequent sections look at the methods to define the formal semantics and

high level specification of a distributed language such as LIPS.

2.2 Operational Semantics and Abstract Machine

Having identified the need for a distributed programming language like LIPS, this section

gives the background information on operational semantics and analyses the necessity for

a mixed approach to specify the semantics of a distributed programming language.

Operational semantics of a programming language gives a mathematically precise defini­

tion of how to execute programs. For example, it describes the executional behaviour of

a programming language for implementation purposes and gives a computational model

for the programmers to refer to.

Operational semantics is used to implement a language and prove the correctness of com­

piler implementation. An interpreter, which is the end product of operational semantics,

is used to define the meaning of the program. It is abstract but it has the major advantage

that once the interpreter has been developed, the language can be easily implemented.

Operational semantics is mainly used for the following purposes [Andrew and Andrew,

1998]:

• Prove properties of programs: Operational semantics is used to define notions

of semantic equivalence of programs and to develop the theory of such notions.

A few examples include Gordon [1998]'s work on the operational equivalence of

untyped and first-order languages to deal with polymorphic object calculi, and

Jeffrey [1998]'s work on the definition of operational semantics and higher-order

bisimulation for a subset of Concurrent ML (CML).

• Verify the correctness of interpreters and compilers: This is done to check

the extent to which the meaning of programs is preserved and reflected against the

requirement specification. An example is Jeffrey's [1995, 1998] work where subset

of CML is translated to Concurrent Monadic ML (CMML). His work is correct only

up to weak bisimulation.

• Study the efficiency in terms of using temporary storage: The operational

semantics and the abstract machine are used to establish the soundness of memory

management techniques. Morrisett and Harper [1998] 's work on semantics of mem­

ory management for polymorphic languages evaluate the polymorphic functional

program using an abstract machine.

22

The description of how a program gets executed is given in a sequence of computational

steps using transition systems. A transition system consists of a set of states and tran­

sitions between the states. It performs the computations allowing transitions between

states. Transition system can be labelled or unlabelled. Transition systems can be repre­

sented using rules to define a transition relation (operational semantics) or as an abstract

machine where the transitions represent the changes of state in the abstract machine.

Operational semantics describe the steps that an abstract machine performs when run­

ning a program. An abstract machine consists of a state and an evaluation relation which

forms the transition system [Fernandez, 2004]. The state of the abstract machine consists

of a stack, memory and the code to be evaluated. It is the responsibility of the transition

function to map from one state to another by executing the code.

The correctness of the defined abstract machine is usually verified against its operational

semantics. An abstract machine is considered to be correctly implemented against its op­

erational semantics when an expression executed according to the operational semantics

matches with the result of executing it with the abstract machine and vice versa [Crole,

2006].

Work on operational semantics started in 1960s. Landin [1963, 1965] created an abstract

machine called the SECD (Stack, Environment, Code, Dump) machine to specify ISWIM

(If you See What I Mean), a functional programming language [taken from [Prasad and

Arun-Kumar, 2002]]. The SECD machine has been used to evaluate the Lambda expres­

sions and formed a basis for the prototype implementations of functional programming

languages [Danvy, 2003]. McCarthy's contributions during the same time period include

the introduction of abstract syntax [McCarthy, 1962] which has formed the basis for all

the approaches to the semantics of programming languages. McCarthy's other contri­

butions include basis for a mathematical theory of computation [McCarthy, 1962] and

proof of the correctness of a simple compiling algorithm for compiling arithmetic ex­

pressions into machine language [McCarthy and Painter, 1967]. Operational semantics

was not highly regarded until radical changes were proposed by Khan, Milner, Plotkin,

and others which led to a Structural approach to Operational Semantics (SOS) [Andrew

and Andrew, 1998]. A brief bibliography on operational semantics can be found Plotkin

[2003] .

There are many styles of operational semantics with different terminologies and naming

conventions. A few examples are: Natural semantics, big-step semantics, small-step se­

mantics, transitional semantics, and structural operational semantics. Generally big-step

semantics refers to natural semantics but, Glesner [2003] refers both big-step semantics

and small-step semantics as natural semantics. Peralta et al. [1998], groups operational

semantics into two categories: big-step/natural semantics and small-step semantics or

Structural Operational Semantics (SOS).

23

2.2.1 Big-step semantics

Big-step semantics is also known as evaluation semantics and it describes a computation

in large steps providing a direct relation between initial and final states [Slonneger and

Kurtz, 1995]. It ignores non-terminating computations as this will require an infinite

number of derivations [Mosses, 2005]. Big-step semantics specifies the structure of termi­

nating computations from initial configurations as a partial ordered set of state spaces.

Let S be the program statements and E be the computational steps. The big-step se­

mantics are modelled using a relation where the statement S transforms the initial state
to final state inductively.

Evaluation of expressions El and E2 can be in any order or in parallel. We assume the

meaning of multiplication is known. The formal rule or axiom for natural multiplication

can be derived as follows:

E -.IJ. V means that E evaluates to V. -.IJ. denotes the relation on the set of configurations

E and V. V is the final configuration reachable from E. When specifying the concrete

syntax for the language, the order of execution of arithmetic operations in an expression

matters but after conversion to abstract syntax, the sub-expressions can be evaluated in

any order. Thus we write 8 - 3 -.IJ. 5 to state that the pair (8 - 3, 5) is a binary relation.

In the same way, we can add axioms for addition, subtraction and division.

In this example, the numbers 8, 3, 1, and 6 are known values. The pairs (8, 8), (3, 3), (8-

3, 5), (1, 1), (6, 6), and (1 + 6, 7) are all in the binary relation. Therefore, each number

needs an axiom. 8 -.IJ. 8, 3 -.IJ. 3, 1 -.IJ. 1, and 6 -.IJ. 6 are all axioms. Generalising it will

yield the following axiom: n is any number. This will generate an infinite set of axioms

by replacing n with any number. These axioms are expressed using inductive definitions.

The pairs in the relation -.IJ. should be supported by proof trees.

To summarise, big-step semantics "describes how the evaluation of expressions and state­

ments affects the program state, and, in the case of an expression, what is the resulting

value" [Strecker, 2002]. But it does not show the internal steps involved in the evaluation

of the result. Detailed information about natural/big-step semantics can be found in

[Pettersson, 1999].

2.2.2 Small-step semantics

The small-step operational semantics is called Structural Operational Semantics (SOS)

[Plotkin, 1981]. SOS allows transitions to be labelled [Mosses, 2005]. A Labelled Tran­

sition System (LTS) consist of a set of rules which can be used for the deri\·ation of

24

computational steps in a given program. SOS for a program contains not only the de­

scription about the current state of the program but also the part of the program which

will be executed after the current transition. The LTS rules specify how the abstract

machine moves from one state to another [Peralta et al., 1998].

The SOS descriptions are deductive logic as opposed to big-step semantics which is in­

ductive. It models how the individual steps of the computation take place representing

each intermediate stage as a well formed program phrase. For example, the following

evaluation is an informal description showing the sequence of transitions:

(7 + 3) * (4 + 7) --t 10 * (4 + 7) --t 10 * 11 --t 110

The transitions are defined using" inference rules consisting of a conclusion that follows

from a set of premises, possible under control of some condition" [Slonneger and Kurtz,

1995]. The general form of an inference rule is the premises are listed above the horizontal

line and the conclusion is written below and can be denoted as pre;ises .
con USton

Sometimes, a condition under which the rule is applicable gets added to it and the infer­

ence rule written as pre7is~s condition . If there are no premises, the horizontal line
cone uswn

gets omitted. The inference rule which is now the axiom can be written as 1 I· I· . cone USton .

Consider an example of evaluating an arithmetic expression. Let El and E2 be two

arithemetic expressions to be added and s is the state of the system at any point of

execution. The state transitions for adding the El and E2 are defined by the following

rules:

(El + E2, s) --t (E~ + E2, s)
(E2' s) --t (E~, s)

(2.1)

(2.2)

(2.3)

Rules 2.1 and 2.2 take the form pre7is~s and rule 2.3 is an axiom with a condition.
cone USton

Let S be the program statement and E be the computational states. If E1 and E2 are the

initial and final states, the big-step/natural semantics will be modelled to represent the

relation as big-step (S, E1, E2) showing that statement S transforms the initial state E1

to final state E2. But the small-step semantics/SOS are modelled by the relation of the

form small-step (Sl, E1 , S2, E2), where Sl, and S2 are two statements and E1 and E2

are the output states of these two statements. This representation states that execution

of statement Sl in state E1 is followed by the execution of the statement S2 in state E2.

The evaluation in SOS is driven by the syntactic structure of the programs which makes

it a powerful tool to analyse the semantics using structural induction. \Vhile the big-

:25

Table 2.1: Comparison big-step semantics and small-step semantics.

Big-step semantics Small-step semantics
Modelling local varI- Easy Execution stack is needed
abIes declarations and
procedures
Express parallelism Succinct description for se- Express parallelism by using

quential programming but interleaving steps
cannot express parallelism

Order of evaluation Does not specify order of Explicit
evaluation

Equivalence of the result Shows the same evaluation Show same evaluation as
of evaluation as that of small-step in the that of big-step semantics in

case of legal programs the case of legal programs

step semantics describe the overall results of the executions, the small-step semantics

describe how the individual steps of the computations take place. In big-step semantics,

the execution of the statement is described by one big transition stating its initial and

final states. The derivation tree explains the reason for the transition. But in small-step,

the execution of the statement is described by one or more transitions. The derivation

sequence is vital and individual steps in the derivation sequence are justified by the

derivation tree. When local variable declarations and procedures can be modelled easily

in big-step semantics, structural operational semantics require an execution stack. The

configurations for the SOS are the same as those of big-step semantics but have the

following advantages as the emphasis is on individual steps of the execution of a program:

• Describing small-steps convey the order of execution of individual steps

• Describing the small-step efficiently expresses the properties of looping programs

• Small-step semantics can be used to reveal concurrency.

Big-step and small-step semantics are two different styles which can be used to specify

the operational behaviour of a programming language. They have distinct features asso­

ciated with them as shown in Table 2.1, yet, they express the same body of knowledge.

Overall, big-step semantics is simple and easy to implement and it has been successfully

used in Standard MetaLanguage (SML) [Milner et al., 1990]. A revised definition of

SML [Milner et al., 1997] demonstrates that big-step semantics specifications are very

stable[Glesner, 2003]. The major drawback with this type of semantics is that it can

only specify configurations related by finite computations which make it less appropriate

for specifying parallelism. Due to this inadequacy, it has been a trend to use a mixed

approach while defining the operational semantics for languages which include parallelism

and concurrency or any other special features [Attali et al., 1996, Albert et al., 2002].

26

• Albert et al. [2002] defined operational semantics for functional logic languages by

using the big-step semantics in natural style to relate expressions and their evaluated

results and extended it with small-step semantics to cover the features of modern
functional logic languages;

• The semantics for SML has been generated by integrating the concurrency primi­

tives with process algebra [Berry et al., 1992]. It has been done in two steps: the

first step is to show the behaviour of sequential programs, and the second step

defines the non-functional features of SML in terms of processes and integrating

the primitives with these definitions. It has been proved that this approach helps

to create simple semantics so that new primitives to SML can be added without

distur bing the functional features and the stores can be represented as processes

with the required behaviour;

• Big-step semantics has been extended with a relational approach to handle concur­

rent languages [Mitchell, 1994].

From these studies it is clear that operational semantics with an abstract machine can

be used to define the behavioural specification of any programming language. While op­

erational semantics is used to specify the meaning of programs, abstract machines are

used to provide intermediate representation of the language's implementation. Abstract

machines can be distinguished from operational semantics as they consist of simple and

direct algorithmic implementations which can be used to develop compilers for the pro­

gramming languages. The above mentioned study made it clear that the semantics of

any programming language can be specified using more than one style of operational se­

mantics to accommodate special features of a language, for example, concurrency in the

case of a distributed programming language.

The following section reviews the formalisms suitable for the specification of the commu­

nication and computational part of any distributed programming language.

2.3 Formalism for High Level Specification of Paral­

lel/Distributed Languages

A formal specification is a concise description of the behaviour and properties of a system

written in a formal language. System specifications using formal languages are becoming

vital for designing, validating, documenting, reusing, and re-engineering software systems.

A formal specification language contains a set of symbols and grammatical rules to de­

fine well-formed formulae. These rules characterize the syntactic domain of the language

which forms the theoretical foundation for any programming language. Formal methods

27

have been employed in the specification of software systems since the early days of com­

puter science. Some of the well known formal specification methods include Z [Jacky.

1997], CSP, Vienna Development Method (VDM) [Bjorner and Jones, 1978], Larch [Gut­

tag et al., 1993], CCS, and Formal Development Methodology (FDM) [Cheheyl et al.,
1981].

Formal methods are used mainly in the following three activities [Jacky, 1997]:

• Modelling - to describe and predict program behaviour;

• Designing - to organise the internal structure of a program;

• Verification - to confirm that the code will behave as intended.

Whatever the type of activity, the method should provide the means for specifying a

system so that consistency, completeness, and correctness can be assessed in a systematic

manner. The aim of this section is to identify and analyse the specific formalisms and

techniques that can specify the high-level operations of parallel and distributed applica­

tions correctly and clearly so that we can specify the requirements and use them for the

verification of a parallel/distributed programming language.

A constructive approach for developing programs for a distributed programming environ­

ment is to separate the program structure from the communication and computational

part of a program. This will easily accommodate multiple parallel and computational

components and primitives. It helps in aiding the powerful concept of reusability of com­

ponents. For example, as mentioned in Chapter 1, the language Regis, [Magee et al.,

1994]' is divided into two sections so that the communication and computational ele­

ments can be programmed individually. The computational elements are designed using

C++ and then extended with the configuration language Darwin [Magee et al., 1995] to

express the communication between processes. Occam has the sequential and the paral­

lel computations distinguished with the keywords SEQ and PAR respectively. Whether

or not a distributed language explicitly expresses its communication and computational

components, it is possible to identify them individually. The work presented in this sec­

tion considers the formalisms which are more suitable to specify the communication part

of the distributed programming language, LIPS.

2.3.1 Specification of Communication Part of Distributed Lan­

guages

Concurrent systems can be described in terms of many different constructs for

• creating processes

• exchanging information between them alld

:28

• managing their use of shared resources.

This variability has given rise to a large class of formal systems called process algebra [Pie,

1995]. It is usually constructed from a set of basic processes and a set of operators. Each

operator has a fixed arity, (number of arguments that a function can take), indicating the

number of its operands [Best et al., 1998]. Several notations and formalisms for Process

algebra have been defined. Few of the well known process algebraic tools include Milner's

CCS, CSP, Synchronous Calculus of Communicating System (SCCS) [Gray, 2000] and

the Language of Temporal Ordering Specifications (LOTOS) [Logrippo et al., 1990].

Process algebra offers an alternative to model checking. The term 'process algebra' does

not only refer to algebraic notation for transition systems, but also to a method of verify­

ing concurrent systems. This could be considered as an efficient method of specification

at an abstract level and verification because of its expressiveness and strong theoretical

foundations. In continuation with his work on CCS, Milner developed pi-calculus which

introduced a new way of modelling communication that reflects its position [Milner, 1999].

For example, such ability to model process mobility is useful for describing how mobile

phones communicate with different base stations when a person is on the move. Join Cal­

culus is yet another process calculus which is a member of pi-calculus. It has also been

used to model distributed and mobile programming but it avoids defining communication

constructs like rendezvous communications which are difficult to implement [Fournet and

Gonthier, 2000]. It has a direct embedding on ML programming language and it supports

local synchronisation which means that messages always travel to set destinations and can

interact only after they reach that destination. This kind of synchronisation is useful for

pattern matching and function binding. Yet another asynchronous variant of pi-calculus

is distributed join calculus which allows mobile agents moving between physical sites

[Maludzinski and Dobrowolski, 2007]. JoCaml system is an experimental extension of the

Objective-Camllanguage with the distributed join-calculus programming model [Fournet

et al., 2002].

Signal Calculus (SC) is another process calculus specifically designed to describe coordi­

nation policies of services distributed over a network [Cardelli and Gordon, 1998, Milner,

1991]. It also is based on pi-calculus. Java Signal Core Layer (JSCL) [Ferrari et al., 2006]

is a framework defined based on SC. JSCL is a middleware which formally describes co­

ordination of distributed services based on an event notification paradigm.

Our main focus in this research is to specify the asynchronous communication part of

LIPS. A process algebraic tool known as Specification of Asynchronous Communcating

Systems (SACS) [Bavan and Illingworth, 2000, Bavan et al., 2007a] has been developed for

this purpose. The design techniques of SACS allow the programmer to develop programs

that are virtually free of livelock and deadlock conditions. An introduction to SACS is

given in the following section.

SACS:

SACS, which uses point-to-point message passing, is an asynchronous variant of sces. It
uses the same syntax as that of SCCS but its semantics are different and governed by four

design rules. The main aim of SACS is to separate communication from computation so

that these two activities can proceed independently. The formal notation of SACS has

been derived by applying restrictions to the manner in which the SCCS is used. These

restrictions are specified as four design rules. Thus, SACS has the same syntax as that

of SCCS but its semantics are different. The four design rules guarantee reliable message

passing and have their origins in LIPS.

The Four Design Rules

Rule 1 - Every process agent in a concurrent system operates in an iterative fashion and

obeys the SACS- TEMPLATE which is as follows:

Process agent_1 =
input_ch1_1[. I : I+Jinput_ch1_nJ: Process_agent_1Bdy_1

+ ... + [input_chk_1[[. I: I+Jinput_chk_nJ: Process_agent_1Bdy_kJ

Process_agent_1Bdy_i =

output_ch1_1 [E. I: I+Joutput_ch1_nJ: [@IProcess_agent_1J

where i ranges from 1 to k.

This means every node in the system should consist of one or more guards that contain

input ports followed by a body of the code and then by output ports. Rule 1 implicitly

states that a concurrent system is made of autonomous processes that intercommunicate

using message passing.

Rule 2 - A channel must have one input port and one output port only.

Point-to-point communication is being used for this style of design. Thus fan-in and

fan-out are special examples that must be specified explicitly.

Rule 3 - Within a node, an input channel can be used only by one guarded process.

If an input channel is shared by more than one guarded process, it may lead to partial

or total starvation of at least one of the guarded processes. It may also lead to deadlock

due to the propagation effect created by starvation. The following example:

is invalid in our modified use of SCCS notation since the same channel y is being used as

input guard for two different processes within a node.

Rule 4 - A self-contained system must include at least one idler operator in an input

channel position.

30

A self-contained system is one which does not have channels which cross the application

domain. The implication is that a non self-contained system will have one or more
channels with just one port.

The following case compares the SCCS with SACS with its four design rules. Consider a

simple case in which two processes exchange data. We can express this in secs notation
as follows:

A = x! y7 A

B = x7 y! B

The above definitions state that process A outputs a value x and waits for a response

on channel y from process B. There is no restriction on combining the input and output

channels at the same location within a SCCS specification. The equivalent definition

using the same notation in our approach is specified as shown below:

//1 before the , . ,
A = 1 : A_BDY_l + y7 A_BDY_2

denotes an idle event

A_BDY_l = x! : A

A_BDY_2 1: A

B = x7 : B_BDY_l

B_BDY_l = y! : B

This means both processes, A and B, deliver their output on virtual channels, x and y,

and call themselves. The input channels guard is a computational unit of code (a body

of code). When each input channel in a specific guard has received an item of data, the

associated body of code is executed. In the example given above B_BDY _1 is a body of

code guarded by x? Each body of code transforms the input data into output data and

is passed onto other nodes in the system. Input channels occur before a body of code,

which occurs before output channels. SACS has been designed for LIPS but also can be

used for other distributed programming languages with minor amendments.

2.3.2 Formal Semantics for SACS

SACS, one of the process calculi, has been considered as a formal framework for specifying

distributed systems and their behaviour. Klin [2004] considers three key aspects when

formally describing systems and processes. These aspects are syntax, behaviour and

process equivalence where syntax refers to structure of processes, behaviour refers to the

kind of actions the processes may take and process equivalence describes those processes

whose behaviours should be considered the same. These three aspects of SACS can be

presented via its Structural Operational Semantics (SOS). SOS defined using the Labelled

Transition system (LTS) is considered to be the standard way to give formal semantics of

31

concurrent programs and systems. Based on the LTS, many different equivalence relations

can be defined. Equivalence relations provide a powerful tool to verify the behaviour of the

defined processes. One of the finer equivalences is the bisimulation equivalence, [Tuosto,

2003], and others include trace equivalence, testing equivalence etc [Klin, 2004].

2.3.3 Verifying the correctness of SACS specification

Semantics of formal specification languages provide the foundation for their verification

methods. Many researchers have contributed to verifying the correctness of two specifi­
cations. For example:

• Calkin et al. [1994] has defined a proof of equivalence of the operational and tempo­

ral semantics for real-time, concurrent programming language. It is done by defining

the labelled transition system semantics through the timed transition systems and

SOS and proving the bisimilarity of these two labelled transition systems.

• Cardell-Oliver [1998] has derived an equivalence theorem for the operational and

temporal semantics of real-time concurrent programs.

• von Oheimb [2000] has proved that axiomatic semantics defined for JavaJight is

sound and complete with respect to its operational semantics.

• Two formal semantic descriptions of first order functional logic programming have

been compared and equivalence relations have been proposed by Lopez-Fraguas

et al. [2007] .

• In his book, Winskel [1993] has provided a denotational semantics for an impera­

tive language called IMP and created a proof of its equivalence with operational

semantics.

Similarly, it is useful to verify the correctness of SACS specification with its implemen­

tation. This can be done by creating an equivalence relation between their labelled

transition system. We consider the weak bisimulation equivalence between SACS and

AMPS. The reason is that when we compile a language or specification to another, it is

very unlikely that we can faithfully preserve the operational semantics. This means that

a transition from P' ~ Q' in SACS may become a sequence of transitions in AI\iIPS,

namely P' ~ ... ~ Q' where most of cd, ... , an are silent transitions. It might also

be that we may not reach Q but a process equivalent to Q. In such situations, the weak

bisimulation which compares only the external behaviours of the processes is preferred.

32

2.4 Summary

This chapter looked at some of the popular parallel/distributed languages. Each of them,

which has been developed for a specific purpose, offer a number of features in terms

of expressing parallelism, passing messages, mapping of processes to processors, and

structural separation of the communication and computational components. It is ap­

propriate to have a distributed language which can use processes to express parallelism,

pass messages asynchronously, dynamically map the processes to processors and handle

communication and computational components independently. LIPS, the Language for

Implementing Parallel/distributed Systems, is a language which addresses most of these

characteristics.

The software industry is continuously making efforts to develop high quality program­

ming languages and formally defining the syntax and semantics offer a solution towards

that goal. In pursuit of this aim, this work focusses on developing a formal semantics and

specification for LIPS.

As far as the formal semantics for LIPS is concerned, the study looks into ways of

developing the operational semantics for LIPS. In relation to this, big-step and small­

step/Structural Operational semantics are compared. It has been identified that a com­

bination of both the semantics is more suitable to specify the communication and compu­

tational part of a distributed programming language like LIPS. The study also suggests

that an abstract machine for LIPS can be developed in order to give an intermediate

representation for a language. The abstract machine can also be used to implement the

compiler of the language.

SACS is a point-to-point message passing system which is an asynchronous variant of

SCCS developed to specify the communicating part of LIPS. The main objective of SACS

is to separate the specification of communication from the computation part of LIPS pro­

grams so that they can proceed independently. As the behaviour of process algebra can

be studied using its formal semantics and there is no formal semantics defined for SACS,

the work proposes to

1. develop a Structural Operational Semantics for SACS and

2. study the equivalence properties of SACS.

Also, in order to verify the correctness of SACS with its implementation, the study

proposes to create an equivalence relation between them. The equivalence relation can

be created by using the operational semantics represented as labelled transition system.

The succeeding chapters give an introduction to LIPS and the A~IPS, the Asynchronous

Message System, implemented in LIPS, and continue to define the formal semantics and

specifications for LIPS.

33

Chapter 3

An Introduction to LIPS and AMPS

LIPS is an asynchronous message passing language which was originally developed to

be executed on parallel computers such as transputers. Extensions have been added to

make it a distributed programming language in order to take advantage of the available

network of personal computers. LIPS has the following characteristics:

• Communication by assignment;

• Separation of communication from computation;

• Asynchronous message passing without buffers;

• Portability.

The asynchronous message passing architecture designed and implemented for LIPS is

called the Asynchronous Message Passing System (AMPS). The AMPS is based on a sim­

ple architecture comprising of a Data Structure (DS) a Driver Matrix (DM), and interface

codes. In a LIPS program, a message is sent and received using simple assignment state­

ments and the program is not concerned with how the data is sent or received. With the

network topology and the guarded process definitions, it is easy to identify the variables

participating in the message passing using which the DS and the DM are defined. AMPS

was conceptualised by [Bavan et al., 2007b]. This work focuses on developing a formal

semantics for AMPS [Rajan et al., 2007a] and implementing it in the LIPS compiler.

This chapter gives an overview of LIPS and describes the architecture and working of

AMPS. The description of AMPS is taken from [Bavan et al., 2007b].

The chapter is organised as follows:

• Section 3.1 gives an account on the basic elements of a LIPS program.

• Section 3.2 gives an introduction to writing programs in LIPS.

• Section :3.3 explains the architecture of the Asynchronous r.lessage Passing System

(AMPS).

• Section :3..1 describes the working of AMPS.

• Section ~~.5 demonstrates the working of the AMPS using two case studies.

• Section 3.6 gives a summary.

• Appendix A: Sample LIPS programs which will enable the user to understand the
concepts.

• Appendix B: Case study 2 - Post Office Scenario - to demonstrate the working of
the AMPS.

3.1 Structure of a LIPS Program

A LIPS program is represented by a network of computational nodes connected by a

set of point-to-point unidirectional channels that carry messages between communicating

nodes. A LIPS program consists of:

1. a network definition: describes the communication part of the LIPS programs.

11. nodes definition: describes the computational part of the nodes in the network.

3.1.1 Network Definition

Network definition describes the topology of the network by naming each node (represent­

ing a process) and its relationships (in terms of input and output data) to other nodes in

the system. In other words, it describes how the nodes are connected through channels.

The only statement which is used to specify the connectivity of nodes in a network is

the connect statement. This statement specifies input and output(I/O) channels to a

node and the name of the node to be executed in that network, in other words, the I/O

interface to a particular node.

The syntax for the connect statement is as follows:

node_label : connect node_name(input_channels) --> (output_channels)

An example of a connect statement that links two input channels, a and b, to a node that

executes a process P with a node label 7 and produces an output on channel c is shown

in Figure 3.1.

35

[7]: connect P([a, b]) -> ([c])

~ ___ 0l--~) C

Figure 3.1: Connect process.

Square brackets are used to group data belonging to a particular data type or category.

Using the connect statement, networks of any complexity can be built. The connect

statements allow the user to fan in and fan out messages. For example, the fanning in

and fanning out of the nodes shown in Figure 3.2 is represented using a set of connect

statements as given below:

[1] connect U([hJ) --> ([iJ)

[2J connect R([iJ) --> ([jJ)

[3J connect S ([iJ) --> ([kJ)

[4J connect I([iJ) --> ([lJ)

[5J connect V(U,k,lJ) --> ([rnJ)}

Figure 3.2: Data flow graph illustrating fan-in and fan-out effect via connect.

For a given problem, the topology of the network can be shown using the network def­

inition. Not specifying the computational details at the network level has an added ad­

vantage as this promotes good design practice by motivating the programmer to produce

the target solution model at a higher level of abstraction. Communication is considered

as a framework and separated from computation.

36

3.1.2 Nodes Definition

A LIPS node is a distributable object which can receive or send messages. Among the

network of nodes, there is an obligatory host node which is executed first. Each node

consists of a set of processes. To execute a process, its precondition/guard needs to be

satisfied. Therefore, processes in a LIPS program are called guarded processes. A guard

is a list of input channels waiting for the data to be received to activate the guard. The

syntax for the node definitions is as follows:

Node name (input_channels) --> (output_channels)

{ variable_declaration;

guarded_process_l

}

1. Channels

N odes in a LIPS program communicate with one another by using channels. A

channel is a unidirectional link through which messages flow. A channel can

(a) have several endings. For example, consider the network shown in Figure 3.3.

Channel x delivers message from node A to nodes B, C, and D.

Figure 3.3: Channel with Multiple Outputs

(b) have several beginnings and several endings. For example, consider the network

shown in Figure 3.4. Channel y receives a message from either node A or node

B but transmits the message to C, D, and E.

Figure 3.-1: Channel with :'-.fultiple Inputs

37

(c) loop back so that the input and output of the channel connect to the same

node. This shows the ability of a node to send a message to itself. This is
illustrated in Figure 3.5.

x

Figure 3.5: Looping Channel

11. Guarded Processes

A process in a node is a guarded process. A guarded process has a guard and a

statement block which forms the computational part of LIPS. A guard is a list of

input channels. Only when all the input channels of a specific guard receive values,

the associated process body will be executed. A guarded process may generate data

for the output channels. The output channel is write-only. A situation may occur

in which two or more guarded processes may become eligible for execution. When

such a condition arises, only one guarded process will be selected for execution. A

guarded process has the following syntax:

[input_condition] => {statements_block}

As described earlier, the inpuLcondition is a set of input channels and all of the

inpuLchannels have to receive values for the statements_block to be executed. There

are four types of guarded processes:

(a) init guarded process: This process is optional. When present, it will be

executed first automatically at the start of the program. The role of the init

guarded process is to initialise variables. The init guard has no precondition

and is represented by an empty pre condition list as shown below:

[] => {statements_block}

(b) start guarded process: As an initiating guarded process it is obligatory to

start the network. There is only one start guarded process in a LIPS program.

Usually, the host node contains the start guarded process. This sends start

signals to all the nodes in the network so that they can start their processing.

The guard is given a special pre-condition symbol # and the syntax is as

follows:

[#] => {statements_block}

38

(c) conditional guarded process: This is optional and has a set of input data

channels as its guard which need to be activated for its associated state­

menLblock to be executed. All the input channels in the guard must be

true for the guard to be activated. There may be more than one conditional

guarded processes in a node. Let there be n channels: ChI, Ch2, Ch3 , ... , Chn .

The conditional guarded process takes the following form:

[ChI, Ch2 , Ch3 , ... , ChnJ => {statements_block}

(d) locally activated guarded process: This is optional and made up of set of

input channels. These input channels can be either input channels or local

channels to the node. Locally generated message signals are passed via the

local channels and their scope is limited to the node that generates them. Let

there be n channels: lCh1 , lCh2 , lCh3 , ••. , lChn . The locallyactivated guarded

process takes the following form:

Figure 3.6 illustrates the execution sequence of the four types of guards. As far as the

Conditional
guarded process

init guarded

L...-----!-r-----'

L...-____ --'

Executes when the node

}

instantiates and it is
optional

Executes when the

}

network is ready to
begin

Locally Activated
guarded Process

, , , ., , , , , , ,
" .; , ,

'::U ... '
Executes when messages arrive
and the pre-conditions of the
guarded processes are met

Figure 3.6: Execution Sequence of Guards

statement_block is concerned, it consists of

1. optional variable declarations, and

11. zero or more statements.

A statement itself is a complete unit of execution. Most of the LIPS statements are

typical C programming statements. stop and settimer are the two additional statements

used to stop the execution of the program and to insert a delclY in processing respecti\·ely.

39

3.2 Programming LIPS

As discussed in Section 3.1, a LIPS program has two parts: network definition and nodes

definition. Consider the example of calculating the area under a curve y = f(x) using

Simpson's rule. There are three nodes to be defined: host, Area, and Summer. The

host initialises variables, instantiates other nodes, sends inputs if there are any to other

nodes in the network through output channels, and receives values through the input

channels. In this example, the host sends the width of the segments whose area is to be

calculated and the segment numbers to Area node. The Area node upon receiving the

width and segment numbers calculates the areas of the segments and sends them to the

Summer node. The Summer node receives the areas of the segments, adds them to

find the total area under the given curve and stores in result. The result is sent to the

host.

3.2.1 Programming the Network Definition

Table 3.1 show the input and output channels corresponding to the nodes in the network.

Table 3.1: Input and Output Channel table for the Simpson's rule

Node Input Channels Output Channels

host result wicith,segment [0] ,segment [1] ,segment [2]

Area wicith,segment [0] ,segment [1] ,segment [2] area[O] ,area[1] ,area[2]

Summer area[O] ,area[1] ,area[2] result

A possible network diagram for the Simpson's problem is shown in Figure 3.7.

Figure 3.7: Net\york Diagram for the Simpson's Rule problem

40

The corresponding network statements for the nodes shown in Table 3.1 are:

[lJ : connect host ([resultJ) --> ([widthJ [segment [0 .. 2JJ);

[2J : connect Area ([widthJ [segment [0 .. 2JJ) --> ([area[O 2JJ);

[3J : connect Summer ([area[O .. 2JJ) --> ([resultJ);}

The node identifications used in the connect statements are unique and are used to

represent multiple instances of a node precisely and unambiguously.

3.2.2 Programming the Nodes Definition

Having defined the network of a system, this section defines each node with its associated

guarded processes. A nodes definition has a header. An example is shown below:

Node name (input_channels) -> (output_channels)

Following is one possible set of node header definitions for the Simpson's problem:

Node host(double result) -> (double width, int segment[2J)

Node Area(double width, int segment[2J) -> (double area[2J)

Node Summer (double area[2J) -> (double result)

The remaining section of this chapter describes one possible code for the host, Area and

Summer nodes. The host node has the init, start and conditional guarded processes. The

init guarded process initialises the values for width and segment.

Ilinit guarded process

[J => Iisend the width and segment to Area

{

}

int i;

width = .333;

for (i=O; i<=2; i++){

segment[iJ = i+i;

}

In the current scenario, the start guarded process has no executable statements but this

is required to start the network and the code segment is given below:

Iistart guarded process

[#J => Iisend the start signal to other nodes

{

II start the process

}

-11

The init and start guarded processes are obligatory and executed once. The conditional

and locallyactivated guarded processes may be executed more than once when their pre­

condition is met, i.e, when their input channels carry new values. There is one conditional

guarded process defined for the host node to receive the result and represented as:

//conditional guarded process

[resultJ => //receives the result - the area under the given curve

{

print("The area under the given curve is = II result);

}

Similarly Area, and Summer nodes can be defined using conditional guarded processes.

One possible set of codes for each of the nodes is shown below.

conditional guarded process for the Area node:

[segment[0 .. 2J, widthJ =>

{

}

//receives segment numbers and width and calculates area

int j;

for(j=O; j<=2; j++){

x = width * (2.0 * segment[jJ + 1.0) / 2.0;

Y = 4.0 / (1.0 + (x * x));

area[jJ = x * y; //outputs sent to output channels

conditional guarded process for the Summer node:

[area [0 .. 2J J =>

{

}

//receives areas for the segments and calculates total area

double total;

int count;

for (count=O; count<=2; count++){

total = total + area[countJ;

result = total; //outputs sent to output channels

The complete program to calculate the area under a curve using Simpson's rule is given

in Appendix A.l.

3.2.3 Compiling and Running a LIPS program

The LIPS compiler has been developed using JFlex, the Java LEXical analyser, written

in Java and CUP, vvhich is a Java based Constructor of Useful Parsers. CUP is similar

12

to the widely used YACC. It is a LALR (LoolLAhead Left to Right) parser generator.

J Flex is generated to work together with the LALR parser generator CUP.

The compiler takes the native LIPS code and generates the Java code. This Java code

can then be compiled using a Java compiler. Java compiler version jdk1.5.0_01 has been

used. The main purpose of developing the compiler was to test the asynchronous message

passing using AMPS. The compiler developed so far has been tested with simple appli­

cations. It is necessary to do rigorous testing with more complex systems but this is not

included in this research. The AMPS of LIPS is described in the subsequent sections.

3.3 Architecture of the Asynchronous Message Pass­

ing System (AMPS)

The AMPS of LIPS consists of a very simple Data Structure (DS) and a Driver Matrix

(DM). The compiler of LIPS automatically generates the DS, DM and the interface codes

necessary for the AMPS of LIPS. This section describes the DS and the DM used for

message passmg.

3.3.1 The Data Structure of the AMPS

The Data Structure (DS) is a linked list where all the nodes in the network including the

host node are linked to all the other nodes. Each node has the following six components:

1. A node number (N odeN um- an integer) - a unique number is assigned to each

node;

2. Name of the function it is executing (name - a symbolic name);

3. A pointer to the next node in the system;

4. Two more pointers. For the node under consideration:

(a) A list of associated input channel variables;

(b) A list of associated output channel variables.

5. Each channel variable consists of a data field giving the channel number (vnum -

an integer) and two pointers, one pointing to the next channel variable in the list

and the other points to a record.

The record of the input channel contains:

(a) Channel name (var! - symbolic name). This is used for debugging purposes;

43

(b) Currency of the data - old data (status = 0) or new data (status = 1) present .

Only data with status = 1 is passed on to a node for processing·

(c) Value of the data. (value - actual value of specified type) .

The record of the output channel contains:

(a) Channel name (varl - symbolic name);

(b) The number of nodes that are to receive the data (counter - 1 .. n)) which will

be decremented as a copy of the data is transferred to a destination node. New

data is only accepted written when the counter is 0;

(c) Value of the data (value - actual value of specified type) .

Figure 3.8 depicts the data structure of the AMPS. It is assumed that there are p number

of IN VECTORS and m number of OUT VECTORS where p and m are positive

integers.

I Node Num.= 0 I Name r Node Num. ~ Node Nurn. I Name

J I L.....--......--I-r-----' I....-----'-! ------"---,.....---II

I .,

IN VECTORS

OUT VECTORS

I vnum H Vam I status I value

Figure 3.8: Data St ructure of the AMPS.

3.3.2 The Driver Matrix of the AMPS

The Data Matrix D M facilitates the distribution of messages . The structure of DM is

shown in Figure :3 .9. The DM contains the details of channel variables in the network as

described below:

1. The channel number) (vnuln- an integer);

2. The node number (source node) from wh re the channel variabl originate (SrcNodeNum­

an integer)·

4

Source Nodes Destination :--;odes

Vnum Srcnd type NdO Nd1 Nd2 : : :'\d9 Nd10

0 0 3 0 0 0 : : 0 0

1 1 2 0 0 1 : : 1 1

2 3 4 0 1 0 : : 0 0

: : : : : : : : : :

: : : : : : : : : :

9 3 1 1 0 0 : : 0 0

10 4 1 1 0 0 : : 0 0

Figure 3.9: Data Structure of the A:\IPS.

3. The data type of each channel variable (type - integer);

4. The nodes where they are sent as input and the destination nodes (either '1' or

'0' in the appropriate column). A '1' in a column indicates that the corresponding

destination receives a copy of the input or a '0' (otherwise).

All the values in the matrix are integers. The integer values given to the source and

destination nodes are the same as the node numbers used in the DS. The following

section describes the working of the AMPS.

3.4 The Operation of the AMPS

When a node outputs a message, a message packet in the following format is generated:

I SrcN odeN urn I vnum I type I data I
Message packet-l sent from a node

Once a piece of data is ready, the process makes the following call to the AMPS.

Is_olLto~end(SrcNodeNum, vnum)

When this call is received, the AMPS checks the DS to see if the output channel of the

node has its counter set to zero. If it is set to zero, it returns a value 1 else O .

• If 0 is received, the sending process waits in a loop until 1 is received .

• If 1 is received, the sender node sends the message in a packet using the following

call:

Send(SrcNodeNum, vnum, type, data)

-15

On the receipt of this packet, the AMPS checks the DS to see whether the vnum and

type are correct and stores the data in the appropriate field. The counter is set to the

number of nodes that are to receive the data by consulting the D1I. The Send function
returns a 1 to indicate a success.

After storing the data, the AMPS consults the DM, distributes the data to other DS

nodes, and decrements the counter accordingly. Here the data is written to the input

channel variable of a receiving DS node, provided the status of that input channel variable

is 0 (that is, the channel is free to receive new data). Once the data is received, the status

is set to 1. If any of the DS destination nodes are unable to receive the new data, the

AMPS periodically checks whether they are free to accept the data. No new value will

be accepted for the output channel from where the data is being distributed until the

counter becomes o.

When a guard in a node requires an input, it makes the following call to the AMPS:

Is~npuLavailable(NodeNum, vnum)

The AMPS checks the appropriate DS node and the channel variable number, vnum. If

the status is 1, the function returns a 1 to tell the caller with the node number NodeNum

that the data is available, else it returns a o .

• If a 1 is returned then the node makes a request to the AMPS to send the data.

The AMPS extracts the data from the appropriate channel of the DS, returns it

to the calling process, and sets the status to o. The data is sent in the following

format:

, NodeNum , vnum ,-type I data I
Message packet-2 sent from the AMPS

• If a 0 is returned to the Is~nput_available function, then the process continues

processing or repeats the call.

3.5 Case Studies

The AMPS system has been implemented in the LIPS compiler. Test results have shown

that the AMPS passes messages in an asynchronous fashion effectively across different

platforms without any message buffers. This section demonstrates the working of the

AMPS in LIPS using two case studies. First, the vending machine problem, is discussed

in the next subsection and the second, the post office scenario, is described in Appendix

B.

46

3.5.1 Case Study 1: Vending Machine Problem

Consider a vending machine that requires a CUSTOMER to insert a coin and press a button,

after which the machine will serve a drink. We have split the vending machine into

MACHINE_INTERFACE, and MACHINE_INTERNALS. When MACHINE_INTERFACE receives the

coin and button, it generates the drkSig.

There is a process called INIT which outputs trayEmpty signal to infer the MACHINE_INTERNALS

that the tray is empty. Without such a signal, the vending machine would accept the

coin and button press and deliver the drink without checking whether previously deliv-

ered drink has been removed. This may result in a vending machine that delivers drink

one above the other. MACHINE_INTERNALS will deliver the drink only after receiving the

trayEmpty signal from INIT and drkSig from the MACHINE_INTERFACE.

This means that there are four processes involved in modelling the vending machine:

INIT (host), CUSTOMER , MACHINE_INTERFACE, MACHINE_INTERNALS. A diagrammatic

representation of the vending machine problem is shown in Figure :3.10.

trilyEmpty

Figure 3.10: Vending Machine.

When the LIPS program for the vending machine problem is compiled, the compiler will

generate the Driver Matrix(DM) and the Data structure (DS) needed for message passing.

The DS is initialised with null values and is shown in Figure 3.11. Its corresponding DM

is shown in Table 3.2.

Table 3.2: Driver Matrix for the Vending Machine Problem.

vnum SrcNodeNum type Destination nodes

0 1 4 0 0 0 1

1 2 1 0 0 1 0

2 2 4 0 0 1 1

3 3 4 0 0 0 1

4 4 4 0 1 0 0

Data Structure of Vending Machine Problem

1 Host
input list finished
o trayEmpty o
output list finished

2 Customer
4 deliver 0 null
input
1
2

list finished
COln 0
button 0

output list finished

null
null

3 Mac Interface
1
2

COlD 0 null
button 0 null

input list finished
3 drkSiq 0 null
output list finished

4 Mac Internal
o trayEmpty 0
3 drkSiq 0 null
input list finished
4 deliver 0 null
output list finished

null

null

Figure 3.11: Data Structure for the Vending Machine Problem.

The DS will be updated whenever data is received and sent. At any point of time, the

DS shows the up-to-date information of the AMPS.

3.6 Summary

This chapter described the LIPS programming language and presented a simple aSYll­

chronous message passing system that is used in LIPS.

LIPS offers distinct advantages in the programming of parallel and distributed systems.

especially in the area of communication and avoidance of deadlock and livelock as de­

scribed in [Bavan and Illingworth, 2001]. The compiler of LIPS has been de\'eloped based

on its high level specification and operational semantics.

The Asynchronous Message Passing System (AMPS) proposed by Bavan et al. [2007b]

has been implemented into the LIPS compiler. The significant feature of AMPS is that

it does not use any buffers. Instead it uses two storage spaces for each data item trans­

ferred. One storage space is held by the data structure, DS, and the other is by the

process that generates the data. The process of distributing the messages is driven by

a driver matrix, DM, which is essentially a bit map that helps to reduce memory usage.

AMPS is presented as a centralised system to aid understanding but it can be partitioned

appropriately and placed in different processors to make the message passing more effi­

cient and localise the inter-process communication within a processor. Considering the

fact that there is no loss of data and the overhead involved is minimal, the small delay

incurred due to lack of buffers is acceptable. AMPS has been initially developed for LIPS

but can be used for other language systems with minor alterations. The formal semantics

for the AMPS [Rajan et al., 2007a] has been described in Section 4.3 of Chapter 4.

Chapter 4

Operational Semantics for LIPS

This chapter describes the work done on developing a formal definition of the opera­

tional semantics and abstract machine of LIPS. As discussed in the Literature Review

(Chapter 2), semantics of any programming language can be represented in many ways.

In order to adequately provide implementation information for both computational and

communication parts of LIPS, we follow a two step strategy:

• Firstly, big-step semantics has been used to define the computations in a LIPS

program. Big-step semantics has been chosen due to its capability to describe the

computations by providing a direct relation between initial and final states and

hiding the internal steps of evaluation.

• Secondly, we extend the big-step semantics with Structural Operational Semantics

(SOS) to describe the asynchronous communication of LIPS. SOS has been chosen

to describe the communication in opposite to a big step semantics as it will tell

us how the intermediate steps of the execution are performed which are crucial in

message passmg.

The combined semantics describes the operational behaviour of LIPS programs by mod­

elling how different statements are executed while capturing both the result of computa­

tion and how the result is produced. This can help to implement the language and its

debugging tools.

The particular style of operational semantics used for the computational part of LIPS and

the abstract machine of LIPS was inspired by Crole (2006). His definition uses an evalu­

ation relation to describe the operational semantics to show how an expression evaluates

to a result to yield a change of state and a compiled Code Stack State (CSS) machine for

an IMPerative experimental language called IMP.

Abstract machines have been used as low-Ie\'el architectures suitable for supporting imple­

mentations of a wide variety of programming languages, including imperative, functional.

and logic programming languages [Hannan and [diller, 1992]. They are distinguished

50

from operational semantics as they provide intermediate representation of the language's

implementation. An abstract machine called the LIPS Abstract :\Iachine (LA~I) has been

defined to execute LIPS programs.

LAM works on the principle of single-step re-write rules describing single-step operation

on the state of the computation. Re-write rules are used as they explicitly show individual

steps of execution and provide an intermediate level of representation for many practical

implementations of programming languages [Hannan and Miller, 1992j. The correctness

of the execution of the LIPS program/expression written using the operational semantics

is verified by comparing the result with the result of executing the same code written

using the LAM of LIPS.

The operational semantics described for the computational part of LIPS has been ex­

tended to accommodate the communication part of LIPS and is implemented using the

following:

• connect statements which define the topology of the network (described in Section

3.1.1 of Chapter 3).

• N ode which contains the set of guarded processes (described in Section 3.1. 2 of

Chapter 3).

• Asynchronous Message Passing System (AMPS) (described in Section :3.3 of Chap­

ter 3).

The work described on the operational semantics for the communication part of LIPS is

a refinement of the work published in [Rajan et al., 2007aj.

The chapter has been organised as follows:

• Section 4.1: describes the operational semantics for the computational part of LIPS.

• Section :1.2: defines the LAM, the LIPS Abstract Machine.

• Section 4.3: describes the operational semantics for the communication part of

LIPS.

• Section 4.4: gives the necessary re-write rules and the LAM code for the communi­

cation part of LIPS.

• Section /1.5: summary.

51

4.1 Operational Semantics for the Computational Part
of LIPS

The Computational part of a LIPS program comprises of the statement blocks associated

with the guarded processes. The operational semantics of the statements in the statement
block are described by listing

• the syntactic categories,

• the type assignments, and

• the evaluation relation which specifies the start state of the program, its transition
semantics, and the final result.

Operational semantics operate on the abstract syntax of the programming language. The
evaluation relation

(P, Q) -U- (P,5')

is created using the abstract syntax. This section defines the following:

• the abstract syntax for the computational part of LIPS,

• its type system which is denoted as

P: : (j (the program expression P is of type (j), and

• the operational semantics described using an evaluation relation.

The configuration of the instruction in the statement block of the guarded processes

consists of a program expression at a specified state. A Program expression in LIPS is a

combination of values, variables, operators, and commands. A detailed description about

the expression used in a LIPS program can be found in Section 4.1.1 and the list of LIPS

expressions can be found in Table 4.5. If the program expression under consideration is

a command, it is described using a set of computations to result in a change of state.

4.1.1 Abstract Syntax for the Computational Part of LIPS

As a first step in defining the abstract syntax, we list the syntactic categories in Table

4.1.

Table 4.1: Syntactic Categories for the Computational Part of LIPS

Set of integers Z de! { ... , 1,0,1, ... }

Set of real numbers de!
R -- {decimals}

Set of Booleans de!
B -- {true, false}

Set of strings S de! { TR -- stringlitera/s}

Set of character symbols de!
C -- {charaterlierals}

Set of locations LOC ~ {Ll' L2 • ... }

Integer constant de!
rCst -- {nln E Z}

Real number constant de!
RCst = {nln E R}

String constant de!
SCst -- {str I str E STR}

Character constant de!
CCst = {char I char E CHAR}

Boolean constant de!
BCst = {bib E B}

Fixed, finite set of numeric operators de!
NOpr = {+, -, /, *, ++, --, + -, - =, *-}

String operator S de! { } Opr= +

Character operator
de!

COpr = {+}

Fixed, finite set of Boolean operators
de!

BOpr = {=, <>, <, <=, >=, >, &&, II,,}

Let ~ be a constant range over the elements Z U RUB U SIR U CHAR and lover LOC.

All the operators except '+' are regarded as mathematical operators. '+' behaves as

a mathematical operator only when it is used on numeric pairs and it behaves as a

concatenation operator, when it is used on a pair of strings or characters. With these

assumptions, the set of LIPS expression constructors is specified as follows:

Lac U ICst U BCst U SCst U CCst U NOpr U BOpr U SOpr U COpr U

{the set of L1 P S commands}.

Let Table 4.2 list the set of operators used in program expressions.

Table 4.2: Set of Operators of LIPS

nopENOpr

bopEBOpr

sopE SOpr

copE COpr

The operator op ranges over NOpr U BOpr U SOpr U COpr. The types of LIPS

statements and their purposes are listed in Table 4.3. We refer to them as expressions.

Both if and switch are symbolised as if-command and can be defined using a single

specification. Similarly, for, do-while and while can be defined using a single specifi-

cation.

Let P denote the elements of program expressions. \Vith the above assumptions and

definitions, the set of expressions, Exp, of LIPS programs can be defined inductiwl~' as

shown in Table 1 A.

53

Table 4.3: LIPS Statements/Expressions

!I Group Name I Statements I Purpose

Expression Assigns a value to a variable
Empty Does Nothing
Read Reads input variables

Simple Statements
Print Displays values on the console
Break Exits the compound block

Stop Exits the program

Continue Restarts loop

Timer Introduces delay

Branch Statements
if Decision making

switch Decision making

for Iterate over a range of values

Loop Statements do-while Iterate a block of statements

while a Boolean expression remains true

while Iterate a block of statements while

a Boolean expression remains true

Table 4.4: Set of Operators of LIPS

P nop P' is to be used for the finite tree as nop (P, P')

P bop P' is for bop(P, PI)

P sop P' is for sop(P, PI)

P cop P' is for cop(P, PI)

if P then P' else P" is for cond(P, pI, P II
) and

while P do P' for while(P, PI)

Each of the program expressions is a finite tree whose nodes are labelled with constructors.

The set of abbreviations known as syntactic sugarl of LIPS shown in Table 4.4 is formed

based on

• set of operators in Table 4.2,

• the Exp of LIPS expressions in Table 4.5,

• the LIPS command set shown in Table 4.6.

lSyntactic sugar gives the designer, in the case of specification computer languages an alternative way
of specifying that is more practical, either by being more succinct or more like some familiar notation. It
does not affect the expressiveness of the formalism (From Wikipedia, the free encyclopedia & Landin,P.J.
August 1965, A generalisation of jumps and labels, Report, UNIVAC systems Programming Research)

54

II

Table 4.5: Exp of LIPS Program Expressions

P ..
- c .. constant

I l memory location
I nop(P, P') arithmetic operator
I bop(P, P') Boolean operator

I sop(P, P') String operator

I cop(P, P') character operator

I empty do nothing

I break break the current loop

I stop stop execution

I continue restart loop

I timer delay process

I assign(l, P') assignment

I sequence(P, P') sequencing

I read(lI, l2, ... , In) read input variables

I print(PI lcI,P2 Ic2, ... ,P nlcn) print values

I cond(P,P',P") condi tional

I while(P, P') while loop

When evaluating the expressions, a set of priority rules is applied. They are:

• The arithmetic, string, and character operators are always grouped to the left. Let

PlOP P2 op P3 be the arithmetic expression under consideration. This will be

evaluated as (PlOP P2) op P3 .

• While arithmetic operators follow the precedence rules of Java language, there is

no priority rule required for SOpr and COpr which stand for String Operator and

Character Operator respectively.

• The sequencing associates to the right. This means that in the case of an assign­

ment expression, the right hand side of an assignment expression is evaluated. For

example, this clause allows i = i + 1.

• Brackets are used as informal punctuations while writing expressions. Consider the

syntaxtreesof"if P then PI else (P2 ;P3)"and"Cif P then PI else P2);P3"

in Figure ·1.1 to understand sequencing with brackets.

55

then then

(If (P) then P1 else P2);P3

Figure 4.1: Syntax Trees for "if P then P1 else (P2;P3)" and "(if P then P1 else
P2) ; P3".

4.1.2 Types in LIPS

Definition 1. The types in a language include both data types and commands that

evaluate to values of specific data types. The types in LIPS are given by the grammar:

(j ::= int I real I bool I string I char I cmd

cmd is the list of commands/expressions.

If a program expression P is of type (j, we specify that as:

P :: (j

and this statement is known as a type statement. There is no reference made to variables

in the abstract machine. Memory location I is used to store data of a specific type. Let

L, the location environment, be a finite set of location pairs, (I, (j), where I is the location

and (j is the type.

The location of each type is required to be unique. Let n be the number of locations to

be used for integer type, m number of locations to be used for real/float, s number of

locations for strings, t number for Boolean, and r for character. We specify the typical

location environment as follows:

L = {h :: int, ... , In :: int, In+l :: real, ... , In+m :: real,

In+m+l :: string, ... , In+m+s :: string,

In+m+s+l :: bool, ... , In+m+s+t :: bool,

In+m+s+t+l :: char, ... , In+m+s+t+r :: char}

The LIPS type assignment statements are defined inducti\·ely using the rules shown in

Table 1.6. Let 'any' specify' any type of data which may be useful while forming Boolean

expressions.

56

Table 4.6: Type Assignments P :: a of LIPS

-[\in E z] .. INT l:int l :: int n:: int .. EL . . INTLOC ..

r:: real [\ir E R] .. REAL -l real EL .. REALLOC l : real

str:: string [\I str E STR] .. STRING l string EL . . STRINGLOC l: string

:: TRUE :: FALSE 1::: bool E::bool -l .. bool EL .. BOOLLOC l :bool

PI :: int P2 :: int [no E NOpr] .. NOP P~~ ::;~:~ ~:a~al [nop NOpr] PI nop P2:: int p .. E .. NOP ..

PI :: string P2 :: string [
E SOpr] .. SOP PI :: char P2 :: char [E COpr] COP PI sop P2 :: string SOp PI cop P2 :: char COp

..

PI :: any P2 :: any [bo E BOpr] BOP where
.. EMPTY ..

empty:: cmd ..
PI bop P2:: bop p ..

any may be NOP, SOP, BOP, COP

.. BREAK . . STOP
break:: cmd

. , stop:: cmd ..

l:: (J' P:: (J' [a] .. ASGNMNT where a is int PI :: cmd P2 :: cmd .. SEQ
l:=P:: cmd

.. PI; P2:: cmd
..

or real or string or char or bool

li :: (J' l2 :: (J' ••• In :: (J' [a] .. READ where a IS
PI :: cmd P2 :: cmd ... Pn :: cmd .. PRINT

read iI, 12, ... In:: cmd
.. print PI i P2 i ... iPn :: cmd

..

int or real or string or char or bool

Pl :: bool P2 :: any P3 :: any PI :: bool P2 :: any

if Pl then P2 else P3 :: cmd while PI do P2 :: cmd

Few examples are listed below to show the deduction of type assignments.

Example 1. Let L1 :: real be a location environment L which occupies the first location

of memory. The deduction for the LIPS expression

57

is given below:

Ll := (Ll + 5.0) * (Ll + 7.67) :: cmd :: ASGSJIXT

D de! L1 ::real :: REAL 5.0::real :: REAL
1- :: NOP

Ll + 5.0 :: real

.. REAL .. REAL
D de! L 1 :: real .. 7.67:: real ..

2 = ---------==------
Ll + 7.67 :: real

:: jYOP

Example 2. Let Ll :: int and L2 :: int be the two pairs in the location environment L

which occupy the first two consecutive locations of memory. Consider the following while
expression:

This while expression contains a conditional expression

and a sequence of expressions

The deduction for the while statement can be given as follows:

D4 D5 "SEQ
D2 D3 L 1· L - L L" D Ll = 1 - , 2 - 2 * 1 :: CON D

1 if Ll = 1 then L2 := 1 else (Ll = Ll - 1; L2 = L2 * L1)

while Ll < 1 do (if Ll = 1 then L2 := 1 else (Ll = Ll - 1; L2 = L2 * Ld)

d! .. INT 1 ;nt :: INTLOC Dl _e _ -=L-=-1 .:..:..,:: I.:..:...·n-=--t ___ --=-_'----:_:;--___ :: EO P
Ll < 1 :: bool

D
de! L 1 :: int

2--
.. INT Eint :: INTLOC ..

Ll = 1 :: bool

D
de! L2 ::int

3--

.. INT Eint :: INTLOC ..

L2 = 1 :: bool

5S

EOP

D
de! L1 ::int .. INT L1 ::int :: INT l::int .. INTLOC

4--- -----------~~~----~~~---------­
L1 = L1 - 1 :: int

.. ASGNMNT

.. INT ~::INT~::INT ..

D de! L2::int L2*L1::int
5 --- --"'--------::----=-~~:.:.:..::=--------

L2 = L2 * L1 :: int

NOP
.. SEQ

In this section, we define the type assignments used in the computational part of LIPS.

In the next section, the operational semantics using its evaluation relation is defined.

4.1.3 Operational Semantics for the Computational part of LIPS

The operational semantics for a statement block associated with a guarded process is

described using natural/big-step semantics. As stated in the beginning of this chapter,

big-step semantics has been chosen as it is simple and easy to implement, describes

how the evaluation of expressions and statements affects the program state, and, in the

case of an expression, what is the resulting value [Strecker, 2002]. It uses an evaluation

relation which explains what is to happen when a program expression at a specific state

is executed. The evaluation relation takes the following form:

(P, s) .ij. (P', s')

The above implies that P evaluates to P' and resulting in change of state from s to s'. P

can take any of the types discussed in Section 4.1.2.

Definition 2. A state s is a partial function which maps a set of locations to any data

type.

Loc-+Z u RUB U STR u CHAR

If s E States and l E Loc and s(l) is defined, then s(l) is the data held in location l at

state s.

Example 3. Consider the following:

s = {ll t---+ 6, l2 t---+ 56.4, l3 t---+ TRUE, l4 t---+ "apple", l5 t---+ ' s'}

which means

S(ll) = 6; S(l2) = 56.4; S(l3) = TRUE; S(l4) = "apple"; S(l5) = ' s'

The general finite state takes the following form:

s = {h -+ C1, l2 -+ C2, ... In -+ cn} where n is a positive integer.

A LIPS expression, P, can be evaluated only when it is of type int I real I string I booll char I cmd.

The following assertions are used while defining the operational semantics for the LIPS

expressions:

59

• (P, s) JJ. (n, s) means that expression P evaluates to a number n E Z/R with no
change of state.

• (P, s) JJ. (str, s) means that expression P evaluates to a string s E STR with no
change of state.

• (P, s) JJ. (char, s) means that expression P evaluates to a string char E CHAR
with no change of state.

• (P, s) JJ. (baal, s) means that expression P evaluates to a string s E B with no
change of state.

Definition 3. If s EStates, l E Lac, and the constant ~ E Z u RuB U STR U CHAR

then s is updated with constant ~ assigned to location l. This is written as:

s = {l ~ ~}

There exists a partial function s = {l ~ ~} : Lac ~ Z U RUB U SIR U CHAR for

each l E Lac which can be defined as:

(s = {l ~ C})(l') de! {~
- s(l')

if l' = l

otherwise

Definition 4. The set JJ. of LIPS configurations can be inductively defined by the set of

evaluation rules where

JJ. C (Exp X States) X (Exp X States)

The rules are formed based on the assumption that s E States and l E Lac and s(l) is

the data held in location l at state s.

The list of evaluation rules with their deduction tree specifications are given below:

Rule 1: A memory location holding a value refers to the data held in it with no change

of state.

-,-------:--:--:-----:- r,provided l E domain of s] JJ. LaC
(l, s) JJ. (s(l), s)

Rule 2: A constant value evaluates to itself with no change of state.

JJ. CaNST
(~, s) JJ. (~, s)

Rule 3: For any program expressions PI and P2 of a specific data type and an operator

(nap, sop, cop, and bop) which can be operated on the given program expressions, the

evaluation rule is given by

60

• first evaluating the two program expressions to yield constant values nl and n2 and

• then applying the operator between the two resultant values with no change of
state.

The deduction tree for integer, real, string, character and Boolean expressions are repre­
sented below:

I t IR lE . de! (PI, s) JJ. (nl' s) (P2, s) JJ. (n2' s)
n eger ea xpresswn = - - JJ. 0 PI

(PI nop P2, s) JJ. (nl nop n2, s)

where PI and P2 should be of same data type which can be either integer or real.

Ch ct E
. de! (PI, s) JJ. (charI, s) (P2, s) JJ. (char2' s)

ara er xpresswn = -- JJ. 0 P2
(PI cop P2, s) JJ. (charI cop char2, s)

S
. E . de! (PI, s) JJ. (strl' s) (P2, s) JJ. (str2' s)

tnng xpresswn = - - JJ. OP3
(PI SOp P2, s) JJ. (strl SOp str21 s)

. de! (PI, s) JJ. (nI, s) (P2, s) JJ. (n21 s)
BooleanExpresswn = (P b P-) JJ. (b -) JJ. OP4

I op 2, s nl op n2, s

. de! (P, S) JJ. ((n, S), S)
BooleanExpresswn - NOT = (P, S) JJ. ('" n, S) JJ. OP4

Rule 4: Empty instruction does nothing with no change of state.

---------,- JJ. EMPTY
(empty, s) JJ. (empty, s)

Rule 5: Break Instruction

• stops the execution of the nearest enclosing loop statement or switch statement in

which it is present,

• passes the control out of the enclosing loop to the instruction following the loop

with change of state.

JJ. BREAK
(break, s) JJ. (break, s')

Rule 6: Stop instruction stops the execution of the program.

-:-----:----;--~ JJ. STOP
(stop, s) JJ. (stop, ¢)

Rule 7: Continue instruction passes the control to the end of the loop's body where it

is present with a change of state.

JJ. COSTIX[JE
(continue, s) JJ. (continue, s')

61

Rule 8: Timer instruction delays the program by a specific number of milliseconds with
no change of state.

(timer, s) JJ. (timer, s) JJ. TIMER

Rule 9: Assignment instruction sets the value of the variable on the left hand side

(LHS) of the equal sign to the result of evaluating the expression on the right hand side

(RHS). The data types of both the RHS and LHS are the same.

(P, s) JJ. (n., s) JJ. ASGNAI NT
(l := P, s) JJ. (empty, s(l -+ n))

Rule 10: Catenation shows the order of instructions to be executed.

Let PI and P2 are instructions in sequence where PI has to be executed first which is to

be followed by P2. The catenation is represented as PI; P2.

(PI, Sl) JJ. (empty, S2)(P2, S2) JJ. (empty, S3)
(PI; P2, Sl) JJ. (empty, S3)

Rule 11: Read instruction reads the data from the user and assigns it to the respective

memory location.

Rl R2 ... Rn JJ. READ
(read(h, l2' ... In), s) JJ. (empty, s(h -+ Cl, l2 -+ C2, ... , In -+ en))

Rl is (read(ll)' (read(l2' ... , In))) JJ. (ll -+ Cl, s(l2 -+ C2, ... , In -+ cn))

R2 is (read(ll)' read(l2) , (read(l3, ... , In))) JJ. (ll -+ Cll l2 -+ C2, S(l3 -+ C3, ... , In -+ en))

Rn is (read(h), read(l2)' , ... , read(ln)) JJ. (ll -+ Cl, l2 -+ C2, ... , In -+ cn)

Rule 12: Print instruction displays the list of constants or values of the variables or

expressions.

print(Plicl, P2ic2, ... , Pnicn) JJ. (empty, s(nl' n2, ... , nn))
- -

where ~iCi means program expression or a constant.

PR1 is (print(Plicl), (print(P2ic2, ... , Pnien))) JJ. (print(nl), s(print(P2ic2, ... , Pnien)))

PR2 is (print(Plicl),print(P2ic2), (print(P3ic3, ... , Pnien))) JJ.

(print(nl' n2), s(print(P3ic3, ... , Pnicn)))

PRn is (print(Plicl),print(P2ic2), ... , print(Pnicn)) JJ. (print(nl' n2, ... nn))

62

Rule 13: Branch instruction conditionally executes a statement block depending on
the value of the condition part of the expression.

Rule 14: Loop instruction executes a set of instructions more than once based on a
condition.

(P_l, 31) -u- (~, 31) (P2, 3d -u- (empty, 32) (while PI do P2, S2) -u- (empty, S3)
(while PI do P2, SI) -u- (empty, S3) -U- LOOP1

(P, SI) -U- (false, SI)

Also, the behaviour of the finite sequences of commands is unchanged by rearranging the

sequence tree. This shows that the associative property holds. Let PI, P2 , P3 be three

expression statements and sand s' are two states. The associative property can be stated

as follows:

LIPS uses built-in functions which are mapped to the java built-in functions and require

no separate specifications.

4.2 Abstract Machine for the Computational Part of

LIPS

This section presents the formal description of the computational part of the LIPS Ab­

stract Machine (LAM). The goal of developing LAM is to provide a precise and well

defined semantic framework which can be used for the refining and verification of the

LIPS compiler. The LAM executes instructions using single step re-write rules. A re­

write rule breaks the steps involved in transforming a given expression P into a final value

F(P -U-e V) which is denoted as follows:

The mechanical process of producing the final state, V, from the given state, P. is called

mechanically reproduce.

The LAI\1 comprises of a set of re-write rules to transform the L:-\\1 configuratiolls. The

63

LAM configuration is a triplet denoted as (C, 8, 8) where

• C is the code to be executed

• 8 is the stack which can contain a list of integers, real numbers, Boolean, characters,
and strings

• 8 is a state which is the same as that defined in the LIPS operational semantics.

Code C of the LAM configuration:

The code C of the LAM configuration is a list which is formed by the following grammar:

Let ins specify the set of LAM instructions, op be any operator allowed in a LIPS

program, l be any location, and ~ be any constant. The symbol '-' is used to denote an

empty code where the empty code is specified as

C:-

The instruction ins and code C are defined as follows:

ins ::= PU8H(~) 1 FETCH(l) 1 OP(op) 1 READ(h, l2' ... , In) 1
PRINT(h 1 C1, l21 C2, ... , In 1 cn) 1 EMPTY 1 BREAK 1 STOP 1 CONTINUE 1

A8GNMNT(l) 1 BR(P1, P2) 1 WHILE(P1 do P2) C ::= 1 in8 : C

Stack S of the LAM configuration:

The stack 8 is produced using the following grammar:

Let ~ be any integer, real, Boolean, string, or character. Let the symbol '-' be used to

denote an empty stack which is denoted as 8 : -. Generally, the stack is defined as

8::=-1~:8

State s of the the LAM configuration:

The state s of LAM configuration is the state of the LIPS program at any point of

executing an expression.

With the definitions above, the LAM re-write rule can be written using the triplets as

follows:

where 1------+ is a binary relation which changes the configuration (C1, Sl, 8d to (C2 , 82 , 82),

C1 and C2 are the initial and final codes, 81 and 8 2 are the initial and final status of

the stacks, and 81 and 82 are the initial and final states. The binary relation is defined

inductively on the set of all the LAM configurations by a set of rules. Each rule has the

following form:

6-1

The rules do not have hypotheses/premises. The LAM re-writes have the following re­
stricted structure.

Given an expression, the first step is to load the machine to an initial state. The last

re-write step must be an instance of a rule in the LAM which denote the successful termi­

nation of the machine and produce a final value. An expression evaluates to state's' with

respect to the LAM if there is a series of re-writing rules satisfying the above restriction.

The general form of LAM re-write rule, RULE, is as shown below:

The re-write rules for the LAM are summarised below:

1. Push a constant n of a specific data type (J' into the stack S. (J' can take up one of

the following data types:

{int, real, bool, string, char}

The re-write rule may be written as follows:

II !l : C II S II s II ~ II c II !l : (J' : S II s II

Example 4. The following example shows the PUSH operation:

IllQ : C II S II s II ~ II c IllQ : int : S II s II

2. FETCH a value from a memory location Z and place in the stack S.

liz: c II S II s II ~ II c II s(Z) : S II s II

Example 5. Let Z be a location which has a value 100 stored in it (s(l) = 100).

Fetching that value and placing it in the stack is specified as follows:

liz : C II S II s II ~ II c 11]Jill : S II s II

3. Let op be a LIPS operator which operates on two operands/program expressions

PI and P2 which are of the same data type. The re-write rule for H oPP2 can be

stated as below:

II PIOPP2 : C II S II s II ~ II PI : P2 : op :c II S II s II

Example 6. Let PI be 10.6 + 12, P2 be 5.6 * 2 and + be op. The re-write rule is

65

written as as below:

11 10.6 + 12 + 5.6 * 2 : C II s II s II f--+ 1110.6 + 12 : .5.6 * 2 : + : C II s II s II

4. Assignment instruction is used to assign the evaluated value of the program

expression P to a memory location l, i.e., l := P.

III := P : C II S II s II f--+" P : ASC N M NT(l) :C II s II s II

II ASCNMNT(l): C II ~: S II s 11f--+11 P: ASCNMNT(l):C II s II s{l f--+~} II

Example 7. Let l = 10.9 be an assignment statement to be executed. The re-write

rule can be specified as follows:

III := 1QJl : C II S " s II f--+ 111!Ut : ASCN}'I NT(l) : C " S " s II

II ASCN M NT(l) : C ,,1!Ut : S " s II f--+ II C " s II s{l f--+ 1!Ut} II

5. Empty instruction

II empty :C " S II s II f--+ II C II s II s II

6. Break instruction

II Break :C II s " s II f--+ II C II s II s II

7. Stop instruction

II Stop :C II s II s II f--+ II C II s II - II

8. Continue instruction

II continue :C " S " s II f--+ II C " s " s II

9. READ instruction

Example 8. Let read reads a list of finite number of constants Cl, C2, ... , en and

store them in memory location lb b, ... ,In. The re-write is given below:

II read(h,l2): ells II s 11f--+11 C IIll ~ 16: l2 ~ 2!j:read: S II s II

66

II c II h ~ 1&: l2 ~ ~: read: 8 II s II ~ II c II 8 II s{ h ~ 16: l2 ~ 2.}} II

10. print instruction: Let CI, C2, ···,Crt be constant values, PI, P2, ... , Pn be a set of

program expressions and nl, n2, ... ,ns be the set of evaluated values for the program

expressions respectively to be printed. The re-write for the print instruction is given

below:

II print(cI\PI := nl : C2\P2 := n2 : ... : cn\Pn := nn):C II 8 II s II ~ II c II ~,~, ... , nn :8 II s II

II print(nl' n2, ... , nn) : C II 8 II s II ~ II C II nI, n2, ... , nn : S II s II

II c II nl, n2, ... , nn : S II s II ~ II c II 8 II s{ nl, n2, ... , nn} II

Example 9. A re-write rule to print integers 16 and 25

II print(1&,~: C II 8 II s II ~ II c 111&,~: S II s II ~ II c II 8 II s{1&,~} II

11. Catenation instruction Let PI and P2 be the two program expressions to be

executed in sequence. The re-write rule is given below:

12. Branch instruction Let PI be a program expression to be executed if the condition

is true (T) and P2 be the program expression to be executed if the condition is false

(F).
II BR(PI; P2) : C II ~ : S II s II ~ II PI : C II 8 II s II

II BR(PI; P2) : C II E : S II s II ~ II P2 : C II 8 II s II

13. Loop instruction Let PI and P2 be two program expressions where P2 will be

executed until PI is true. The re-write rule is given below:

II while (PI do P2) : C II ~ : S II s II ~ II BR((P2; while (PI do P2)), EMPTY) : C II 8 II s II

4.2.1 Compilation of LIPS Program Expressions into LAM Codes

A location in LAM can store a value which is anyone of the allowed data types. The

LAM must start in a known state. It is assumed that the program expressions are t~;pc

checked. This section describes the compilation of the LIP8 expressions into the LA:"1

code. Let
~ - ~ : EXP -+ LAMcodes

67

be the function which takes a LIPS program expression and compiles it to a LA:'1 code.

The PUSH and FETCH operations are specified using rules shown in Table 4.7

Table 4.7: Compilation of LIPS Expressions into LA:'1 Code

Instruction Rules

PUSH [c ~ def PUSH(c)

FETCH [l] def FETCH(l)

operator op [P1opPd def [Pl~: [P2~ : OP(op)

Assignment [l := P~ def [Pll: ASGNMNT

EMPTY [empty ~ def EMPTY

BREAK [break ~ def BREAK

STOP [stop ~ def STOP

CONTINUE [continue ~ def CONTINUE

TIMER [timer~ def TIJvIER

READ [read(h, l2' ... , In)l ~ def READ(ll, l2, ... , In)

PRINT [print(P1Icl, P2ic2, ... ,Pnlcn)l~ def PRINT(P1Icl, P2 1c21 o •• ,Pnlcn)

Branch [if P then P1 P2 ~ def [P]: BR([Pd [Pd)

Loop [while P1 do P2 ~ def W H I LE([P1 ~ do [P2 ~)

4.3 Operational Semantics for the Communication

Part of LIPS

As we are modelling the asynchronous message passing for LIPS, we need to model how

different statements are executed for message passing. Structural Operational Semantics

(SOS) or small-step semantics can express parallelism by using interleaving steps. Execu­

tion of statements using SOS is described by one or more transitions and can capture both

the result of computation and how the result is produced. These reasons led us to choose

SOS along with the big-step semantics to describe the asynchronous communication in

LIPS which is implemented using the Asynchronous Message Passing System (AMPS).

Once the semantics has been defined for AMPS and the other statements involved in

message passing, it can be used as a technical reference manual.

AMPS consists of a Data Structure (DS), a Data Matrix (DM) and a set of interface

codes which are implemented using a set of function calls. These are generated implic­

itly by the LIPS compiler and therefore it is decided to hide some of the atomic actions

performed by these functions. SOS for asynchronous process description languages are

usually described by the Labelled Transition Systems (LTS). We illustrate the LTS for

the communication part of LIPS by formally defining syntactical categories. From these

formal definitions, we demonstrate the LTS.

In order to describe the SOS for the communication part of LIPS, the primiti\Oes of A:'1PS

68

Table 4.8: Extended Data Types for the Communication Part of LIPS

Name of the Purpose
Type i

I

Channel]\1eans of communication that carries data belonging to allowed types.
Flag Binary data type which can be set or reset to show the availability of the

data.
node_number Number of the node from where the data is received or to where the data

is sent.
node_name String data type to show the name of the node.
Vnum Variable number - A number is assigned to the channel variables in the

network.
Vname Variable Name - A string type data to represent the name of a variable.
counter Number showing the number of nodes that are to receive the data.
type_number A unique integer number assigned to each type of data - 1 .. 9.
Data Data in string form participating in the message passing.
data...packet A combination of no de-Ilumber , vnum, type-Ilumber, data which IS

passed between the nodes during message passing.
In List A singly linked list used to store the list of input channels and related

information. It consists of the Vnum, Vname, Flag, Data, and a link to
the next input channel in the list.

OutList A singly linked list used to store the list of output channels and related
information. It consists of Vnum, Vname, counter, Data and link to the
next output channel in the list.

DS A data structure which is a singly linked list where all the nodes in the
network are linked to all the other nodes in the network. It consists of
node-Ilumber, node-Ilame, InList, OutList, and a link to the next node.

DM A two dimensional matrix which contains the details of channel variables
in the networking: Vnum, node_number, typeJlUmbeL status of all the
nodes in the network to where the channel could be sent as input.

and the communication schema are described.

4.3.1 Primitives and Communication Schema for the Asynchronous

Message Passing in the LIPS

The AMPS of LIPS makes three main function calls and the data involved in the message

passing is always sent to the Data Structure (DS) or received from the DS thereby the

sender or receiver never waits for the recipient or the sender respectively. The basic

types of data have been extended with the additional data types and functions to handle

the asynchronous communication. Table 4.8 shows the extended data types needed to

implement the message passing. Table 4.9 lists the functions used in the Ai\IPS of LIPS.

69

Table 4.9: Functions Used in the A:\IPS of LIPS

N arne of the Function Purpose

IS_oLto~end (Src_node_nurnber, V nurn) Sender checks whether it

can send data to the A:\IPS.

Is_input_available(node.Jlurnber, V nurn) Receiver checks the avail-

ability of the data in the

AMPS.

Send(dat~packet) Sender sends the data

packet.

When one of these functions is called, the set of statements which are executed belong

to the computational part of LIPS and big-step semantics can be used to define the

operational behaviour.

4.3.2 Communication Schema for Asynchronous Communica­

tion

The communication conventions essential for asynchronous communication are described

by the following:

• Guarded processes which make up the node.

• Node with its input and output channels.

• Connect statements needed to express the topology of the network.

• Functions used by the AMPS of LIPS to perform message passing.

A guarded process in LIPS consists of a guard and a statement block. The guard is

a collection of channels which have to hold valid data for the statement block to be

executed. Let GP be the set of guarded processes in a process node where,

Let G
I

, G
2

, G
3

, ... , Gn be the guards corresponding to the guarded processes respectively.

are the data channels and m varies between 0 and l.

Let f chi!, f Ch
i2

, f Chi3 , ... , f chim be the flags associated with the data channels \\" here

f ch
ij

will be set to true if data is available in chij where i ranges between 1 and II and j

ranges between 0 and l.

70

The code to execute the set of guarded processes in a node can b· £ 11 e gIven as 0 ows:

where

while (true) do {

}

if (Gl) {statement_block_l}
else

if (G2) {statement_block_2}
else

else

if (Gn) {statement_block_n}

- n, number of guards, is an integer.

- Vi : 1 < i < n, statemenLblock_i for G i will be executed only when the data is

available in all of the channels. If fchil, fch i2 , fchi3 , ... , fchim are the flags to the input

channels for Gi , then fchi1 1\ fchi2 1\ fchi3 1\ ... , 1\ fchim should be true to confirm the

availability of data in the input channels.

The following are the communication schema:

If Gi is true then new values are available on the corresponding data channels

Chib Chi2 , Chi3 , ... , chim .

2. if-statement/alternate construct for a guarded process G~:

if (fchil 1\ fchi2 1\ fchi3 1\ ... 1\ fchim) then ~l; ~2; ~3; ... , Pik

where V j : 0 < j < m, fchij are flags to channels which will be set to true when

their respective channels have valid data and ~l; ~2; Pi3 ; ... , Pik be the sequence

of program expressions. If the guard becomes true then the associated sequence of

program expressions will be executed and values for 0 or more output channels will

be generated.

3. while statement for a node consisting of a set of guarded processes GP:

Let n be the number of guarded processes in a node and let m be the number of input

channels in each guarded process where m varies between 0 and l. The node can be

constructed with a set of alternate constructs embedded by a while statement as

71

follows:

while (true) do

if (fchu 1\ fch I2 1\ fch 13 1\ ... 1\ fch 1m)

then Pu; P12 ; P13 ; ... , Plk

else

if (fch2I 1\ fch 22 1\ fch 23 1\ ... 1\ fch2m)

then P21 ; P22 ; P23 ; ... , P2k
else

else

if (fchn1 1\ fchn2 1\ fchn3 1\ ... 1\ fchnm)

then Pnl ; Pn2 ; Pn3 ; ... , Pnk

4. Connect Statement:

Let R = R I , R2 , ••. , Rn be the set of of nodes in a system under consideration
where n > 1,

Let ch = ChI, Ch2' ... , chk be the set of channels/ports to be used in the system
where k > 0,

Let ichu, ichl2 , ... , ich1m E ch be a set of input channels for a node, say Rl where

m > 0, and

Let ochu, OCh12 , ... , ochls E ch be a set of output channels for a node, say Rl

where s > o.

The connect statement for the node RI is written as follows:

5. The function to check whether input data is available or not:

The result of this function call is either 1 or a 0 indicating the availability of data.

If a 1 is received, then the guard will ask for the data to be sent to it. The function

is specified as:

Is_inpuLavailable (node-Ilumber, vnum)

6. The function to find whether data can be sent or not:

This returns a value 1 or O. If 1 is received, then the second function is initiated

which sends the data as a data packet. If 0 is received, the sender waits ulltil it

gets a l.

-'J
1-

Is_olLto-.Send (Src-Ilode-Ilumber, vnum)

7. The function to send the data:

Send(dat~packet)

The same send function is used by the data structure to send the data packet to a

requested node.

The seven schema, based on the working of AMPS, form the major communication rules

used in the LIPS language.

4.3.3 Syntactic Categories for Asynchronous Communication

The existing data types have to be extended and the extended data types will be used

implicitly by the LIPS compiler. The extended data types are given as below:

~ ::= int I real I bool I string I char I channel

flag I node_number I node_name I counter I vnum I vname

type_number I data_packet I inlist I outlist I data_structure I cmd

According to the extended data types, the syntactic categories of LIPS have been extended

and are listed below:

1. Set of Channel Numbers - positive integer values:

11. Set of flags which can take Boolean values:

111. Set of node numbers

NODE_NUMBER de! k {finite set of integers}

IV. Set of node names

NODE_NAME de! {finite set of integers}

v. Set of Channel Variable Numbers

VNUM de! {finite set of integers}

,3

VI. Data Type Numbers

TYPE NUMBER de! {I 2 3 . - , , ,4, 5, 6, 7, 8, 9} Type number IS the number assigned

to each type of data. For example, 1 is assigned to integer data.

Vll. The original data in string form

de!
DATA = {data I data E STR}

Vlll. Data Packet

de!
DATA_PACKET = <nodeJlumber, vnum, typeJlumber, data>

IX. List of Input channels
InList de!

Struct inlist {

vnum, vname, flag, data,

Struct inlist *next}

x. List of Output channels

O L · de! ut 1St =

Struct outlist {

vnum, vname, counter, data,

Struct outlist *next}

Xl. Data Structure
DS de!

Struct data_struct {

nnum, nname, inlist, outlist,

Struct data_struct *next}

XII. Data Matrix

Data_Matrix de! Dr.I [m] [n]

where m is the number of rows which is equal to the number of variables and n is

the number of columns which is equal to the number of nodes in the network plus

3. The various columns in the network are Vnum, nodeJlumber, ty"pc_llumber,

nodeJlumber of the nodes in the net,,"ork.

It

)Clll. Checking the availability of data

I I A '1 de! I ' , s nput val = s-1npuLavallable(node-Ilumber, vnum)

When this function is called, a set of actions take place which are represented by'

the following code segment:

int availstatus = 0

while (DS != null) do {

if(DS.node_number = node_number) then{

while(inlist != null) do {

}

}

if (inlist.vnum = vnum) then{

if (inlist.flag = 1) then{

availstatus = 1

break whileloop

}

}

inlist = inlist.next

if (availstatus = 1) then

break whileloop

DS = DS.next

}

return availstatus

XIV, Checking the possibility of sending the data

ISOKTOSEND de! Is_olLto-Bend(Src-Ilode-Ilumber, vnum)

When this function is called, a set of actions take place which are represented by

the following code segment:

int status = 0

while (DS != null){
if(DS.node_number = Src_node_number) then {

while(outlist != null) do {

if (outlist.vnum = vnum) then {

if (outlist.counter = 0) then{

status = 1

75

break whileloop
}

}

outlist = outlist.next
}

if (status = 1) then

}

DS = DS.next

}

break whileloop

return status

xv. Sending data

de!
SEND = Send(dat3.-packet)

where the dat3.-packet consists of the node number, variable number, vnum, type of

data, type_number, and the actual data, data, in string form. On the receipt of

this packet, the AMPS checks the data structure, DS, to see whether the variable

number, and type are correct and stores the data in the appropriate field. The

counter is set to the number of nodes that are to receive the data by consulting the

data matrix, DM, which consists of m number of rows and n number of columns

where m is the number of variables where n is (3 (to store the variable number, its

source node number and type number) + number of nodes in the network). The

Send function returns a 1 to indicate a success. For a given node number, variable

number and its type, the code segment to find the value for the counter by using

the data matrix is given below:

Let i, j be two integers and let i=O and j=3.

int counter = 0

while (i <= m -1) do {

}

if (DM[i] [0] = vnum) then{

}

if ((DM[i] [1] = node number) ~ (DM[iJ [2J = type_number)) then{

}

while (j <= n - 1) do{

}

if (DM[i] [j] = 1) then

counter = counter + 1

return counter

76

The code segment to place the data in the data structure and set the counter value
is give below:

int status = 0

while (DS != null) do {

}

if(DS.node number = Src_node_number) then{

while(outlist != null) do{

}

}

if (outlist.vnum = vnum) then{

outlist.data = data

outlist.counter = counter

status = 1

}

return status

After storing the data, the AMPS consults the DM, distributes the data to other

DS nodes, and decrements the copy counter accordingly. Here the data is written

to the input channel variable of a receiving DS node, provided the status counter

of that input channel variable is 0 (that is, the channel is free to receive new data).

Once the data is received, the status is set to 1. If any of the DS destination nodes

are unable to receive the new data, the AMPS periodically checks whether they are

free to accept the data.

while (DS != null){

}}

}

if(DS.node_number = node_number) then{

while(inlist != null) do{

if ((inlist.vnum = vnum) - (inlist.flag 0)) then{

inlist.data = data

inlist.flag = 1

counter = counter - 1

}

inlist = inlist.next

return counter;

XVI. Guard

I I

XVll. Guarded Process

XVlll. Node

R. def
J

while (true) do

if (fchi1 /\ fch i2 /\ fchi3 /\ ... /\ fchim) then Pil ; Pi2 ; R.3; ... , Pik
od

for all 1 < i < n where n is the number of guarded processes for a node R
j

E R.

XIX. Connect Statement

{

CONNECT def

R(ichil /\ ichi2 /\ ... /\ ichim) --+ (OChil /\ OChi2 /\ ... /\ ochis)

where R E R

ichil , ichi2 , ... , ichim E ch

OChil' OChi2 , ... , ochis E ch

The type assignments of LIPS have been extended and are given in Table 4.10.

Table 4.10: Extended Type Assignments P :: (7 of LIPS

ch:: channel [\i ch E CH] .. CHANNEL l: channel l :: CH E L :: CHANNELLOC ..

fch:: flag [\i f ch E BOOLEAN] .. FLAG -l .. flag E L :: FLAGLOC ..
l: flag ..

[\in E Z] :: NODE_NUMBER l :: nodenum E L .. INTLOC
l :nodenum

..
11 :: nodenum

11:: vnum [\in E Z] :: VNUM -l -l :: vnum E L :: INTLOC
:vnum

n :: typenum [\in E Z] :: TYPE_NUMBER
l :typenum l :: typenum E L :: INTLOC

§.tc::data[Vstr E STR] .. DATA l:data l :: data E L :: STRINGLOC

n:: counter [\In E Z] .. COUNTER I: counter l :: counter E L .. INTLOC

§.tc::vname [\Istr E STR] :: VNAME l: vname l .. vname E L :: STRINGLOC

l:node_name l :: node_name E L :: STRINGLOC

array[][]::DM[m][n] [Vm,n E Z] :: DM[m] [n]

:: INLIST
. de!

I nLtst = {Struct vnum, vname, flag, data, Strud inlist *next}

Dl is vnum :: VNUM D2 is vname :: VNAME

D3 'lS flag :: FLAG D4 is data :: DATA D5 'lS struct inlist * next .. InList

Dl D2 D3 D4 D5 .. INLIST
de!

Out List = {Struct vnum, vname, flag, data, Strud outlist *next}

Dl is vnum :: VNUM D2 is vname :: VNAME

D3 'lS flag :: FLAG D4 is data :: DATA D5 'lS struct outlist * next .. OutList

Dl D2 D3 D4 D5 :: DS
DatO-Struc de! {Struct nnum, node-.name, inlist, outlist, Strud DatO-Struc *next}

D3 'lS inlist :: INLIST D4 is outlist :: OUTLIST

D5 IS struct Data_Struct * next :: DS

79

Dl D2 D3. D::J
de!

DAT ~ ACKET = {node_number,vnum, type_number,data}
:: DATA_PACKET

Dl is node_number :: NODE_NUMBER D2 is vnum :: VNUM

D3 is type_number :: TYPE_NUMBER D4 is data :: DATA

node_number :: NODE_NUMBER vnum :: VNUM

I s_inpuLavailable(node_number, vnum) :: cmd
.. IS _INPUT_AVAILABLE ..

srcnode_number :: NODE_NUMBER vnum :: VNUM .. IS_OK_TO_SEND
I s_ok_to_send(Srcnode_number, vnum) :: cmd

..

data_packet,:: DATA_PACKET
SEND ..

S end(data_packet) :: cmd
..

There are no separate type assignment statements needed for the node and guarded

process as they make use of the existing while and alternate construct.

4.3.4 Structural Operational Semantics (SOS) for the Asyn­

chronous Communication

In SOS, the behaviour of the processes is modelled using the Labelled Transition Sys­

tem (LTS). These transitions are caused by the inference rules that follow the syntactic

structure of the processes.

Definition 1. Labelled Transition System

A Labelled Transition System (LTS) is a triplet {S, K, T} where:

• S is a set of states,

• K is a set of labels where K= {kl k E K},

• T = {~, k E K } is a transition relation where ~ is a binary transition relation

on S.

The transition can be written as s ~ Sf instead of (s,S')E~.

LTS is a set of inference rules used to specify the operational semantics of the calculus.

It is defined using the syntactical structure of the term defining the processes and it

80

describes the observational semantics. Th 1 c e genera lorm of SOS for a function can be
defined as follows:

Let f be the name of the function.

Let x = {Xl, X2, '" xn} be the set of argument parameters associated with the function.
Let Xi : 1 < i < n where

type of Xi E CHANNEL V FLAG V NODE_NUMBER V VNUM V VNAME V TYPE_NUMBER V

DATA V DATA_PACKET V COUNTER V DATA_STRUCTURE V INLIST V OUTLIST.

Let y be the value returned by the function where y is either a 0 or a 1.

Let 51 and 52 be the initial and final state of the caller respectively.
The SOS is

Following are the inference rules used to specify the SOS for the asynchronous message
passing in LIPS.

1. Guard and Guarded Process

The SOS for a guarded process G Pi is given below:

Let FCHi = {fchil , fch i2 , ... , fchim } be the set of flags associated with the input

channels CHi = {Chil' Chi2 , ... , chim } respectively for some positive integer m 2: O.

Let Gi = (fchil , /\ fch i2 , /\. .. /\ fchim) be a guard or condition to be satisfied for

the associated process body to be executed.

Let G Ni is guard number and VNUM is variable number. For a f chij to be true,

I 5_inpuLavailable(G Ni, V NU M of Chi) should return 1. When a guard in a node

requires an input, it makes the 15_inpuLavailable function call to the AMPS. When

a 1 is returned, the node automatically initiate the Send function which sends the

data from the Data Structure (DS) of the AMPS.

The SOS for a guard G i is specified as follows:

T T
(fchil:=T,Sl)~(chil'S) (fChim:=T.,sr)~(chim'S) .. G

i T
(fchil /\ fch i2 /\ ... /\ fchim , 51) ---=-+ (T{chil' Chi2l "'l chim}, 52)

Let ~ = Pil ; Pi2 ; '" ; ~k be the set of statements in the process body for some

k > O. These statements may contain assignment statements to assign values

for the output channels. When such a statement is encountered, the function,

15_ok_to_5end will be called. If this call returns a 1 then the Send function will be

called to send the data to the DS of the AMPS.

Let OCHi = {'['a I il, vali2l '" 1 valis} be the set of values associated ,,"ith the output

81

channels for the guard Gi where s > o.

The SOS for the guarded process G ~ is specified as follows:

GP t

2. Node

The node R E R, which is a collection of guarded processes, is illustrated using
an infinite while loop. The SOS for a node using while statement is given below:

Let GP = {GPl , GP2 , ... , GPn } be the set of guarded processes where n > o.
Let FCHi = {Jchil , JChi2 , ... , Jchim } be the set of flags associated with the input
channels CHi = {Chil' Chi2 , ... , chim } respectively for some positive integer m > o.
Let DC Hi = {valil' vali2, ... , valis} be the set of output channels associated with
the guarded process GPi where s > o.

--- :: ~
(while (T) do (GP1 else GP2 else ... GPn), SI) L

A B

(if (T then (GPi ; while T do (GP1 else GP2 else ... GPn))), Sk)

CH· CH

A de! T (Gi,sj)~(T,sj) (P~~)~(OCHi,Sj) :: GP
i

(T, Sj) --=-t (T, Sj) (if Gi then Pi, Sj) ~ (OCHi, Sj+l)

where 1 ::; j ::; k and k is some positive integer.

B de! _________________________ A __ B ______ =-______________ __

(while (T) do (GP1 else GP2 else ... GPn), Sj) L
.• D .
.• "'''1

(if (T then (GPi ; while T do (GP1 else GP2 else ... GPn))), Sk)

3. Network definition

A connect statement is closely associated with the the node's definition and it

specifies the set of input and output channels associated with a node. Details of

the connect statement can be found in Section 3.1 of Chapter 3.

Let R be a node in a system under consideration.

Let ICHi = {ichil' ichi2 , ... , ichim } be the set of input channels associated with ~

where m > o.
Let DC Hi = {OChil' OChi2 , ... , ochis } be the set of output channels associated with

R where s > o.
The SOS for one connect statement is given below:

A network may consist of more than one node. Let n be the number of nodes

in a network and m and s are the number of input channels and output channels

82

respectively whose value changes for every node in the network. The SOS for the

network defined using these n number of connect statements is given below:

:: Conned

4. Is~nput_available

The transitions for IS-INPUT-AVAIABLE returning a 1 is given as:

A
node_number, vnum

(Is_inpuLavailable(node_number, vnum), Sl) -==========+) (1, S2)
:: ISJNPUT-AVAILABLE

A del (while (1:) do (B), Sl) L (if (T) then (B; while (DS! = null) do (B)), S2)

(while(DS! = null) doB, sI) L (1, S2)

T T
B del (DS.node_number=node-number, s1) --=-+ (T, Sl {DS.node-number=node-number}) (C, Sl) --=-+ (C, S2)

node-number
(if (DS.node_number = node_number) then C, Sl)) (T, Sl)

del (while (T) do (D), Sl) L (if (T) then (D; while (inlist! = null) do (D)), sd
C= T

(while(inlist! = null)doD,Sl) --=-+ (1, sI)

T I
D del (inlist.vnum=vnum, Sl) --=-+ tr, sdinlist.vnum=vnum}) (E, sd -- (E, Sl)

(if (inlist.vnum = vnum) then E, Sl) ~ (T, sI)

T availstatus..
E del (inlist.llag-1, Sl) --=-+ CT, sdin1ist·llag=1}) (availstatus=l, Sl)) (avadstatus=l, s2{avatlstatus=1})

(if (inlist·flag = 1) then availstatus = 1, sI) ~ (T,s2{availstatus = I})

IS-INPUT-AVAIABLE returning a 0 is given as:

E.
(while (F) do (DS-DS.nezt;A) • • ll~(if (F) then (A).31)

F
(while(DS!= nUll) do A,Sl) --=-+ (0, Sl)

node-number, vnum
(Is_inpuLavailable(node_number, vnum), Sl) -=========-+) (0, S2)

5. Is_aleta_send

IS_OIeTO_SEND returning a 1:

A

(Is_ok_to_send(node-number, vnum), Sl)
node-number, vnum) (1, S2)

A del (while (T) do (B), Sl) L (if (T) then (B; whil~ (DS! = null) do (B)), S2)

(while(DS! = null)doB,Sl) -=-+ (1, S2)

T

d I (.D~S.~n~od~e..=n~u~m~b~er::=:S~r=c-~n~od~e-=:n~u~m~b~er~,~sl~)-=I:::::) ~(T~,~s~d~D::::S~. n~o~d=e-~n.:::um~be::.:r-::.S~r:...::c-::.n::od::e-;:n:;;u~m::be~rt.}-;;) ~(~C~, 11-.:1.:..) -:-_' (;...C_, 11....:2.;;..)
B e ...!. node-number (T)

(if (DS.node_number = Sre-node_number) then C, sd) _, Sl

83

C del (while (1:) do (D), Sl) L (if (T) then (D; while (inlist! - null) do (D)), sr)

(while{outlist! = nUll) doD, Sl) L (I, sr)

D del (outlist.vnum=vnum, st) ~ (1:, st{outlist.vnum-vnum}) (E, st)!.... (E, st)

(if (outlist.vnum = vnum) then E, Sl) ~ (T, sr)

d I .. 1:.. status E e (mhst.llag=l,sl)~(T,sl{outlist.counter=l}) (status=l,st) --I (status-I, 82{statu8-1})

(if (outlist.counter = 1) then status = 1, Sl) ~ (T, s2{status = l})

IS_OIeTO_SEND returning a 0 is given as:

6. Send

F
(F"I)~(O,31)

F
(while (E) do (DS-DS.next;A), '1)~(if (F) then (A), '1)

F (while(DS!= nUll) doA,Sl) ~ (0, 81)

Sending the data involves sending a data packet with the values of node number,
variable number, type number and the actual value in string form. When the value
is saved in the data structure, the counter is set to the number of nodes that are to
receive the data by consulting the data matrix, DM, which consists of m number of
rows and n number of columns where m is the number of variables where n is 3 (to
store the variable number, its source node number and type number) + number of
nodes.

Let i, j be two integers and let i=O and j=3. Following is the set of transitions to
find the the value of the counter using the data matrix, DM:

del (while (T) do (B), Sl) L {if (T) then {B; while (DB! = null) do (B)), S2)
A= T

(while(i <= m -1) do B,Sl) -=+ (return counter, s2{counter})

T
B del (iITthen(C,st}~(C,52»
-- vnum

(if (DM[i][O] = vnum) then C, Sl) -=+ (T, Sl)

T
del (ilT then (D, 51) ~ (D, 52» c = vnum

(if ((DM[i][l] = node_number) 1\ (DM[i][2] = typ~num)) then D, Sl) ----+ (T, sr)

del (while (T) do (E), Sl) L (if (T) then (E; while (j <= n - 1) do (E)), S2)
D= T

(while(j <= n - 1) do E, sd -=+ (T, Sl)

del (if (T) then (counter = counter + 1), Sl) L (T, sr{counter = counter + I})
E = DM[i][j], counter

(if (DM[i][j] = 1) then (counter = counter + 1), Sl) , {T, s2{counter = counter + l}

Following is the set of transitions to place the data in the data structure and set the counter value

successfully. That is, the function SEND is returning a l:

5rc....node..num, vnum, type, data ()
(Send(sre-node_num, vnum, type, data), sd ' 1, S2

::BEND

84

4.4

A de! (while (IJ do (B), Sl) L (if (T) then (B; while (DS! - null) do (B)), S2)

(while(DS!= null)doB,Sl) L (1,s2)

B
de! (DS.node_number=Sr~node numb .) ~ (T er,Sj T,sl{DS.nodenumber Sr~nodenumber}) (C,sd--+(C,S2)

(if (DS.node_number = Srcnode_number) then C s) node...number (T) , 1 I _,SI

C de! (while (T) do (D), Sl) L (if (T) then (D; while (inlist! - nUll) do (D)), sd

(while(inlist! = nUll) doD, Sl) L (1, Sl)

D de! (inlist.vnum=vnum, SI) ~ cr., sdinlist.vnum-vnum}) (E, sIl ~ (E, sIl

(if ((inlist.vnum = vnum) /\ (inlist.flag = 0)) then E, sd ~ (T, sd

G
(G, "j) --+ (G, "2{G})

E de! (inlist.!lag=O, 81) ~ (T, sdG})

(if (inlist·flag = 0) then G, Sl) ~ (T, sdG})

G de! __________________ ~~~--~----------------------
inlist.data, data

I (-, S2{ inlist.data = data})
HI

(inlist.data = data, S2)

H de! __ __

inlist.!lag
(inlist.flag = 1, S2) -=======-'1 (-, S2{ inlist.flag = I})

I de! ________________________ ~-------------------------
~

(counter = counter -1,s2)

SEND returning a 0 is given as:

F

(-, S2{ counter = counter - I})

(while (F) do (DS-DS.next;A),'1)-=-;'(if (F) then (A)"j)
F

(while(DS!= null) do A,sd -=-;. (0, sd
sr~node...num, vnum, type, data

(Send(srcnode_num, vnum, type, data), Sl) I (0, S2)

Re-write Rules and LAM Codes for the Commu­

nication Part of LIPS

Section 4.2 describes the LAM codes for the computational part of LIPS using single-step

re-write rules in an inductive fashion. This section extends the LAM codes to include the

re-write rules for the communication part of LIPS and they are listed below:

1. Push a constant!! of a specific data type (J in to the stack S is extended to include

the following implicit data types.

channel, flag, node_number, node_name, vnum, vname, type_number,

data, counter, data_packet, inlist, outlist, data_structure

It is assumed that the data_packet, inlist, outlist, data_structure con­

stants occupy a single memory location in the LAM for easy understanding but

85

during real implementation they are handled independently. The re-write rule is
written as follows:

II Tl : C II S II s II ~ II c II Tl : (J : S II s II

We mark the extended data types as implicit since

(a) They are used in asynchronous message passing and the programmer need not

explicitly specify them while writing a LIPS program.

(b) They are created and used by the AMPS of LIPS at the time of executing the

program.

2. Fetch a value from a memory location l and place it in the stack S. The data

type of the value fetched is extended to include the additional data types which are

channel, flag, node_number, vnum, type_number, inlist, outlist, data_structure

and data. The re-write rule can be written as follows:

Ill: C II S II s II ~" c II s(l) : S II s II

3. Assignment instruction has been extended in order to assign values of type flag,

node_number, vnum, type_number, or data referred as P to a memory location

l, i.e, l := P. The re-write rule is same as that for the usual assignment statement.

III := P : C II ~ : S II s II ~ II P : ASGN AI NT(l) : C II S II s II

II ASGNMNT(l) : C II Tl: S II s II ~ II P: ASGNMNT(l) : C II S II s{l ~~} II

4. IF statement/alternate construct for a guarded process can be specified

using the following re-write rule:

II ((fchil = T && fch i2 = 'L && ... && fchim = 'L)(~l; Pi2 ; ... ; Pik)) : C II 'L: S II s II

~II (~1;~2; ... ;Pik):C II S II s II

fchil , fchi2 , ... fchim are flags associated with the channels Chil' Chi2 , ... chim re­

spectively and && specifies the logical AND.

5. While statement for a node consisting of a set of guarded process is an

infinite loop. The re-write rule is given by using the existing if and while statements

and it is given below:

II while T do G IF: C II 'L : S II s II

~ II BR((GIF; while T do GIF), EJUPTY) : C II S II s II

86

The rewrite rule for GIF can be specified as below:

II BR(GIFl' GIF2, ... GIFn): C II GIF1 = T: S II s Ilf-til (Pll ;P12 ; ... ;Pu): C II S II s II

BR(GIFl' GIF2, ... G1Fn) : C II GIFn = T: S II s II f-t II (Pn1 ; Pn2 ; ... ; Pnk) : C II S II s II
h de!

were GIFi = (fchi1 = T && fchi2 = T && ... && fch im = T) for 1 < i <
n.

6. The re-write rule for Is~npuLavailable returning a 1 or 0 is given below

I s_inpuLavailable(node_number, vnum) : C

node number : vnum : Is input available : S

f-t II c II i : S II s II
f-t II c II s II s{ l f-t i} II where i can be either a 1 or a O.

7. The re-write rule for Is_oLto-.Send returning a 1 or 0 is given below:

II Is ok to send(node number, vnum) : C II S II s II

f-t II c II node number : vnum : Is ok to send : S II s II

f-t II c II i : S II s II
f-t II c II s II s{ l f-t i} II where i can be either a 1 or a O.

8. The re-write rule for the send function is given below:
~~------------------~~

II send(data_packet) : C II S II s II f-t II c II data_packet : send : S II s II

II c II s II s II f-t II c II data_packet : send : S II s{ l f-t i} II where i can be ei-

ther a 1 or a O.

4.4.1 Compilation of Communication Part of LIPS into the

LAM codes

As discussed in Section 4.2.1, the function which takes a LIPS program expression and

compiles it to a LAM code is given below:

[- ~ : EXP -----+ LAjHcodes

The LAl\I code for push, fetch and assignment operations are already stated in Section

L1. 2.1. The LAM codes for the rest of the communication part of LIPS is listed below:

8,

1. Guarded Process

[if (fchil = T && fchi2 = T && ... && fch im = T) then (Pl· P
2

· . n.
k

) ~
de! - t, t,···,.Lt ~

= [(fchil = T && fchi2 = T && ... && fchim = T)] : BR([(Pil ; Pi2 ; ... ; P
ik

) ~)

2. Node

[while T do GIF ~ de! WHILE([T~ do [GIF~)

where GIF is defined using the guarded process as below:
GIF de! GIF -- 1, GIF2 , ... , GIFn

For i where 1 < i < n, G I Fi is defined as:

dJ if (fchil = T && fch i2 = T && ... && fch im = T) then (Pil ; R.2; ... ; Pik) ~
= [(fchil = T && fchi2 = T && ... && fch im = T)] : BR([(R.I; Pi2 ; ... ; R.k) ~

3. Is~nput_available

[I s_inpuLavailable(node_number, vnum)~
de!

= IS_INPUT ~VAILABLE(node_number, vnum)

[send(data_packet)~ de! SEN D(data_packet)

4.4.2 Correctness of the LAM

The dynamic model of LIPS programs can be compiled to low level LAM code. This

section describes the correctness of the LAM with respect to the defined operational

semantics. Theorem 1 is stated to show that the results of executing a LIPS expression

specified using its operational semantics and the LAM code are identical.

Theorem 1. For all

nEZ, r E R, b, E B, char E CHAR, str E STR, PI :: int.

P2 :: real, P3 :: bool, P4 :: char, P5 :: str, P6 :: channel, P7 :: flag, Ps ::

node_number, Pg :: l'num, P lO :: type_number, Pll :: data_packet, P12 :: counter, P13 ::

VTl.(lflle, PI4 :: inlist, PI5 :: outlist, P16 :: dat(Lstructure, ands, S1, 8:; EStates

88

then we have,

(PI, s) -U- (n, s) iff II PI _II s lI~t -II n II s II
(P2, s) -U- ee, s) iff II P2 s II~t -I ~ II s II
(P3, s) -U- (Q, s) iff II P3 I- s ~t 1_ Q II s II

(P4, s) -U- (char, s) iff P4 S ~t
char II s II

(P5 , s) -U- (str, s) iff P5 S ~t - str II s II
(P6 , s) -U- (channel, s) iff I P6 - I S

~t -I channel II s II
(P7, s) -U- (flag, s) iff P7 S ~t - flag II s II

(P8 , s) -U- (node number, s) iff P8 S ~t - node number II s II
(Pg , s) -U- (vnum, s) iff Pg S ~t - vnum II s II

(PlO , s) -U- (type_number, s) iff I PlO s II~tll_ type_number II s II
(Pn , s) -U- (data_packet, s) iff P1l S ~t - data_packet II s II

(PI2 , s) -U- (counter, s) iff P12 S ~t - counter II s II
(PI3 , s) -U- (vname, s) iff p1311-11 s "~t - /I vname II s II
(PI4 , s) -U- (inlist, s) iff P14 11- II s II ~t I -II inlist II s II

(PI5 , s) -U- (data_packet, s) if f II P15 11- II s II ~t 11- II outlist II s II
(PI6 , s) -U- (data structure, s) iff II p1611-11 s II ~t II-II data structure /I s II

(PI7 , SI) -U- (empty, S2) iff II P17 11- II SI II ~t 11- 11- II S2 II
where ~t refers the transitive closure2 of ~.

Theorem 1 is an extension of Crole's (2006) theorem to accommodate real, string, and

character types of data and their respective operators. The proof of the theorem can be

found in [Crole, 2006].

4.4.3 Executing the LAM Code

This section gives few examples to show the execution of the LAM code. The execution

takes place in two steps:

2 An extension or superset of a binary relation such that whenever (a, b) and (b, c) are in the extensions,
(a, c) also in the extension. (Shukla,S,K,"transitive closure", in the Dictionary of Algorithms and Data
Structures (online), Paul E. Black, ed., U.S. National Institute of Standards and Technology. (accessed
06/10/2006)Available from: http://www.nist.gov/dads/HTML/transitiveClosure.html)

89

Step 1: Compile the code.

Step 2: Execute the compiled code on the LAM.

Example 10. Let memory location x stores a floating point number 16.5. That is, s be
the state of the LAM at which s(x) = 16.5.

Execute 20 + x on the LAM machine.

Compilation:

[20 + x~ = FETCH(x) : PUSH(20) : OP(+)

Execution:

II ~ + x II - II s II ~ II x : ~ : + II - II s II

~ ~: + II ~ II s II {FETCH(x)}

~ + II ~ : ~ II s II {PUSH(20)}

~ -II ~ II s II {20+ 16.5=36.5}

Example 11. Let s be a state for which s(x) = 12, s(y) = 1. and let 10 * x + y has to

be executed. Compilation:

[10 * x + y~ = FETCH(y) : FETCH(x) : PUSH(10) : OP(*) : OP(+)

Execution:

IllQ * x + y II - II s II ~ II y : X : lQ : * : + II - II s II

~ II y : lQ : * : + 111211 s II {FETCH(x)}

~ II y : * : + IIlQ : 12 II s II {PUSH(10)}

~ II y : + 11l2Q II s II {10*5=50}

~ II + 111. : l2Q II s II {FETCH(y)}

~ II-11M II s II {50+4=54}

Example 12. Let s be a state for which s(x) = 1. Execute x = x - 1·
Compilation:

[x = x - 1]
Execution:

Stepl: Evaluate the program expression. F ETCH(x) : PUSH(1) : OP(-)

Step2: Assign the result to :r.

II x = x -111-11 s II~II x -1: ASGN1UNT(x) II-II s II

~111: x: -: ASGN1UNT(x) II-II s II

90

~ x: - : ASGNMNT(x) 111 s II {PUSH(l)}

~ -: ASGNMNT(x) III : 1 s II {FETCH(x)}

~ ASGNMNT(x) III : 1 : - s II {Apply operator}

~ I ASGNMNT(x) II Q-II s II {Assign result to x}

~ II - II - II s{ x ~ O} II

Example 13. Let s be a state for which s(x) = 1. Execute the following if statement:
if l > 0 then l := l - 1 else empty

1. Compilation

l > 0 : BR(l := l -1, empty)

2. Execution

III ~ 0 : BR(l := l - 1, empty) 11- II s II ~ II 0 : x ~ BR(l := l -1, empty) 11- II s II

~ III : ~ BR(l := l-l, empty) II Q II s II {PUSH(O)}

~ ~ BR(l := l -1, empty) Ill: Q II s II {FETCH(l)}

~ BR(l:= l - 1, empty) II 'L II s II {Branch when l > O}

~ l:= l -111- II s II

~ Ill-l : ASGNMNT(l) II-II s II

~ l: x : - : ASGNMNT(l) II-II s II

~ l: x : - : ASGN M NT(l) 11- II s II

~ l: - : ASGN M NT(l) 11- II s II {PUSH(x)}

~ -: ASGNMNT(l) III : 111 s II {FETCH(l)}

~ ASGNAINT(l) II Q II s II{Assign result to y}

~ - II - II s{ l ~ O} II

Example 14. Consider the LIPS program to solve the Vending Machine Problem given

in Appendix A.1. Following is the code segment of a guard waiting for the values of coin

and button:

[coin, buttonJ=>{
print(IImachine has received ", coin, "p");

//set drksig

drkSig=true;

}

91

Let fcoin and fbutton are the two flags associated with coin and button channels and

and && specifies the logical AND. Execute the guard [coin, button] on the LAM machine.
Compilation:

[if (f coin = T && fbutton = T) then

(print("machine has receiverf', coin, "p"); drkSig = true) ~
de! (f . = cmn = T && fbutton = T) :

BR([(print("machine has received", coin, "p"); drkSig = true) ~)

The above guarded process can be specified using the following re-write rule:

Execution:

II ((fcoin - ';[&& fbutton = T)(print("machine has received", coin, "p"); drkSig - true)) : C II S II s II

~ ((&& fbutton = ';[)(print("machine has received", coin, "p"); drkSig = true)) : C II fcoin - T : S II s II

~ ((&&)(print("machine has received", coin, "p"); drkSig = true)) : C II fbutton = T : fcoin = T : S II s II

~ ((print("machine has received", coin, "p"); drkSig = true)) : C II &&: fbutton = T : fcoin = T : S II s II

~ ((print("machine has received", coin, "p"); drkSig = true)) : C

~ ((drkSig = true)) : C print("machine has received", coin, "p") : S

~ (drkSig = true) : print("machine has received", coin, "p") : S

~ s{(drkSig=true):print("machine has received ", coin, "p")}

4.5 Summary

Operational semantics provide a clear mathematical formulation of the meaning of in­

dividual language constructs and of the language itself. The underlying research work

involves the implementation of LIPS language and the definition of operational semantics

which can be used to refine the LIPS compiler. The defined semantics can also be used for

the specification and verification of LIPS programs. This chapter gives a mathematical

model for the executable statements of a LIPS program and justifies the development of

formal semantics for LIPS. A mixed approach has been adopted in which

1. The operational semantics for the computational part of LIPS has been defined

using big-step semantics

2. The developed big-step semantics has been extended to include the communication

part of LIPS.

92

An abstract machine called LIPS Abstract Machine (LA11) which works on the basis of

single-step rewrite rules has been defined. The code needed for the operational seman­

tics has been verified for its correctness against the LAM that describes the executional

behaviour in this context. The communication schema derived not only describe the

asynchronous communication that takes place in LIPS but also can serve as a reference

for implementers of the language.

93

Chapter 5

Operational Semantics for SACS

Process algebra is considered as a formal framework to model concurrent systems of in­

teracting processes and their behaviour. Few of the well known process algebraic tools

include Communicating Sequential Processes (CSP) [Hoare, 1978], Calculus of Communi­

cating Systems (CCS) [Milner, 1982]' Synchronous Calculus of Communicating Systems

(SCCS) [Gray, 2000], and Language of Temporal Ordering Specifications (LOTOS) [Lo­

grippo et al., 1990]. Since the development of CCS many extensions have been proposed

to model different aspects of concurrent processing [Galpin, 1998]. Specification of Asyn­

chronous Communicating Systems (SACS) [Bavan and Illingworth, 2000, Bavan et al.,

2007a] is one of them. SACS is a point-to-point message passing system which is an

asynchronous variant of SCCS developed to specify the communicating part of LIPS.

The main objective of SACS is to separate the specification of communication from the

computation part of LIPS programs so that they can proceed independently.

The behaviour of process algebra can be described using Structural Operational Seman­

tics (SOS) which is defined using Labelled Transition Systems (LTS). This can be used

to study semantic equivalences. Two programs are said to be semantically equivalent if

they cannot be distinguished. Semantic equivalences are used to abstract the internal

structure of the programs that cannot be otherwise observed. They also provide a suc­

cessful method to verify program behaviour [Gray, 2000]. Verifying a program means to

show that the program is behaviourally equal to its specification.

In this chapter we describe the Structural Operational Semantics and analyse bisimulation

equivalence properties for SACS. Since LIPS is designed based on SACS and the com­

munication part is implemented using Asynchronous Message Passing System (A~IPS)

described in Chapter 3, it is necessary to verify that both are equi\·alent. The proof of

equiYC1.lence of SACS and AMPS is demonstrated using an example.

This Chapter is organised as follows:

• Section 5.1: An introduction to SACS specification .

• Section 5.2: Structural Operational Semantics for S.-\.CS using its sy'lltanic cate-

91

gones.

• Section 5.3: Bisimulation and observational equivalence for SACS.

• Section 5.4: Proof of equivalence for the SACS and AMPS.

• Section 5.5: Summary.

5.1 SACS - An Introduction

SACS works according to the four design rules stated in the Literature Review Chapter

(See Section 2.3.1 in Chapter 2). These rules have their origin in LIPS and assist in

specifying the communication part of LIPS. The specifications generated using SACS are

defined using a standard template which is shown below:

Process_agent_1 = input_ch1_1[[. I: I+Jinput_ch1_nJ :Process_agent_1Bdy_1

+ ... + [input_chk_1[[. I: I+Jinput_chk_nJ :Process_agent_1Bdy_kJ

Process_agent_1Bdy_i = output_ch1_1[[. I: I+Joutput_ch1_nJ: [©IProcess_agent_iJ

where i ranges from 1 to k.

Definitions for the operators used in SACS - TEMPLATE are shown in Table 5.1

Table 5.1: Operators used in SACS

, ,
, . ,

, +'

{ }

()

[J

simultaneous AND operator

sequential AND operator

OR operator

repetition

selection

optional

To describe the SACS specifications the following two examples are being used in this

section:

• Finding the area under a curve using Simpson's rule

• Vending machine problem

Both of the examples are described in Chapter 3.

Example 1. Finding the Area Under a curve Using Simpson's Rule:

Consider the example of calculating the area under a curve y = f(x) using Simpson's

rule described in Section 3.2. One possible SACS specification for this scenario is shown

in Figure 5.1.

95

/ / Host sends width and segment to Area node

Host = width! :segment[O .. 2]! :Host+l:result?:'2

//Area receives width and segment number. It calculates the value of
/ / the area corresponding to a particular with and segment number and
/ / sends it to the Summer node

Area = 1:width?:segment[O .. 2]?:area[O .. 2] !:Area

/ /Summer receives area values and add them up. The added value is
/ / sent as result to the Host node
Summer = 1:area[O .. 2]?:result!:Summer

Where,

System = Host x Area x Summer

Figure 5.1: SACS specification for Simpson's Rule.

Example 2. Vending Machine Problem

Consider the vending machine example described in Section 3.5 which requires a cus­

tomer to insert a coin and press a button after which the machine will deliver a drink.

The behaviour of the vending machine can be illustrated using four processes namely

INIT, CUSTOMER, MACHINE_INTERF ACE and MACHINE_INTERNALS which are briefly de­

scribed below:

• INIT: This process outputs a trayEmpty signal and terminates. This signal infers

that the tray is empty. Without such a signal, the vending machine would deliver the

drink without checking whether the previously delivered drink has been removed.

This may result in a vending machine that delivers drinks one above the other.

• CUSTOMER: This process requires the customer to insert a coin and press a Button

and waits for the drink to be delivered. It terminates after receiving the drink.

• MACHINE_INTERFACE: This process has been included in the vending machine exam­

ple to separate the user interface from the internal working of the vending machine.

This process receives the coin and Button as inputs. On receiving these inputs, it

outputs a signal, drkSig, to let the machine internals know that the drink can be

prepared.

• MACHINE_INTERNALS: This is a process which actually prepares and deli\"ers the

drink after receiving drkSig and trayEmpty signals from MACHINE_INTERFACE and

INIT respecti\·ely.

The SA.CS specification for the yending machine example is shown in Figure j.~.

96

1/ Define the system

SYSTEM = INIT x CUSTOMER x MACHINE INTERFACE x

MACHINE INTERNALs

Illnit simply sends a trayEmpty once and terminate

INIT = trayEmpty! : @

Ilcustomer can insert a coin and press the button

CUSTOMER = coin! :Button! : CUSTOMER + 1 : deliver? :@

/lmachine interface receives coin and button and delivers drkSig

MACHINE INTERFACE =

1: coin? : button? :drkSig' :MACHINE INTERFACE

II machine internal makes the drink only when it receivestrayEmpty
Iland drkSig

MACHINE INTERNALS =

(drkSig?trayEmpty?) :deliver' :MACHINE INTERNALS

Figure 5.2: SACS specification for the vending Machine Problem.

5.2 Structural Operational Semantics for SACS

The first step in describing the SOS is to define a formal syntax which is expressed using

the syntactic categories. The syntactic categories for SACS are described in this section.

5.2.1 Syntactic Categories of SACS

The basic elements of SACS are

1. (channel, port) names - a, b, c, ...

The ports are the observable parts of an agent/process which support either sending

or receiving of information. Channels are individual paths through which data

(signals) can flow.

2. co-names - a?, b?, c?, ... and a!, b!, c!, ...

Co-names are derived from the names and are used to specify the input and output

channels.
a?, b?, c?, ... are the input channels

C?' denotes that the channel is waiting for input.

a!, b!, c!, ... are the output channels

, I ' denotes sending an output.

Ports having the same names synchronise/interact.

97

3. Idle action T ::= 1, 0

Idle action is denoted by either a 1 or O.

1 denotes an idle event which is always suffixed with ':' and written as C 1: '. Idle

event is introduced to enable the send/receive pairs to synchronise.

o introduces a delay. A delay is introduced before a value is received or sent by the

channel. Let a be either an input channel or output channel. The delay introduced

during the process of receiving or sending a value through the channel is denoted

as oa. oa is replaced by 1: oa+a (e.g. oa! = 1: oa+a!).

4. prefix ::= T 1 a? [. 1 : 1 + J b? [. 1 : 1 + J c? [. 1 : 1 + J ...

A prefix is a guard where a, b, c,... are the input ports. The guard becomes

true only when all the input ports of a specific guard have new values.

5. Process_agent/node ::= (Q 1 GP1 + GP2 + GP3 + ... + GPk

A Process_agent/node consists of a set of guarded processes GP1, GP2, GP3, ... , GPk.

The (Q denotes inaction - equivalent to stop in CCS and CSP.

6. Guarded process: GP1 :: = a P1

A guarded process has a guard and a statement block. The guard a is the prefix

which is denoted by Tla?[.I: I+Jb?[.I: I+Jc?[.I: I+J When a becomes

true it will perform the process Pi. The process consists of a process body P

followed by a set of output channels (if there are any generated) which is denoted

as output_ch1_1 [[. 1 : 1 + J output_ch1_nJ : ((Q 1 Process_agent).

7. System ::= P x Q x R x ...
A LIPS program consists of a set of Process_agents/nodes P, Q, R, x is the

concurrency operator. It is the same as that of PI Q in CCS and PI 1 Q in CSP except

that P x Q indicates asynchronous communication.

8. Operators:
ex'
c • ,

C ,

c +'

concurrency operator

sequential AND operator

simultaneous AND operator

OR operator

The syntactic categories of the SACS are listed in Table 0.2.

The set of input channels, a, and the set of output channels, {3, of SACS are

1. Disjoint (a n (3 = ¢)

ll. Bijection via the complement function

a, ~1 C 1\. such that
a!? = a and a? =I- a! for all a E 1\, a? E 0, and a! E {3.

9S

Table 5.2: Syntactic Categories of the SACS

Set of channels de!
K, = {a, b, ... } where K, is finite

Set of input channels de! { 7 b7 } a = a., . ,... where a, b, ... E K, and a is finite.
Set of output channels 13 de! { I bl } . . -- a., .,... where a, b, ... E K, and 13 IS fimte.
Inaction t de! @

Silent action de!
T = {I, O"} where 1 is idle event 0" is the delay.

Action (input and output) de! n = {aU,6UTUt}
Operator Ode! ={.,:,+}

where '.' is simultaneous AND ,
':' is sequential AND

Concurrency Operator X de! {X}

Choice Operator + de! {+}

Guard/input ports de!
TJ = tOT 0 a1 0 a2 0 ... 0 an
where aI, a2, ...) an E a and
n is a positive integer

List of output ports de!
(J = tOT 0 ,61 0,62 0 ... o 13m
where ,61, 132, ... ,,6m E ,6 and
m is a positive integer

Guarded Process de!
GP = TJProc
where Proc is a process body which may generate a list
of output ports

Node
de!

N = GPI + GP2+ ... + GPk

where k is a positive integer

Set of Processes/Nodes de! { } ~= P,Q, ...
where P, Q, ... E N

System
de!

6 = ~lX~2X ... X~p
~1' ~2' ... ~p E ~ and
p is a positive integer

The set of ex U 13 is a visible set of actions. Let $ be the operator used to denote recursion,

$P denotes recursion where P is the recursive process. That is,

$P = P x $P = P x P x $P = P x P x ... x$P

where P can be repeated as many times as needed and the number of repetitions is

finite. Based on the syntactic categories the SOS for SACS can be defined. This is done

using transition relations called Labelled Transition Systems (LTS). The LTS for SACS

is described in the following section.

99

5.2.2 Labelled Transition System Configurations for SACS

We gave the definition for the Labelled Transition System in Section 4.3.4 of Chapter 4.
A transition can be specified as s ~ s'.

We define the transitions of SACS using the following inference rules:

l. Guard/input ports:

For a guard TJ consisting of k input channels QI, Q2, ... , Q n E Q is specified as:

The operator 0 can be either '.' or ':' or '+'. The SOS for any two input channels
QI, Q2 E Q is given below:

(a) Simultaneous AND:

------:: SimultaneousAND

where i and j can be either 1 or 2.

(b) Sequential AND:

(c) OR:

-------:: SequentialAND
QI: Q2 -+ QI : Q2

-----::OR
QI + Q2 -+ Qi

where i can be either 1 or 2 at a specific time.

2. Guarded Process (GP):

------::---- :: G P
'f/ P , TJProc -+ roc (J

where TJ is a guard and (J is the set of output channels generated by the process

body Proc.

3. Node ~ = GP1 + GP2 + ... + GPk

i=l

100

4. Concurrency Composition (Rl x R2)

where J.l is a guard comprising of set of input channels.

5. System (Rl x R2 X ... x Rm) A system \7 is defined as Rl x R2 X ... X Rm
where m is a positive integer.

In the rest of the section we demonstrate through the examples how the inference rules

can be used to specify SOS.

Example 3. Vending Machine:

Consider the vending machine problem described in Section 5.1 for which the SACS

specification is shown in Figure 5.2. The LTS used to express the SOS are given below:

INIT x CUSTOMER x MACHINE_INTERFACE x MACHINE_INTERNALS AMPS

I NIT' x CUSTOMER' x MACHIN E_I NT ERF ACE' x MACHIN E_I NT ERNALS'

Nl = 0 :: INIT
IN IT -----+ IN IT' . trayEmpty! : @

INIT~INIT'

N2 = N21 :: CUSTOMER
CUSTOMER deliver?) CUSTOMER'

N2 = Xl X2 :: GUST -ACT1
1 CU ST ~GT1 + 1 : deliver? . CU ST -ACT2 ~ CU ST -ACT1' :

coin! : Button! + GUST -ACT2'

Xl = :: GUST -ACT 1
CUST ~GT1 ~ CUST ~GT1' : coin! : Button!

X2 = :: GUST_ACT'!.
1 deliver?· CUST ~CT2 deliver?) CUST ~CT2' : @

N3 = -ilI-A-C-H-I-N-E-J~N-:-::T=-E=-R=-NF=31A--:--=:C:-=E:------- :: ill AG HI N EJ NT E RF A.C E

l:coin?:Button?) j\f ACHI N E_IST ERFAC E'

101

N3 =~~~~-o~~~~~~~~~~-----------
1 1 coin? Button? MACJNT -ACT :: .UACJST_ACT

1: coin?: button? C ' -------....') .LUA JJ.VT_ACT : drkSig~

N - N41

4 - MACHINE_INTERNALS :: MACHINEJXTERSALS

drkSig?:trayEmpty?) MACHIN EJ NT ERNALS'

~l=~----------------------------------d-kS-'-?-t--E--~? :: AIACJNTL_~CT
drkSig? trayEmpty? MACJNTL-ACT r tg,: ray mpty ,)

MACJNTL~~CT' : delit'er!

Consider two different representations of the vending machine described in Section 5.1.

We change the problem so that the customer can order a coffee or tea by performing

either one of the following actions:

• insert a coin and press the coffee button to order coffee

• insert a coin and press the tea button to order tea.

We consider two different implementations for this modified scenario and name them

VENDING~ACHINEI and VENDING~ACHINE2. For each of these implementations

SACS and SOS specifications are described below:

Example 4. VENDING_MACHINE1:

This representation uses two machine interfaces, MAC_INT1 and MAC_INT2, and two ma­

chine internals, COF _MAC and TEA_MAC, one to make coffee and the other one to make

tea separately. Other processes involved are IN IT and CUST. These processes are briefly

described below:

1. INIT: This process outputs a signal called trayEmpty and terminates. It functions

similar to the vending machine shown in Example 5.1.

11. CUST: This process is implemented as below:

• if it receives a coin, and the coffee button, C_Button, as input it sends them

as output to MAC~NTI and waits for Coffee to be delivered

• if it receives a coin, and the tea button, T_Button, as input it sends them as

output to ~IAC~NT2 and waits for Tea to be delivered.

This process terminates after receiving the drink.

102

lll. MAC_INT1: This process acts as a user interface. It receives a coin and the C_Button

and outputs Deliver_Coffee signal.

IV. MAC_INT2: This process acts as a user interfaces similar to MAC_INTi. It receives a

coin and the T_Button as input and outputs Deliver_Tea signal.

v. COF _MAC: This is one of the machine internals which makes coffee. It delivers

Coffee after receiving trayEmpty signal from INIT and Deliver_Coffee signal

from MAC_INTi.

VI. TEA_MAC: This is also one of the machine internals which makes tea. It delivers Tea

after receiving trayEmpty from INIT and Deli ver _Tea from MAC_INT2.

A diagrammatic representation of the VENDING_MACHINE1 is shown Figure 0.3. Dotted

lines represent the optional actions which can take place at a particular time.

Example: For a particular instance, CUST will output either coin and C_Button or coin

and T_Button depending on the input signals received from the customer.

trayEmpty trayEmpt~·

".-----------

___ \SOF-
MAC

J

To3j

VENDING_r'l'lACHINEl

Figure 5.3: VENDING_MACHINEl.

103

Figure 5.4 shows the SACS specification for VENDING_MACHINE!.

IfInit muply sends a trayEmpty once and tenninate
INIT = trayEmpty!: ~

.. ; customer werts coin & presses coffee button or inserts coin & presses tea button to
:'receive a coffee or tea respectively

CUST = ({coin! :C_Button!) + (coin! :T_Button!» :CUST
+ 1: (Coffee? + Tea?) :@

li'machine interface 1 sends delivercoffee signal afterreceiving coin & C _Button
MAC_INT1 = 1:coin?:C Button?:Deliver Coffee!:MAC INT1

flmachine interface2 sends delivertea signal afterreceiving coin & T _Button
MAC_INT2 = 1:coin?:T Button?:Deliver Tea!:MAC INT2

//coffeemachinemak6coffeeafl::erdeliv ercoffeesignalandtrayEmptysignal
COF_MAC = {Deliver_Coffee?trayEmpty?} :Coffee! :COF_MAC

iiTea machine makes tea after delivertea signal and trayEmpty signal
TEA_MAC = (Deliver_Tea?trayEmpty?) :Tea!:TEA_MAC

I, Define the system
SYSTEM

INIT x CUST x MAC INn x MAC INT2 x COF MAC x TEA MAC

Figure 5.4: SACS specification for VENDING_MACHINEl.

The LTS used to express the SOS derived from the inference rules for VENDING_MACHINE1

is given below:

INITxCUSTxMAC_INTlxMAC_INT2xCOF_MACxTEA-MAC

Nl = ------0---------------­
I N IT -----+ IN IT' . tray Empty! : @

o
IN IT -----+ IN IT'

:: INIT

N21 N22
N2 = -C-U-S-T---.A-C--T-l-+-C-U-S-T--A-C-T-2--co-::f~fe'::"e;;-? +-:-t-:-e-::a?:=-)-C-U-S-T---.A--C-T-l-' +--C-U-S-T---.A-C-T-2-'

cof fee? + tea?
CU ST ---=-=-------+) CU ST'

N2u :: CU ST -.ACT 1
N21 = CU ST -.ACTI ~ CU ST -.ACTl'

(coin! : C_Button! + coin! : T_Button!)

or

N212
N2 = 0

1 CU ST _ACTI -----+ CU ST ~4GTl'
:: CU ST -.ACT 1

(coin! : C_Button! + coin! : T_Button!)

101

.. CUST

N211 = ==~==-----rO~----------:: CU ST _4.GTl
CU ST -AGT1 ~ CU ST -AGT1'

N212 = -::C::U~S=T=--A----:-::G=T----1-~nO;--C-U-S-T--AG-T-1'------ .. CU ST -AGT1
-'"1. : coin! : T _Button!

ff cof fee?
N22 = CO ee?: CUST -A.GT2) CUST -A.GT2':@ .. CU ST _4.GT2

(cof fee? + tea?) : CUST -AGT2 (coffee?+tea?\ CUST -AGT2' : @

or

tea?
N22 = tea?:CUST.-AGT2~CUST-A.GT2':@

(
(coff ?+t ?) :: CUST_AGT2

cof fee? + tea?) : CUST -AGT2 ee. ea.) CUST -AGT2' : @

N3 = ---------------1--0 -? -C-D--? :: M ACJ NT1
1 : coin? : C_Button? MAC_INTI :com.: -Dutton.)

MACJNT1' : Deliver_Coffee!

N4 = ----------------l-:cm-on-?:-TJ3-u-tt-on-? :: AIACJNT2
1 : coin? : T_Button? MACJNT2)

MAC_INT2' : Deliver_Tea!

Ns = ------------------D-lo--C-f-f-?--E-- :: COF _AI AC
Deliver-Coffee? trayEmpty? COF_MAC etver_ 0 ee.:tray mpt

y
\

COF_MAC' : Coffee!

N6=
Deliver _Tea?

DI O T? E ?:: TEA-MAC
trayEmpty? : TEA-MAC etver_ ea.:tray mpty.)

TEA-MAC' : Tea!

Example 5. VENDING~ACHINE2:

The second implementation of the vending machine, VENDING_MACHINE2, uses one ma­

chine interface and two machine internals, to make coffee and tea separately. The pro­

cesses involved in this implementation are INIT, CUSTOMER, MAC_INT, COF _MAC and

TEA_MAC. They are briefly described below:

1. INIT: It is the same as that of the VENDING_MACHINEl shown in Example 4.

11. CUST: When this process receives the combination coin and C_Button or T _Button.

it sends them as output to MAC_INT and waits for the drink (either Coffee or Tea)

to be delivered. This process terminates after receiving the drink.

105

lll. MAC_INT: This process is a user interface. When it receives the coin and C_Button,

it outputs Deliver_Coffee signal. When it receives coin and T~utton, it outputs

DeliveLTea signal.

IV. COF _MAC: This process is one of the machine internals to make coffee. It delivers

Coffee after receiving trayEmpty signal from INIT and Deliver_Coffee signal

from MAC_INT.

v. TEA_MAC: This process is the other machine internal used to make tea. It delivers

Tea after receiving trayEmpty from INIT and Deliver_Tea from MAC_INT.

A diagrammatic representation for VENDING_MACHINE2 is shown 5.5. As in VENDING_MACHINE 1 ,

dotted lines show optional actions which can take place at a particular time.

I. r ~i't Lrn pl. 'i

----------'-"

Co fie l:

'j

\

..
VENDING_MACHINEl

Figure 5.5: VENDING3vIACHINE2.

Figure 5.6 shows the SACS specification for VENDING_MACHINE2.

106

l/Init simply sends a trayEmpty once and terminate
INIT = trayE..T!lpty! :13

/':custonler inserts a coin and presses either coffee button or tea button to
h'receive a coffee or tea respectively
CUST =

coi.n! ; (C_ Button! +T_Button!) :CUST + 1: (Coffee?+Tea?) :@

1/ sends deliver coffee signal after receiving coin &. C_Button or
//tea signal after receiving coin & I_Button
MAC INT =

(1: coi.n?:C Button? : De 1. iver Coffee~ +

l:coin?:T Button?:Del.iver Tea!):~ INT

I/coffee machine makes coffee after deliver coffee and trayEmpty' signals
COF MAC =

(Deliver_Coffee?trayEmpty?):Coffee!:COF_MAC

I/tea machine makes tea after deliver tea and trayEn1pty signals
TEA MAC = (Deliver_Tea? . trayE..Tnpty?) : Tea! : TEA_MAC

i/ Define the system
SYSTEM = INIT x CUST x MACH INT x COF MAC x TEA MAC

Figure 5.6: SACS specification for VENDING_MACHINE2.

The LTS used to express the SOS derived from the inference rules for VENDING_MACHINE2

is given below:

INITxGUSTxMAGJNTxGOF_MAGxTEA-MAG

The SOS specifications for the process nodes NIl N4l and N5 are the same as that of the

SOS specification for the VENDING~ACHINEl namely NIl N5l and N6 respectively.

Let N2 denote CUST and its LTS transition is stated below:

N21 N22 N2 = ------------------~~~~---------------­
GUST AGTI+GUST.-AGT2 coffee?+tea?) GUST.-AGTI'+GUST.-AGT2'

cof fee? + tea?
GUST ------t) GUST'

N2 = N2u :: GUST ~4.CTl
1 GU ST _ACTl ~ GUST -<4.CTl' :

(coin! : (G_Button! + T_Button!))

10-;-

:: GUST

or

N2 = N212
1 0 :: CUST ~GT1

CU ST ~GT1 ~ CU ST ~GT1' :
(coin! : (C_Button! + T_Button!))

N211 = --=C-:-::-U--S--T-~-G-T-1-~-;o~-CU-S-T-~-G-T-1-' --.-, -C-B--' :: CUST ~GT1
cmn.: _ utton.

N212 = -C-U-S-T--AG-T-1----:~;;---C-U-S-T--AG-T-1-' ------ :: CU ST ~GT1
--Ii ~ --Ii : coin! : T _Button!

coffee?
N22 = coffee?:CUST...AGT2) CUST...AGT2':@

(coffee? + tea?) :: CUST ~GT2
(cof fee? + tea?) : CUST ~GT2) CUST ~GT2' : @

or

tea?
N22 = tea?:CUST...AGT2--+CUST...AGT2':@ .. CUST ~GT2

(cof fee? + tea?) : CUST ~GT2 (coffee?+tea?) CUST ~GT2' : @

N31
(?C

:: MAC_INT
M AC_I NT l:coin.: -Button? + l:coin?:T -Button?)

M AC_I NT' : (Deliver -Cof fee! + Deliver _Tea!)

N31 = ---------------.---- :: MACJNT
coin? : C_Button? MAC_INT l:cmn?:C-Button?) 1

M ACJ NT' : Deliver -Cof fee!

OR

N31 = ---------------.---- :: MAC_INT
MAC _I NT _1_: c_m_n_?:T_-B_ut_ton----*?) coin? : T _Button? 1

MAC_INT' : Deliver_Tea!

The two different implementations of the vending machine scenario are considered in

order to study the equivalence relations between them. Equivalence relations are needed

mainly for two purposes:

1. To prove that the specification meets the design of a system

2. To study the equality between two systems so that one system can be replaced with

the other which lllay be simpler or cheaper.

IDS

The equivalence properties of process algebra are based on the operational semantics.

The following section studies the equivalence properties of SACS.

5.3 Equivalence Relation Properties of SACS

Two expressions are said to be equivalent when no differences can be found between them
and they both describe the same .system.

Definition 2. Equivalence Relation

An equivalence relation between two processes P, Q E R can be written as P - Q, a
binary relation, such that it is :

• Reflexive: if P P

• Symmetrical: if P = Q then Q _ P

• Transitive: if P - Q and Q - S then P = S.

Based on the structure of the transition relation, many different types of equivalences can

be defined on processes. Most commonly studied process equivalences on LTS include

Milner's simulation equivalence, bisimulation equivalence derived from simulation [Park,

1981]' and trace equivalence etc.

In the rest of the section we discuss trace and bisimulation equivalences for SACS.

5.3.1 Trace Equivalence

rvT A trace is sequence of observable actions when a process/agent moves from one state

to another. Two processes are said to be trace equivalent if, and only if, they perform

exactly the same sequence of observable actions. In other words, two processes are trace

equivalent if and only if they engage in the same traces. A list of actions of an individual

trace is shown by using enclosed brackets <list of actions> [Gray, 2000].

For example,

< > denotes an empty trace. An empty trace describes the behaviour of an agent before

it engages in its first action.

< al > denotes a one action trace.

< aI, a2 > denotes a two action trace in which al is followed by a2.

Definition 3. '!race Equivalence

A trace of a process P is a sequence < al, a2, ... , an >E a*(n > 0) such that there exists

a sequence of transitions

109

for some Po, PI, ... , Pn where a* is a set of sequences of traces. Let Q be another process.

P and Q are trace equivalent if the traces of P are equivalent to traces of Q.

P rvr Q {=> (Traces(P) = Traces(Q))

Consider VENDING-MACHINEl and VENDING-MACHINE2 explained in Section 5.2.

Traces of both the examples when delivering coffee are given below:

Traces of VENDING~ACHINEI = «>, < trayEmpty >, < coin, C_Button >,

< coin, C_Button, Deliver -Cof fee >, < coin, C_Button, Deliver -Cof fee, Cof fee»

TracesofVENDING~ACHINE2 = «>, < trayEmpty >, < coin, C_Button >,

< coin, C_Button, Deliver -Cof fee >, < coin, CJ3utton, Deliver -Cof fee, Cof fee»

Therefore, when delivering coffee,

TracesofVENDING~ACHINEl = TracesofVENDING~ACHINE2

=* VENDING_MACHINEI rvr VENDING~ACHINE2

The point to be noted here is that P rv r Q does not imply that the systems P and Q are

the same. For example, consider the two systems P and Q shown in Figure 5.7.

p Q

Figure 5.7: Example - Trace Equivalence

Traces of Pare a* = «>, < a >, < a, a >, < a, a, a >, ... , < an » for some integer n.

Traces of Q are a* = «>, < a >, < a, a >, < a, a, a >, ... , < an » for some integer n.

Therefore, P rvr Q.

Trace equivalence uses traces to distinguish the behaviour of the system. It is not suitable

when systems exhibit deadlock behaviour. An example may be the case of completed trace

of a process P which has a trace sequence < aI, a2, ... , ak > E 0'* > where k > 0 such

that the sequence transitions are specified as below:

R cq P 02 Ok D P = 0 ----t 1 ------> • • • ----t.r k -++

110

where -f+ denotes end of transitions for some PI, P2 , ... , P
k

. There cannot be further

actions possible for P after Pk , and this is a clear case of deadlock behaviour.

The example shown in Figure 5.7 may seem to be equivalent according to the traces but

when interactions between processes are considered, the machine can deadlock.

Instead of using traces to compare the system, actual behaviour can be used. Actual

behaviour can be represented using actions and successor states. Studying the equivalence

by comparing the actions and reachable states is called bisimulation. Bisimulation is

based on the idea of observable behaviour and aims to capture the idea of equivalence as
identical observed behaviour.

5.3.2 Bisimulation Equivalence

Definition 4. Simulation B

A binary relation B C ~ x ~ is a simulation P B Q,

if P ~ P' then there is Q ~ Q' such that P'BQ' where P, Q E ~ and QI E Q.

Two processes are bisimulation equivalent if they are trace equivalent and the states that

they reach are also equivalent. A relation is considered as an equivalent relation if it is:

• Reflexive, P B P

• Symmetrical, P B Q =} Q B P

• Transitive, (PBQ) 1\ (QBR) =} PBR

where P, Q, R E ~ and B denotes bisimulation relation.

The study of bisimulation equivalence is based on the Labelled Transition Systems (LTS).

This research focuses on two popular bisimulation equivalences for SACS: strong bisim­

ulation and weak/observational bisimulation. While strong bisimulation compares both

internal and external behaviours, the weak bisimulation compares only the external be­

haviours of the processes. This property is most widely used to study concurrent systems.

If two systems are proved to be strongly bisimilar, they are also weakly bisimilar. The

following sections discuss the bisimulation equivalences for SACS.

Strong Bisimulation Equivalence

Strong bisimulation checks whether two agents are equivalent in all their actions, both

internal and external. The symbol rv is used to refer bisimulation.

Definition 5. Strong Bisimulation (rv)

A binary relation over the set of states of an LTS is a strong bisimulation equivalence

relation, P rv Q for P, Q E ~ and QI E Q:

111

'f P 01 ,
1 --+ P then for some Q', if Q ~ Q' such that P' B Q'

Conversely,

'f Q 01 Q'
1 --+ then for some P', if P ~ P' such that Q' B P'

Example 6. [Gray, 2000]

Let P, Q, Ql E ~ and 0:1 E 0: and
I t P de! PdQ de! de!
e = 0:1: an = 0:1 : QI, Ql = 0:1 : Q (shown in Figure 5.8).

Q Q.

Figure 5.8: Example - Strong Bisimulation

Prove P ~ Q:

In the initial state, P ~ Q

if P ~ P :::;. Q ~ Ql and P f'..J Ql

if Q ~ Ql :::;. P ~ P and P f'..J Ql

which can be written as:

Given P ~ P :::;. Q ~ Ql and Q ~ Ql :::;. P ~ P

then P f'..J Q if P f'..J Ql, and this can be expressed as (P, Q) C f'..J if P f'..J Q1.

Checking (P, Ql):

P ~ P :::;. Ql ~ Q and Ql ~ Q :::;. P ~ P

{(P, Q), (P, Ql)} C f'..J if P f'..J Q.

But (P, Q) is already in f'..J. All the states of the processes simulate each other giving the

strong bisimulation relation ~ = {(P, Q), (P, Ql)} which is complete and contains (P,

Q) and therefore P f'..J Q.

For all P, Q, R E ~ in SACS,

• PxQf'..JQxP

• P x 0 f'..J P and

• (P x Q) x R f'..J P X (Q x R)

112

Example 7. VENDING_MACHINE

Consider VENDING_MACHINE I and VENDING-MACHIKE2 explained in Section 0.:'::.

To prove that VENDING_MACHINE I rv VENDING_MACHINE2. it must be

proved that they simulate each other. We present the bisimulation on the LTS as these

are the most common structures upon which bisimulation is studied. Having defined

their SOS specifications for VENDING_MACHINE I and VENDING_MACHINE2, the

LTS have to be defined in order to be able to compare the transitions/actions. Let Vi
and V2 denote VENDING-MACHINEI and VENDING-MACHINE2 respectively. Let

def
the LTS of Vi = (S1, K 1 , T1) where

Sl def {INIT, CUST, MAC_INTI, MACJNT2,COF_MAC,TEA-MAC}

K1 def {trayEmpty, coin, Deliver_Coffee, Deliver_Tea, Coffee, Tea}

Based on the SOS specifications, the transitions for Vi are derived and listed below:
tIl def INIT ~ INIT' . trayEmpty! : @

tb def CUST coffee?+tea?) CUST

t b can be expanded as

tl2 def CUST --AGTI + CUST --AGT2 coffee?+tea?) CUST --AGTI' + CUST --ACT2'

The transition for CU ST --AGTI is given below:

tb1 def CUST -.AGTI ~ CUST --ACT I' (coin! : C_Button! + coin! : T_Button!)

When '+' operator is applied in (coin! : C_Button! + coin! : T_Button!) , the resultant

transitions would be either tbu or tl212 depending upon the customer input. They are

given below:

tbu def CU ST --AGTI ~ CU ST --AGTI' : coin! : C_Button!

tl212 def CU ST --AGTI ~ CU ST --AGTI' : coin! : T _Button!

The internal transitions of CU ST --AGT2 are given below:

def (coffee? + tea?) CUST ACT2' @ tl22 = (coffee? + tea?) : CUST --AGT2) -Ii :

When '+' operator is applied in (coffee? + tea?), the resultant transitions would be

either tl221 or tl222 depending upon the customer input. They are stated below:

tb
21

def Coffee?: CUST--ACT2 Coffee?) CUST--ACT2': @

def Tea?: CUST -.AGT2 ~ CUST --ACT2' : @ tl222

tl3 def I: coin? : C_Button? : fl.! ACJ NTI

1: coin?: CJ3utton?
)

tl4 def I: coin'? : T _Button : iII ACJ NT2

1: coin?: T_Button?
)

113

fl.! ACJ NTI' : Deliver -Cof fft'!

JIAC J NT2' : DeliL'er_Tc(/!

def .
t15 = Delwer_Coffee? : trayEmpty? : COFj1AC

Deliver -Cof fee?: trayEmpty?
----.:....::..--=--....:.......::~) Coffee! COF_.UAC'

t16 def Deliver_Tea?: trayEmpty? : T E~M AC

Deliver_Tea?: trayEmpty?
-----.....::.....----.:....~) Tea! TE~AC'

Including all the internal transitions ,

T def {
I -- tIl, t12u , t1 212 , tb21 , t1222 , t13 , t14 , tIs, t16 }

Let the LTS of V2 def (S2, K 2, T2) where

def
S2 = {INIT, CUST, MACJNT, COF_MAC, TE~MAC}

K def {
2 -- trayEmpty, coin, Deliver -Cof fee, Deliver _Tea, Coffee, Tea}

Based on the SOS specifications, the transitions for V2 are derived and listed below:
def 0

t2I = IN IT -----+ IN IT' . trayEmpty! : @

t22 def CU ST coffee? + tea?) CU ST

t22 can be expanded as

t22 def CU ST ~GTI + CU ST ~GT2 cof fee? + tea?) CU ST ~GTl' + CU ST ~GT2'

The transition for CU ST ~GTI is given below:

t221 def CUST ~GTI ~ CUST ~GTl' (coin! : (C_Button! + T_Button!))

The':' operator is a sequential AND operator and is distributive. So,

(coin! : (C_Button! + T_Button!)) = (coin! : C_Button! + coin! : T_Button!).

Based on this, the resultant transitions would be either tbu or t1212 of VI depending

upon the customer input.

t2211 def CU ST ~GTI ~ CU ST ~GTl' : coin! : CJ3utton!

t2212 def CU ST ~GTI ~ CU ST ~GTl' : coin! : T _Button!

The internal transitions of CU ST ~GT2 are given below:

t222 def (coffee? + tea?) : CUST~GT2 (coffee? + tea?) CUST~GT2': @

When '+' operator is applied in (coffee? + tea?), the resultant transitions would be

either tb21 or t2222 depending upon the customer input. They are stated below:

t2221 def Coffee?: CUST ~GT2 Coffee?) CUST ~GT2' : @

t22 def Tea? : CUST ~GT2 ~ CUST ~GT2' : @ 22

t23 def (1: coin? : C_Button? + 1 : coin? : T_Button?) : JIACJNT

(I:coin?:C-Button? + l:coin?:T -Button?))
~=':"' _________ --t) JIAC_INT' : (Deliver -Cof fee! + Delii'er_Tea!

11-4

When '+' operator is applied in (1 : coin? : GJ3utton? + 1 : coin? : T J3utton?)) , the

resultant transitions would use either (1 : coin? : G.J3utton?) or (1 : coin? : T J3utton?)

depending upon the customer input. The resultant transitions are given below:

t231 de! 1: coin? : G _Button? : MAG J NT

t2 de! 1 .? T
32 = : cmn.: _Button?: MAGJNT

I: coin?: C-Ruttan?
-------+) MAGJNT' : DeliverGoffee!

I: coin? : T -Ruttan? MAGJNT' D l· T ,) : ewer ea.
t24 de! DeliverGof fee? : trayEmpty? : GOF J1 AG

DeliverCoffee?:trayEmpty?) Goffee! : GOF~AG'

t25 de! DeliverTea?: trayEmpty? : T EAJI AG

DeliverTea?:trayEmpty?) Tea! : TEAJIAG'

Including all the internal transitions,

Proof: To prove VI rv 112,
Checking (INIT of VI, INIT of 112),

tIl in VI => t21 in 112 and t21 in 112 => tIl in VI

{(INIT of VI, INIT of V2)} C rv if INIT' of VI rv INIT' of V2

Checking (CUST of VI, CUST of 112),
Both CUST of VI and CUST of 112 consist of CUST-.AGT1 and CUST-.AGT2. When

their transitions are considered,

t1211 , t1212 , t1221 , t1222 in VI => t2211 , t2212 t1221 , tb22 in 112
t2211 , t2212 t1221 , t1222 in 112 => tt1211 , t1212 , t1221 , t1222 in VI

{(GUST -AGT1 of VI, GUST -AGT1 of V2)} C rv

if GUST -AGT1' of VI rv GUST -AGT1' of 112
{(GUST -AGT2 of VI, GUST -AGT2 of V2)} C rv

if GUST -AGT2' of VI rv GUST -AGT2' of 112
=> {(GUST of VI, GUST of V2)} C rv if GUST' of VI rv GUST' of 112 Therefore,

{(INIT of VI, INIT of 112), (CUST of VI, CUST of V2)} C rv

Checking (MAC--INTI of VI, MAC--INT of 112),

t13 in VI => t231 in V2 and t231 in 112 => t13 in VI

{(MAGJNT1 of VI, MAGJNT of V2)} C rv

if MAGJNT1' of VI rv MAGJNT' of V2

115

Checking (MAC-INT2 of Vi, MAC-INT of \12),

{(MAC_INT2 of Vi, MACJNT of \12)} C rv

if MACJNT2' of Vi rv MACJNT' of \12
Therefore,

{(IN IT of Vi, IN IT of \12), (CUST of Vi, CUST of \12),
(MAC-INTI of Vi, MAC-INT of \12), (MAC-INT2 of Vi, MAC-INT of \12)} C rv

Checking (COF .-MAC of Vi, COF _MAC of V2),

{(COF_MAC of Vi, COF~AC of V2)} C rv

if COF_MAC' of Vi rv COF~AC' of \12
Therefore,

{(INIT of Vi, INIT of V2), (CUST of Vi, CUST of \12),
(MAC-INTI of Vi, MAC-INT of \12), (MAC-INT2 of Vi, MAC-INT of \12),

(COF_MAC of VI, COF~AC of \12)} C rv

Checking (TE~MAC of Vi, TEA_MAC of V2),

{(TEA_MAC of Vi, TE~MAC of \12)} C rv

if T E~M AC' of Vi rv TE~AC' of \12
Therefore,

{(INIT of Vb INIT of \12), (CUST of Vi, CUST of \12),
(MAC-INTI of Vi, MAC-INT of \12), (MAC-INT2 of Vi, MAC-INT of \12),

(COF_MAC of Vi, COF.-MAC of \I2),(TE~MAC of Vi, TEA.-MAC of

\12)} C rv

Every action in each state of each process of Vi can be simulated by an action of \12 and

hence, it can be concluded that,

Strong bisimulation satisfies many of the properties of trace equivalence and congruence

which is discussed later in this section. A relation which is behavioural equivalent is not

necessarily strongly bisimilar. For example, QI : T : 0 and 01 : 0 are behaviourally

equivalent but are not strongly bisimilar as their internal actions differ.

116

Weak/ observable Bisimulation Equivalence

There are systems in which external actions are compared in other words the black box , ,
behaviours of the systems are matched. Such an equivalence in which only the observable

external actions are compared is called weak bisimulation or observational equivalence.

The symbol ~ is used to denote observational equivalence, and is written as P ~ Q for

P, Q E R. Asynchronous communication can easily satisfy observational equivalence.

Definition 6. Observational Equivalence (~)

A binary relation over a set of states of the LTS system is an observational equivalence
relation:

if P ~ P' then for some Q', Q ~ Q' and P' ~ Q'

Conversely,

if Q ~ Q' then for some P', P ~ P' and P' ~ Q'

where P, Q E Rand QI E Q

In such a relation, 1 : QI : 0 and QI : 0 are equivalent. This is due to the fact that the

weak/ observable bisimulation ignores internal actions. Consider an example consisting of

two processes: 1 : QI : 0 + Q2 : 0 and QI : 0 + Q2 : 0 as shown in Figure 5.9.

a,

Process1
1 : a

1
: 0 + a

2

Process2
a1 : 0 + a

2
: 0

Figure 5.9: 1 : QI : 0 + Q2 : 0 and QI : 0 + Q2 : 0

Observational equivalence considers these two processes to be equivalent, but in real life

they behave differently. The second process may perform QI or Q2, but if the first one

engage in an internal action, it will only perform QI. According to Gray (2000):

P ~ Q if, for every action of P, visible or invisible, P ~ P', Q can engage in an QI

action surrounded by any number, n, of internal actions where n can be a 0, and move

to state Q' such that P' ~ Q'. The same holds if P and Q are interchanged.

In order to clarify, ::::} is introduced instead of ---+. The notation ~ denotes that a

transition composed of an QI action is surrounded by any number including zero of

internal actions.

117

Definition 7. (~)

P ~ P' is equivalent to P 1 * Q1 1 *
-----+ -----+ -----+ P' where 1* represents zero or more' l' actions.

Example

For Q de! 1: Ql Q' following transitions are valid and true.

1
Q =* Q : 1 : Q'

Q~Q:Q'

Q ~ Q'

Therefore, processes can change the state by engaging in actions that are internal or

external. Considering this factor, a modified definition for observational equivalence is

stated below.

Definition 8. (Modified Observational Equivalence)

A binary relation over a set of states of the LTS system is a weak bisimulation if and only

if whenever P ~ Q:

if P ~ P', then there is a transition Q ~ Q' and P' ~ Q'

if Q ~ Q', then there is a transition P ~ P' and Q' ~ P'.

where P, Q E ~ and Ql E Q

From the above definitions, weak/observational bisimulation equivalence relation can be

redefined as below.

Definition 9. (Weak/Observational Bisimulation Equivalence)

A binary relation over a set of states of the LTS system is a weak bisimulation, P ~ Q:

• if P ~ P', then either

- Ql = 1 and P' ~ Q (or)

- for some Q', Q ~ Q' and P' ~ Q'

and conversely,

• if Q ~ Q' then either

- Ql = 1 and P ~ Q' (or)

- for some P', P ~ P' and P' ~ Q'

where P, Q E ~ and Ql E Q.

Example: [Gray, 2000]

Let P E ~, 1 E T and Ql E Q, Prove P = 1 : P.

Initial actions of P are external and denoted as P = Ql Q, and

118

Initial actions of P are internal and denoted as P = 1 Q.

To find P = 1 : P,

l. Checking (al : Q, 1 : al : Q)

Q 01 Q 01 al: ----+ I:::::} 1 : al : Q ::::::::;>- Q and Q ~ Q
I

1 : al : Q ----+: al : Q as al = 1 we need al : Q = al : Q

2. Checking (1 : Q, 1 : 1 : Q)

I
1 : Q ----+ Q :::::} 1 : 1 : Q' :::::} Q and Q ~ Q
I

1 : 1 : Q ----+ 1 : Q as al = 1 we need 1 : Q ~ 1 : Q

Congruence (rv)

For a process equivalence to be practically useful, it must be congruent. Two systems

are said to be congruent, when no observation can distinguish between them and two

(sub)systems are said to be congruent if the result of placing them in the same system

context yields two equivalent systems [Gray, 2000]. This means that two behaviourally

equivalent processes can be used interchangeably as part of a large process without af­

fecting the overall behaviour. This is crucial in inductive reasoning. For example, in

specification and verification of software, replacing a subsystem with an equivalent one

should ensure that the behaviour of the entire system is equivalent to the original system.

The definition for congruence derived from CCS is stated below:

Definition 10. (SACS Congruence)

An equivalence relation rv C ~ is said to be congruence if it is preserved by the SACS

constructs. In other words,

if P rv Q where P, Q E ~ then,

a:P:brva:Q:b

PxR rv QxR

RxP rv RxQ

new kP rv new kQ

for every a E a, b E /3, R E ~, and k E /'i,.

The SOS for SACS is extended with a further rule to include congruence and it is stated

as follows:

If P rv pI and Q ~ Q', then

P rv pI Q' rv Q
.. CONGRUENT.

p~ Q

119

5.4 An Equivalence Relation for the SACS and AMPS

SACS has been used for the high level specification of the communication part of LIPS

programs and is implemented using the Asynchronous Message Passing Systems (A~IPS).

It is necessary to study the proof of equivalence of SACS and A~IPS to prove the com­

pleteness of AMPS. The semantics of both SACS and AMPS have been defined using

Structural Operational Semantics (SOS) in terms of Labelled Transition S~-stems. \Ve

have two labelled transition system semantics: one for SACS and one for Ar.IPS. If we

can show the bisimulation equivalence between these two labelled transition systems then

we can say that SACS and AMPS are equivalent.

We consider the weak bisimulation equivalence between SACS and AMPS. The rea­

son is that when we compile a language or specification to another, it is very unlikely

that we can faithfully preserve the operational semantics. This means that a transi­

tion from P' ~ Q' in SACS may become a sequence of transitions in AMPS, namely

P' alan Q' h f 1 an I . h 1 b h d t h Q ---t ... ---t were most 0 0: , ... , ---t. t mIg t a so e t at we 0 no reac

but a process equivalent to Q.

Figure 5.10 summarises the main results of the proof of equivalence between SACS and

AMPS.

User Requirements

SACS ---------------------------. AMPS

T1 1 1 T,

L SACS
~ LAMPS

B1 1
1 B,

LTS_BehSI\cs
~ Communication Schema

Figure 5.10: Summary of the proof of equivalence between S:-\CS and A~IPS

Given the user requirements, let LSAcs denote the Structured Operational Semantics de­

fined using the Labelled Transition System (LTS) for SACS and the function TI mapping

120

the SACS to its LTS is shown below:

Tl : SACS ---+ LSACS

The behaviour of SACS has been defined using the sequences of LTS configurations which

are used to define the SOS for SACS. It can be represented using a mapping Bl from

LTS, L SACS , to its set of behaviours, LTSJ3ehsAcs , which is shown below:

The communication part of LIPS program written using its SACS specification is imple­

mented using the AMPS. The relationship between the SACS and AMPS is shown using

dotted lines in Figure 5.10. The SOS for AMPS is the set of LTS configurations denoted

by LAMPS. The function T2 mapping the AMPS to its LTS is shown below:

T2 : AMPS ---+ LAMPS

The behaviour of AMPS is defined using its communication schema implemented using a

set of functions. The mapping, B2 , from AMPS to the communication schema is shown

below:

B2 : LAMPS ---+ Communication-Bchema

The behaviour of AMPS depends on the communication schema described in Sections

3.3 and 3.4 of Chapter 3. When the specifications of SACS have to be implemented, the

SACS transitions have to be extended to include the communication schema of the AMPS.

The extension function, c, to be included to the SACS behaviour for its implementation

purposes is shown below:

c: LTS_BehsAcs ---+ Communication_Schema

We can say that the set of configurations of LAMPS is the set of configurations of LSACS

and a set of functions used to implement asynchronous message passing.

Set of configurations of SACS is given as:

LSAcs = {Guard, GuardedProcess, Node, ConcurrencyComposition, System}

Set of configurations of AMPS is given as:

An equivalence relation has to be constructed between the configurations, LSAcs and

LAMPS. This can be expressed using the behaviour of their configurations which can be

121

shown as below:

Communication_Schema ~ c U LTS_BehsAcs

where c is the set of functions, I s_inpuLavailable, I s_ok_to_send, Send.

Definition 11. (Bisimilarity between two Labelled Transition Systems)

Two equally labelled transition systems L1 and L2 are bisimilar (written as L1 ~ L2) if

and only if Li de! (Si, K, Ti) for i = 1, 2 and there exists a relation R C Sl X S2 such
that k E K:

1. p E 81 => :3 q . q E S2 1\ p, q E Rand q E S2 => :3 p . P E Sl 1\ p, q E R

2. \I p q p' . p, q E R 1\ P ---+ p' => :3 q' . q ---+ q' 1\ p', q' E R

3. \I p q q' . p, q E R 1\ q ---+ q' => :3 p' . p ---+ p' 1\ p', q' E R

We show the equivalence relation between SACS and AMPS using Theorem 1.

Theorem 1. Theorem: Equivalence Relation for the SACS and AMPS

For every correctly labelled AMPS specification,

LAMPS ~ L SACS

Proof: The first step in the proof is to identify related configurations for

(81, k, t), (82 , k, t) E Rand

(82, k, t) = (Sl, k, t) U set of functions.

Then bisimilarity is proved using the three conditions stated in Definition II.

Condition 1: Every pair (81, k, t), (82 , k, t) E Sl X S2 must be in R. That is we must

show that (82 , k, t) = (81 , k, t) U set of functions:

Let 'G' is a guard, 'GP' is a guarded process, 'N' is a node, 'S' is a set of parallel nodes,

'iI, 12, h' are the functions I s_inpuLavailable, I s_ok_to_send, and Send respectively.

(81 , k, t) = ({ G, GP, N, 8}, k, t)

(82 , k, t) = ({G, GP, N, 8, iI, 12, h}, k, t)
= (Sl U set of functions, k, t)

where set of functions = {iI, 12, h}
= (Sl, k, t) u set of functions

Condition 2 and condition 3 state that from any pair (Sl, k, t), (S2, k, t) E Revery

LSACs transition to (8~, k', t') must have a corresponding LAMPS transition and eyer:·;

122

LAMPS transition to (S~, k', t') must have a corresponding L sAcs transition. Also, the
resulting pair should satisfy the condition ,

((S1, k, t), (S2, k, t)) E R.

For each configuration of AMPS and SACS ,

1. Find the (SI /,. kl, tI) reached by a transition.

2. Assign (S2, k, t) = (Sl, U set of functions k, t) so that the configurations are in
R.

3. Find the (S2 /, kl, tI) reached by the a transition.

4. Check ((SI /, kl, tI), (S2 /, kl, tI)) E R. This is done by checking that

Communication_Schema ~ c U LTS_BehsACS

for each of the configurations of SACS and AMPS and they are listed below:

1. Guard:

The LSACS and LAMPS configurations for a guard are shown below:

L sAcs :
T

(a1 0 a2 0 ... 0 ak, Sl) ---=-+ (T{a1,a2,···Q:k},S2)

LAMPS:
T

((fchi1 /\ fchi2 /\ ... /\ fchim), SI) ---=-+ (T {Chill chi2 , ... ,chim }, 82)

The function I s_inpuLavailable is called when an input channel in a guard checks

for the availability of a new value. If a new value is available, the function will

return 1. The configuration for the function is given as:

(Is_inpuLavailable(m, n), SI) ~ (1, 8D where m, n specify the node number

and variable number respectively.

When this function returns 1, the Send function will be called to send the data

from the DS of the AMPS to the respective channel. The configuration for Send

function is given as:
(Send(m, n, t, d), SI) m,n,t,d) (1, sD.
These two functions will be called consecutively for all the input channels and they

are inter transitions. As a result, the system will move from state 81 to S2. The

equivalence relation checks only the initial and final states and they are one and

the same as that of the LSACS .

=> Communication_Schema ~ c U LTS_BehsACS

123

Therefore,

(al 0 a2 0 ... 0 ak, sr) ~ (T {aI, a2, ... ad, S2)

~ ((fchil 1\ fchi2 1\ ... 1\ fch. m) , Sl) T. (T{ h h h}) , --+ _ C iI, C i2, ... ,c im , S2

2. Guarded Process:

The L SACS and LAMPS configurations for a guarded process are shown below:

L SACS : (TJ Proc, sr) ~ (Proc, S2{ O"})

where TJ is a guard which becomes true to execute the associated process proc and

generate values of the set of output characters 0".

LAMPS: (if Ci then ~,Sl) ~ (OCHi, S2)

When Ci becomes true, the associated process body is executed to generated 0 or

more values for the output channels OCHi . For every value available in the output

channel, I s-ok_to_send function is called to find the value that can be sent to the
data structure of AMPS.

(I s_ok_to_send(m, n), Sl) ~ (1, sD where m, n specify the node number and

variable number respectively.

If it is ok to send, the Send function is called to send the value to the DS.

* Communication_Schema ~ € U LT S_BehsAcS

3. Node:

The L SACS and LAMPS configurations for a node are shown below:
k

('"'") for any i = 1 to k, 1Ji ({ })
L SACS : ~ TJi PrOCi, Sl) PrOCi, S2 O"i

i=l

where TJi Proci is a guarded process C~. In other words, ~ = CPl + CP2 + ... +

CPk where ~ is a node and CPl , CP2 , ... , CPk are guarded processes.
T

LAMPS: (while (T) do (CPl else CP2 else ... else CPk), Sl) -=-r

((if (T) then CPi; while (T) do (CPl else CP2 else ... else CPk)), s2{OCHi })

The AMPS configuration shows the actual implementations of the SACS and ex-

presses the guarded processes involved in making a node. In actual implementation,

this is an infinite while loop. For a guarded process to get executed its guard should

become true. When a guard is true, its associated process body is executed to gen­

erate values for 0 or more output channels.

* CommunicatiOlLSchema ~ € U LTS_BehsAcs
k

Therefore, (l: TJi Proci, sr) f
orany i=ltok,1Ji) (Proci, S2{O"i}) ~

1=1

121

while (T) do (GP1 else GP2 else ... else GPk), Sl) .£
((if (T) then G~; while (T) do (GP1 else GP2 else ... else GPk)), s2{OCHi })

4. System/Network:

The LSACS and LAMPS configurations for a node are shown below:

Let there be n nodes in a network ,

LSACS: (R1 x R2 x ... xRm ,Sl) ~ (~ x ~ x ... X ~m ,S2)

where R1, R2 , ... , Rn denote the nodes and J1. is a prefix.

If R1 and R2 are two nodes to be executed concurrently, their concurrency composi-

tion is denoted by R1 x R2. Once the nodes are concurrently executed, the system

changes its state from Sl to S2.

LAMPS: The network definition part of a LIPS program (Refer Section 3.1 in Chap-

ter 3) is defined using a set of connect statements. The configuration for a set of

connect statements is given below:

Vi: 1 <i < n((~(ichi1/\ichi2/\' .. /\ichim), Sl) ----+ ((OChi1' OChi2 , ... , ochis), S2))

Based on these connect statements, the DS and DM of AMPS is created and ini­

tialised. The connect statements are implemented using the nodes definition. When

these nodes execute, they make use of the set of input channels and produce values

for the set of output channels using guarded processes. Once all the nodes finish

executing to produce the intended output, the system will change its state from Sl

to S2.

=} Communication_Schema ~ € U LTS_BehsACS

Therefore, (R1 x R2 x ... XRm,Sl) ~ (~x ~ x ... X ~m,S2) ~

Vi: 1 <i< n((~(ichi1/\ichi2/\. .. /\ichim),Sl) ----+ ((OChillochi2, ... ,ochis),S2))

Thus for every (S1, k, t) in R there exists a (S2, k, t) in R as required.
o

5.5 Summary

This chapter describes the formalisms supporting the communication part of LIPS using

SACS through examples. The four rules used in SACS form a framework for successful

concurrent program design in the context of point-to-point intercommunication patterns.

As SACS is already existing, this work has

1. defined the Structural Operational Semantics (SOS) using Labelled Transition Sys­

tems (LTS), and

125

2. studied the various equivalence properties of SACS.

Studying the equivalence properties is necessary to prove that the completed design meets

its specification. It is also used to study the equality between two designs so that one

design can be replaced by an equivalent if it is simpler or cheaper.

SACS is a formal specification tool to specify the asynchronous communication in a LIPS

program. This is implemented using the Asynchronous Message Passing System (AMPS)

which is created during the execution of a LIPS program. We have derived an equivalence

theorem to show that the implementation of asynchronous communication using Al\IPS

satisfies its formal specification defined using SACS. The proof is derived by creating a

weak bisimilarity relation between the LTS of SACS and AMPS. Having verified their

equivalence, SACS and AMPS can be implemented in any asynchronous communicating

systems with minimal modifications.

126

Chapter 6

Conclusion

As computer hardware is becoming cheaper, the computer users are moving away from

central mainframe based computing to network based computing and distributed com­

puting. Along with this trend, tools for developing distributed systems have also become

available. This includes languages for implementing distributed systems. One such lan­

guage is LIPS. It is a point-to-point asynchronous message passing programming language

which is simple, secure and portable, which handles communication and computation sep­

arately. This thesis involves further development of LIPS. In this chapter, a summary

of the thesis is given where the contributions are highlighted and directions for future

research are presented.

6.1 Contributions to the Knowledge

The main contribution of this research is the formal semantics for LIPS using oper­

ational specifications. The outcomes of this research are the operational semantics and

the abstract machine for LIPS, and Structural Operational Semantics (SOS) for the Spec­

ification of Asynchronous Communicating Systems (SACS) and Asynchronous Message

Passing Systems (AMPS). Significant effort has been taken to evaluate the developed

semantics and assess its accuracy and completeness. The contributions of the thesis can

be summarised as follows:

1. In Chapter 3 an introduction to Asynchronous Message Passing System (AMPS)

proposed by Bavan et al. [2007b] is given. The unique feature of AMPS is that

it avoids the use of buffers for its asynchronous communication by using a Data

Structure (DS) and a Data Matrix (DM).

One of the main results of the work is defining the semantics and developing the code

to implement AMPS into the LIPS compiler. When the LIPS compiler compiles

and executes a LIPS program, a DS and a Dl\I are created which work together

to pass messages asynchronously without buffers. The compiler has been tested

127

for its message passing capability using simple applications. Currently A:-'IPS has

been created as a centralised system but it can be partitioned to runs on different

processors. AMPS created for LIPS can be integrated with any distributed system

to pass messages asynchronously.

2. In Chapter 4 operational semantics and an abstract machine are defined for LIPS.

One of the distinct features of LIPS, the capability to handle computation and

communication independently, has been exploited in developing the semantics and

the abstract machine for LIPS.

(a) Operational Semantics for LIPS

The computation part of LIPS program is made up of 'C' programming state­

ments (refer Table 4.3) and they can successfully be described as large steps

providing direct relation between initial and final states of computation. Big­

step semantics which satisfies this criteria has been used to define the opera­

tional semantics for the computation part of LIPS program.

Communication in a LIPS program is implemented using AMPS. Big-step se­

mantics can only specify configurations related by finite computations. On the

other hand, small-step semantics or Structural Operational Semantics (SOS)

contains not only the description of the initial and final states of program but

also the intermediate steps of execution using labelled transitions. Because

of this characteristic property, SOS has been used to define the operational

behaviour of AMPS.

By adopting this two step strategy, our approach combines the advantages of

big-step and SOS.

(b) Abstract Machine for LIPS

While operational semantics is used to specify the meaning of programs, ab­

stract machines are used to provide intermediate representation of the lan­

guage's implementation. An abstract machine called LIPS Abstract Machine

(LAM) has been defined using re-write rules. The LAM code has been defined

in such a way that the computation and communication part of LIPS programs

have been handled independently.

(c) Verifying the correctness of Operational Semantics with the LAM

The code needed for the operational semantics has been verified for its correct­

ness against the LAM that describes the executional behaviour in this context.

LIPS compiler has been created based on the abstract machine of LIPS and tested

for simple applications across platforms. The unique feature of defining the opera-

12S

tional semantics and LAM is that both of the definitions handle the communication

and computation part of LIPS programs independently. This will surely help us to

• manage the components efficiently and

• implement the AMPS in any other asynchronous communicating systems.

3. Chapter 5 considers SACS developed to specify the asynchronous message pass­

ing in LIPS which uses point-to-point communication. Though SACS [Ba\'an and

Illingworth, 2000, Bavan et al., 2007a] has been validated, there is no formal seman­

tics defined for SACS. This work considers defining the formal semantics mainly for

two purposes. They are as follows:

• To study the behaviour of SACS. As the behaviour of process algebra can well

be described using Structural Operational Semantics (SOS), we have defined

the SOS for SACS .

• To verify the correctness of specifying the communication and its corresponding

implementation using AMPS in a LIPS program.

An equivalence theorem has been derived to show that the implementation of asyn­

chronous communication using AMPS satisfies its specification defined using SACS.

The proof uses weak bisimilarity relation between the Labelled Transition System

of SACS and AMPS. Having verified their equivalence, SACS and AMPS can be

implemented in any asynchronous communicating systems with minimal modifica­

tions.

6.2 Future Work

There are a number of ways in which this work can be extended and developed further.

We briefly explain few of them.

1. Denotational and Axiomatic Semantics for LIPS

With regard to developing the formal semantics for LIPS, this research considered

only the operational semantics. While operational semantics is used to implement

a language and prove the correctness of compiler implementation, denotational and

axiomatic semantics are used to reason about the programs and prove properties

of programs. As it is the first ever work done in defining the formal semantics for

LIPS, we took the liberty of choosing operational semantics. Therefore, developing

denotational and axiomatic semantics for LIPS can complement LIPS language.

2. High level/abstract specification of LIPS

Specification of Asycnhronous Communicating System (SACS) used in this research

129

specifies only the communication part of LIPS. Although process algebra is ideal

for specifying the interactions between processes, it is not particularly suitable for

modelling complex data structures. SACS that was developed to model the com­

munication part of LIPS has to be integrated with another formal technique to

specify the computational part of LIPS. Integrating two specifications is not a new

technique. Blending Object-Z with CCS [Taguchi and Araki, 1997]and timed CSP

[Mahony and Dong, 1998] are a few examples. There are tools such as State ma­

chines, VDM, Z Object-Z, Petri nets, and Guarded Command Languages (GCL)

which can be used to specify sequential programs. Computational component of

a distributed programming language can very well be specified using one of these

tools. Work has already been done with regard to specifying the computational

part of LIPS. GCL has been chosen owing to its capability to specify using weak­

est pre-condition which can be used to study the axiomatic properties of LIPS.

Detailed specification and integration of GCL with SACS can be found in [Rajan

et al., 2006, 2007b]. As the work does not fall into the scope of this research, it

has not been added included to the thesis. In continuation with this, work can be

extended to identify the suitability of the combined formal tool to other distributed

applications.

3. Verifying Compiler for LIPS

Developing a verifying compiler for a distributed programming language like LIPS

which can be used to determine the correctness of a program it compiles with respect

to some specified properties, will be a major achievement. According to Hoare's

concept of a verifying compiler [Hoare, 1969], source program will have the required

assertions added to it at strategic points of the program for verification. The veri­

fying compiler will prove the correctness of the program in terms of its associated

assertions/specifications. So the target program will consist of some proof of cor­

rectness using which verification can be done.

The approach we propose is different from Hoare in the sense that the program­

mers do not need to include assertions in the source code. LIPS program and

SACS with GCL specification for the user requirements can be sent to the LIPS

compiler. While generating the target code, the compiler can generate the SACS

with GCL specification of the source code using some reverse engineering. This

generated specification can be compared with the specifications supplied with the

source code. That is, checking can be performed for the equivalence of the source

and target specifications in order to verify the correctness of LIPS programs. The

verification result and the target code (Java) can be generated as output. In this

way, the proposed LIPS compiler can verify the correctness of the source code every

time before allowing it to be executed. This approach can avoid burdening the

130

programmer with the task of inserting assertions into the programs. Instead, we

can provide the original specification and let the compiler verify that the source

program faithfully implements the specification. This idea has been published in

[Raj an, 2005b, 2004, 2005a].

131

Appendices

132

Appendix A

Sample LIPS Programs

A.1 Sample LIPS program - 1: Finding the area un­

der a curve using Simpson's rule

program Simpson;

begin

[lJ: connect host ([resultJ) -> ([WidthJ, [Segment [0 ., 2JJ);

[2J: connect Area ([WidthJ, [Segment[O .. 2JJ) -> ([area[O 2JJ);

[3J: connect Summer ([area [0 .. 2JJ) -> ([resultJ);

node host (double result)-> (double Width, int Segment [2J) {

[J => { Iisend all area nodes the Width

Width= .333;

Iisend all area nodes their Segment number

int i=O;

for (i = 0; i <=2; i ++){

Segment[iJ = i+1;}

}

[#J => {

II start the process

}

[resul tJ => {

print(lIthe result is = II result);

}

}

node Area (double Width, int Segment[2J) -> (double area[2J){

double x, y;
[Segment[O .. 2J, WidthJ => {

II calculate the starting point of x

133

int j;

for(j=O; j<=2; j++){

x = Width * (2.0 * Segment[j] + 1.0)/2.0;

y = 4.0 I (1.0 + (x * x));

area[j] = x * y; I*outputs to channel s *1
}

}

}

node Summer (double area [2]) -> (double result) {
[area [0 .. 2]] => {

double total;

int count;

total = 0.0;

II calculate the total

for(count = 0; count <=2; count++){

total = total + area[count];}

result = total;l*send the result*1
}

}

end.

A.2 Sample LIPS program - 2: Vending Machine

Problem

program VendingMachine;

IIII Define the system

IIIIVENDING_SYSTEM = HOST x CUSTOMER x MACHINE_INTERFACE x MACHINE_INTERNALS

begin

Iinetwork definition

[1] : connect host ([]) -> ([trayEmpty]);

[2] : connect Customer ([deliver]) -> ([coin] , [button]) ;

[3] : connect Mac_Interface ([coin] , [button]) -> ([drkSig]) ;

[4] : connect Mac_Internal ([trayEmpty], [drkSig]) -> ([deliver]);

Iinode definitions

Ilhostnode

node host ()-> (Boolean trayEmpty) {

[#] => {

Iiset machineReady to true

134

trayEmpty = true;}

}

node Customer (Boolean deliver) ->

[] => {
(int coin, Boolean button) {

//when machineReady he presses buttun and inserts coin

coin=80;

button = true;

print(1I i have pressed the button and inserted II, coin, IIpll);

}

[deliver]=>{

}

}

//drink making process is going on signal is received from the

//machine internals which will make the customer to wait

print(lIdrink has been delivered ll);

node Mac Interface (int coin, Boolean button) ->

[coin, button]=>{

(Boolean drkSig){

}

}

print(lImachine has received II, coin, IIpll);

//set drksig

drkSig=true;

node Mac_Internal (Boolean trayEmpty, Boolean drkSig) -> (Boolean deliver){

[trayEmpty, drkSig]=>{

}

}

end.

if ((trayEmpty)&&(drkSig)){
. (II ak· d·nk II). prlnt m lng rl ,

settimer(20);

deliver=true;

}

print(IIDRINK READY II);

135

Appendix B

Case Study - 2 - Post Office Scenario

Consider a post office which has many counters open. The post office deals with three

items which it provides to its customers. There is a queue of customers. The length of

the queue at any given time is from 0 to n. The assumption is that the postoffice has an

unlimited stock of items to sell. The stockroom automatically replenishes items for each

counter as they run out. In order to model this system, it is assumed that the post office

has a queue/counter controller to oversee that counters are not idle when the queue is

not empty. The processes involved in the scenario are explained below:

Customer: When a customer comes into the post office, he/she checks whether anyone

of the counters is vacant.

Counter: When a counter finishes servicing a customer, a message is sent to the controller

that displays the status of the counter. When a server at a counter gets new customer,

a signal is sent to the controller notifying that the counter is busy. When the items are

sold, the counter sends a signal to the stock room about the number of items sold. If

the quantity of an item becomes less than 5 then 20 of those items will be transferred

from the stock room to the counter. If there are no customers in the queue then nothing

happens.

Controller: The controller is responsible for displaying the status of each counter. \\Then

it receives signals from a counter informing that it has completed its service with a

customer, the controller displays a 'vacant' message for the corresponding counter. In

the similar manner, when the controller receives a signal from a counter servicing a lle""

customer, it displays a 'busy' message against that counter. This also means that, if there

is more than one free counter, a customer can choose anyone of the free counters.

Stockroom: The stockroom has unlimited stock of all three items sold. "'hen it receives

signals from the counters indicating the quantities of items sold, the stockroom replenishes

the stock levels of the respective counters. A pictorial representation of one possible

solution is shown in Figure B.1. As explained in the case study for vending machine in

Section 3.5.1, when the LIPS program for the post office problem is compiled, the compiler

136

/1

"-

/1

\

stan

Init I
InibaHse all the
coun ters to be

vacant

I
I All v;c~nl I ..

Controller I
Oi splay status

of each
counter

bu sy done y~e

/1 Customer I
Check the vacant

counter and
orderfor il9ms

"-
..I

l Cus1Jtl 1 l CUS1jt2 1 I Cuslj13

1 1
H91artl ~f l Ccunter1 I ~
H bUoyl ~

H don.1 ~ SeD items Ik keep
updating stk rm -

L...--{ yael ~ Be cntrt its status

'" r r c1 nl Istk U 1 Il stkU 2 1 I stkiU3 1~
I I

~ I Stock Room I It-

Record end
repleni sh

counters with
stock

• • •

c1_it2 c1j13

Ccuntern

Seu items & keep
updating stk rm
& c ntrl its status

Figure B.l: Pictorial representation for the Post Office Problem.

generates the Driver Matrix(DM) and t he Data structure (DS). T he DS is initialised with

null values. The DM is shown in Table B.1 and it 's corresponding DS is shown in Figure

B.2 .

137

Table B.l: Driver Matrix for the Post Office Problem

vnum SrcNodeNum type Destination nodes
0 1 4 0 1 0 0 0
1 2 4 0 0 1 0 0
2 3 1 0 0 0 1 0
3 3 1 0 0 0 1 0
4 3 1 0 0 0 1 0
5 4 4 0 1 0 0 0

6 4 1 0 0 0 0 1
7 4 1 0 0 0 0 1

8 4 1 0 0 0 0 1

9 4 1 0 0 1 0 0

10 4 1 0 0 1 0 0
11 4 1 0 0 1 0 0

12 4 4 0 1 0 0 0

13 5 1 0 0 0 1 0

14 5 1 0 0 0 1 0

15 5 1 0 0 0 1 0

138

Data Structure for the Post Office Problem
1 Host

input list finished
o All Vacant o
output list-finished

o
5
12
input
1

2 CONTROLLER
All Vacant 0
start 0 null
done 0 null

list finished
vac_busyl o

output list finished

1
9
10
11
input
2
"3
4
output

3

" 13
14
15
i.nput:
5
+5
7
S
9
10
11

:3 CUSTONElt
vacbusyl 0
cuel ritl 0
cusl rit2 0
cus! rit3 0

list finished
cusl itl
cual it2
cu,sl it3

list finished
4 COUNTERl

o
o
o

cusl itl 0
cusl it2 0
ousl it3 0
stkit 11 0
stkit 12 0
stkit 13 0

List finished
start. 0
cl itl 0
<:1 it2 0
cl it] 0

null
null
null
null

cusl ritl o
CUSl rit2 o
cusI rit3 o
don$ 0 null

output list finished

6
7
8
input
13
14
15

5 STOCKROOM
cl itl 0 null
c1 it2 0 null
cl it) 0 null

list-finished
stkit 11
stkit 12
stkit 13

o
o
o

output list finished

null

null

null

null
null
null
null

null
null
null

null
null
null
null
null
null

null
null
null

null
null
null

Figure B.2: Data Structure of the AMPS.

139

Bibliography

Foundational Calculi for Programming Languages, 1995.

W. B. Acherman, J. B. Dennis, and William B Ackerman. Val- oriented algorithmic
language, preliminary reference manual. Technical report, Cambridge, MA, USA, 1979.

S. Ahuja, N. Carriero, and N. Gelernter. Linda and friends. IEEE computer, 19(8):26-34,
1986.

Elvira Albert, Michael Hanus, Frank Huch, Javier Olvier, and German Vidal. An opera­
tional semantics for declarative multi-paradigm languages. In Proc. of the Int'l Work­
shop on Reduction Strategies in Rewriting and Programming (WRS 2002), volume 70
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2002.

D. G. Andrew and M. P. Andrew. Higher Order Operational Techniques in Seman­
tics. Publications of the Newton Institute, Cambridge University Press, 1998. ISBN
0521631688.

G. R. Andrews and F. B. Schneider. Concepts and notations for concurrent programming.
ACM Comput. Surv., 15(1):3-43, 1983.

Gregory R. Andrews. Distributed programming languages. In A eM 82: Proceedings
of the ACM '82 conference, pages 113-117, New York, NY, USA, 1982. ACM. ISBN
0-89791-085-0. doi: http://doi.acm.org/10.1145/800174.809772.

Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, July 2007. ISBN 193435600X. URL http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\&path=ASIN/193435600X.

1. Attali, D. Caromel, S. O. Ehmety, and S. Lippi. Semantic based visualisation for
parallel object-oriented programming. OOPSLA '96, ACM Press, Sigplan Notices, San

Jose, CA, 18(6):711-729, 1996.

H. E. Bal. Orca: a portable user-level shared object system. Technical report, Technical
Report IR-408, Dept. of Mathematics and Computer Science, Vrije Universiteit, 1996.

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for distributed
computing systems. ACM Computing Surveys, 21(3):261-322, 1989.

Henri E. Bal. Programming distributed systems. Silicon Press, Summit, N J) USA, 1990.

ISBN 0-929306-05-8.

140

A. S. Bavan and E. Illingworth. Design and implementation of reliable point-to-point
asynchronous me.ssage passing system. In Proceedings of The 10th International Confer­
ence on Computmg and Information ICCI '2000 Kuwait (18th-21st November 2000).
ICCI, 2000. ' ,

A. S. Bavan and E. Illingworth. A Language for Implementing Parallel and distributed
Systems using asynchronous point-to-point communication. Nova Science Publishers,
Inc., Commack, NY, USA, 2001. ISBN 1-59033-116-8.

A. S. Bavan, E. Illingworth, A. V. S. Raj an, and G. Abeysinghe. Specification of asyn­
chronous communicating systems (sacs). In Proceedings of IADIS International Con­
ference Applied Computing 2007, Salamanca, Spain (18th-2Oth February 2007). IADIS,
2007a. URL http://wWTiI.pms.ifi.lmu.de/publikationen/#REWERSE-RP-2007-012.

A. S. Bavan, A. V. S. Raj an, and G. Abeysinghe. Asynchronous message pass­
ing architecture for a distributed programming language. In Proceedings of IADIS
International Conference Applied Computing 2007, Salamanca, Spain (18th-20th
February 2007). IADIS, 2007b. URL http://wWTiI.pms.ifi.lmu.de/publikationen/
#REWERSE-RP-2007-012.

D. Berry, R. Milner, and D. N. Turner. A semantics for ml concurrency primitives. In
Annual Symposium on Principles of Programming Languages, Proceedings of the 19th
ACM SIGPLAN-SIGACT, pages 119-129, 1992.

E. Best, R. Devillers, and M. Koutny. Petri Nets, Process Algebras and Concurrent
Programming Languages, volume 1492 of Lectures on Petri Nets II: Applications, pages
1-84. Springer verlag, 1998.

D. Bjorner and CB Jones. The vienna development method: The meta-language. LNCS
Springer Verlag, 61, 1978.

W. Brauer, D. B. Hansen, D. Gries, C. Moler, G. Seegmueller, J. Stoer, and N. Wirth.
The programming language Ada, reference manual. Lecture Notes in Computer Science,
Springer- Verlag, 106, 1981.

P. Brinch-Hansen. The programming language concurrent pascal. IEEE Transactions on
Software Engineering, SE-1(2):199-207, 1975.

A. Burns, A. M. Lister, and A. J. Wellings. A Review of Ada Tasking. Springer-Verlag,
New York, Inc., 1987. ISBN 3-540-18008-7.

A. Burns, A. J. Wellings, A. M. Koelmans, M. Koutny, A. Romanovsky, and A. Yakovl~v.
On developing and verifying design abstractions for reliable concurrent progr~ng
in Ada. volume XXI, pages 48-55, New York, NY, USA, 2001. ACM. dOl: http:

/ /doi.acm.org/10.1145/374369.374381.

R. Calkin, R. Hempel, H. C. Hoppe, and P. Wypior. Portable programming with parmacs
message passing library. Parallel Computing, 20(4):615-632, 1994.

Rachel Cardell-Oliver. An equivalence theorem for the operational and temporal seman­
tics of real-time, concurrent programs. J. Log. Comput., 8(4):545-567, 1998.

141

Luca C~rdelli and Andrew D. Gordon. Mobile ambients. In FoSSaCS '98: Proceedings of
t~e F'lrst International Conference on Foundations of Software Science and Computa­
twn Structure, pages 140-155, London, UK, 1998. Springer-Verlag. ISBN 3540643001.
URL http://porta1. acm. orgl citation. cfm?id=759638.

W. E. Carlson, L. E. Druffel, D. A. Fisher, and W. A. Whitaker. Introducing ada. In
ACM 1980 Annual Conference ACM '80, pages 263-271, New York, , NY, 1980. ACM
Press.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):
444-458, 1989.

N. Carriero, D. Gelernter, and J. Leichter. Distributed data structures in linda. In POPL
'86: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 236-242, St. Petersburg Beach, Florida, 1986. ACM
Press.

M. H. Cheheyl, M. Gasser, G. A. Huff, and J. K. Millen. Verifying security. ACM
Computing Surveys, 13(3), 1981.

Liang Chen, Stuart Anderson, and Faron Moller. A timed calculus of communicating
systems. Technical Report ECS-LFCS-90-127, Department of Computer Science, Uni­
versity of Edinburgh, Department of Computer Science University of Edinburgh The
King's Buildings Edinburgh EH9 3JZ, 1990. URL http://wWVl.1fcs.inf.ed.ac . ukl
reports/90/ECS-LFCS-90-127/ECS-LFCS-90-127.pdf.

Rance Cleaveland and Scott A. Smolka. Priorities in process algebra. Information and
Computation, 87:58-77, 1990.

R. P. Cook. *mod - a language for distributed programming. IEEE Transactions on
Software Engineering, 6(6):563-571, 1980.

R. 1. Crole. Operational semantics, abstract machines and correctness. Technical report,
Lecture Notes for the Midlands Graduate School in the Foundations of Computer
Science, 2006.

D. E. Culler, A. Dusseau, S. Goldstein C., A. Krishnamurthy, S. Lumetta, T. Eicken, and
K. Yelick. Parallel programming in split c. 1993.

O. Danvy. A rational deconstruction of landin's secd machine. Technical Report RS-03-33,
BRICS Report Series Publications, 2003.

E. Demaine. First class communication in mpi. In Proceedings of the Second MPI Devel­
opers COnference (MPIDC'96), pages 189-194, Los Alamitos, CA, USA, 1996. IEEE

Computer Society. ISBN 0-8186-7533-0.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

K. Elsom. Asynchronous communication in Ada. In Proceedings of the third int:rnati~nal
workshop on Real-time Ada issues, pages 57-65, Farmington, Pennsylvanrua, Umted

States, 1989. ACM Press.

142

Wolfgang Ertel. Performance of competitive or-parallelism. In ICLP '91: Pre-Conference
Wo-:kshop on Parallel Execution of Logic Programs, pages 132-145, London, UK, 1991.
Sprmger-Verlag. ISBN 3-540-55038-0.

C. Fencott. Formal Methods for Concurrency. International Thompson Computer Press
1996. '

M. Fernandez. Programming Languages and Operational Semantics-An Introduction.
King's College Publications, London,UK, 2004. ISBN 0954300637.

Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. JSCL: A Middleware for
Service Coordination. In Proceedings of FORTE 2006, 26th IFIP WG 6.1 International
Conference on Formal Methods for Networked and Distributed Systems, volume 4229
of Lecture Notes in Computer Science. Springer Verlag, 2006. URL http://www . di.
unipi.it/-giangi/forte06.pdf.

C. J. Fidge. A formal definition of priority in csp. ACM Trans. Program. Lang. Syst., 15
(4):681-705, 1993.

R. W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14:636-644, 1967.

I. Foster and K. M. Chandy. Fortran m: A language for modular parallel programming.
Parallel and Distributed Computing, 26(1):24-35, 1995.

Cedric Fournet and Georges Gonthier. The join calculus: A language for distributed
mobile programming. In In Proceedings of the Applied Semantics Summer School
(APPSEM), Caminha, pages 268-332. Springer-Verlag, 2000.

Cedric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml: a language
for concurrent distributed and mobile programming. In Summer School on Advanced
Functional Programming, Lecture Notes in Comput. Sci. 2638, pages 129-158. Springer­
Verlag, 2002.

Michael Friendly. Advanced Logo, A Language for Learning. Lawrence Erlbaum Asso­
ciates, 1 edition (13 jul 1988) edition, 1988.

V.C. Galpin. Equivalence semantics for concurrency: comparison and application. PhD
thesis, ECS-LFCS-98-397, Department of Computer Science, University of Edinburgh,
1998.

N. H. Gehani. Message passing in concurrent c: Synchronous versus synchronous. Journal
of Software Practice and Experience, 20(6):571-592, 1990.

N. H. Gehani and W. D. Roome. Implementing concurrent c. Software - Practice and
Experience, 22(3):265-285, 1992.

C. M. Geschke, J. H. Morris Jr., and E. H. Satterthwaite. Early experience with mesa.
Communications of the ACM" 20(8):540-553" 1977.

S. Glesner. Asms versus natural semantics:a comparison with new insights. In E. Ric­
cobene E. Boerger, A. Gargantini, editor, Abstract State Machines 2003. Advances in
Theory and Practice: 10th International Workshop, ASM 2003, volume 2589, pages
293-309, Taormina, Italy, 2003. Springer Berlin / Heidelberg.

143

G. Goldszmidt S. Katz and S Yi .. I . b .
, , . enulll. nteractIve lackbox debuggmg for concurrent

languages. In ~n ~roceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on
Parallel and D'tstnbuted Debugging (Madison, Wisconsin, United States, May 05 _ 06,
1988). R. L. Wexelbalt, Ed. PADD '88, pages 271-282, New York, 1988. AC~I Press.

A. D. Gor~on. Operational equivalences for untyped and polymorphic object calculi, pages
9-54. HIgher order operational techniques in semantics. Cambridge University Press,
1998. ISBN 0-521-63168-8.

D. Gray. Introduction to the Formal Design of Real- Time Systems. Springer, Paperback,
2000. ISBN 3540761403.

J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specification. 1993.

J. Hannan and D. Miller. From operational semantics to abstract machines. Mathematical
Structures, 2(4):415-459, 1992.

B. P. Hansen. Distributed processes: A concurrent programming concept. In Comm.
ACM, volume 21, pages 934-941, New York, NY, USA, 1978. ACM Press.

Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Programming languages
for distributed applications. New Generation Computing, 16(3):223-261, 1998. URL
citeseer.ist.psu.edu/article/haridi98programming.html.

Wilhelm Hasselbring. Programming languages and systems for prototyping concurrent
applications. ACM Comput. Surv., 32(1):43-79, 2000. ISSN 0360-0300. doi: http:
/ /doi.acm.org/10.1145/349194.349199.

Douglas Heintzman. An introduction to open computing, open standards, and open
source, July 2003. URL http://www.ibm.com/developerworks/rational/library/
1303.html.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576-580 and 583, 1969.

C. A. R. Hoare. Communicating sequential processes. Communications of the Association
of Computing Machinery, 21(8):666-677, 1978.

S. Holmstrom. PH: A functional language for parallel programming. Declarative Program­
ming Workshop, Programming Methodology Group, Chalmers University of Technology,
University of Goteborg, Sweden, 1983.

Waldemar Horwat. A concurrent smalltalk compiler for the message-driven processor.
Technical report, Cambridge, MA, USA, 1988.

N. C. Hutchinson. Emerald: An object-based language for distributed programming.
Technical Report TR 87-01-01" PhD thesis, 1987.

G. Hutton and J. Wright. Calculating an exceptional machine. In Proceedings of the Fifth
Symposium on Trends in Functional Programming, Munich, Germany, 2005.

D. C. Hyde. Introduction to the programming langauge occam, 1995.

144

E. Illingworth A S Bavan d G S FI ' " , an " ora. An asynchronous harness for transputer
systems that does ~ot use polling techniques. In P. Fritzson and 1. Finmo, editors,
Parallel Programmzng and Applications, pages 364-369. lOS Press, 1995.

Inmos. Occam 2.1 Reference Manual. Prentice-Hall, England, 1988.

J. Jacky. THE WAY OF Z : Practical programming with formal methods. Cambridge
University Press, 1997. ISBN 0-521-5597.

H. Jansohn. Ada for distributed systems. AdaLett, VIII(7):101-103, 1988.

A. Jeffrey. Semantics for core Concurrent ML using computation types, pages 55-90.
Higher order operational techniques in semantics. Cambridge University Press, 1998.
ISBN 0-521-63168-8.

Alan Jeffrey. A fully abstract semantics for a concurrent functional language with monadic
types, 1995.

C. B. Jones. The transition from vdl to vdm. Journal of Universal Computer Science, 7
(8):631-640, 2001.

Simon P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, May 2003. ISBN 0521826144. URL http://www . amazon. cal execl
obidos/redirect?tag=citeulike09-20\&path=ASINI0521826144.

S. Kamran. Concurrent c/c++ programming langauges, 1996.

A. A. C. Klaiber and A. H. M. Levy. A comparison of message passing and shared
memory architectures for data parallel programs. In Proceedings of the 21ST annual
international symposium on Computer architecture, Chicago, Illinois, United States,
pages 94-105, Chicago, Illinois, United States, 1994. IEEE Computer Society Press.

Bartosz Klin. An abstract co algebraic approach to process equivalence for well-behaved
operational semantics, 2004.

J. Kramer. Distributed software engineering. pages 253-263, Sorrento, Italy, 1994. IEEE
Computer Society Press.

D. Krizanc and A. Saarimaki. Bulk synchronous parallel: Practical experience with a
model for parallel computing. In PACT '96: Proceedings of the 1996 Conference on
Parallel Architectures and Compilation Techniques, page 208, Washington, DC, USA,
1996. IEEE Computer Society.

J. D. Kubiatowicz. Integrated shared-memory and message-passing communication in
the alewife multiprocessor, 1998. URL http://www . cs. berkeley. edu/-kubi tronl
papers/alewife/pdf/kubi-phdthesis.pdf.

P. Landin. An abstract machine for designers of computing languages. IFIP Congress,
pages 438-439, 1965.

P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(-1):308-320,
1963.

1-15

H. Ledgard. Reference Manual for the ADA Programming Language. Springer-Verlag
New York, Inc., New York" 1983. ISBN 0387908870.

C. Lin and 1. Snyder. A comparision of programming models for shared memory multi­
processors. In proceedings of the 1990 International Conference on Parallel Processing
(II):163-170, 1990. '

L. Logrippo, T. Melanchuck, and R. J. D. Wors. An algebraic specification language
LOTOS: An industrial experience. In Proc. ACM SIGSOFT Int'l. Workshop on Formal
Methods in Software Development, pages 59-66, 1990.

F. J. Lopez-Fraguas, J. Rodrfguez-Hortala, and J. Sanchez-Hernandez. Equivalence of
two formal semantics for functional logic programs. Electron. Notes Theor. Comput.
Sci., 188:117-142, 2007. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2007.
05.042.

J. Magee, N. Dulay, and J. Kramer. Regis: A constructive development environment for
parallel and distributed programs. Distributed Systems Engineering Journal, Special
Issue on Configurable Distributed Systems, 1(5):304-312, 1994.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec­
tures. In W. Schafer and P. Botella, editors, Proc. 5th European Software Engineering
Conj., volume 989, pages 137-153, Sitges, Spain, 1995. Springer-Verlag, Berlin.

Jeff Magee, Naranker Dulay, and Jeff Kramer. Structuring parallel and distributed pro­
grams. Software Engineering Journal, 8:73-82, 1993.

B. Mahony and J. S. Dong. Blending object-z and timed csp: An introduction to tcoz.
The 20th International Conference on Software Engineering, 1998.

Slawomir P. Maludzinski and Grzegorz Dobrowolski. Agent environment and knowledge
in distributed join calculus. In CEEMAS '07: Proceedings of the 5th international
Central and Eastern European conference on Multi-Agent Systems and Applications
V, pages 298-300, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-75253-0.
doi: http://dx.doi.org/10.1007 /978-3-540-75254-7_30.

J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer programming and Formal Systems, pages 21-28,
North-Holland, 1963.

J. McCarthy and J. A. Painter. Correctness of a compiler for arithmetic expressions,
mathematical aspects of computer science. In J. T. Schwartz, editor, Porco Symp. in
Applied Mathematics, volume 19, pages 33-41. Providence, RI: American Mathematical

Society, 1967.

John McCarthy. Towards a mathematical science of computation. In IFIP Congress,

pages 21-28, 1962.

R. Milner. A Calculus of Communicating Systems. Springer Verlag, New York Inc." 1982.
ISBN 0387102353.

R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT Press, 1 edition,

1990.

146

R. Mil.ner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML _
ReV'tsed. MIT Press, 1997.

Ro~in Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univer­
SIty Press, June 1999. ISBN 0521658691. URL http://'WYW. amazon. ca/exec/obidosl
redirect?tag=citeulike09-20\&path=ASIN/0521658691.

Robin Milner. The polyadic ?-calculus: a tutorial. Technical report, LOGIC AND AL­
GEBRA OF SPECIFICATION, 1991.

K. Mitchell. Concurrency in a natural semantics. Technical report, LFCS report ECS­
LFCS-94-311, 1994.

G. Morrisett and R. Harper. Semantics of memory management for polymorphic lan­
guages, pages 175-226. Higher order operational techniques in semantics. Cambridge
University Press, 1998. ISBN 0-521-63168-8.

P. D. Mosses. Exploiting labels in structural operational semantics. Technical report,
BRICS publications, lOS press, 2005.

T. Ngo and L. Snyder. On the influence of programming models on shared memory
computer performance. In scalable High Performance Computing Conference, pages
284-291, 1992.

N. S. Papaspyrou. A Formal Semantics for the C Programming Language. PhD thesis,
National. Technical University of Athens, 1998.

David Park. Concurrency and automata on infinite sequences. Lecture Notes in Computer
Science, Springer- Verlag, page 167, 1981.

J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through
analysis of constraint logic programs. In G. Levi, editor, Static Analysis, 5th Interna­
tional Symposium, SAS'98, pages 246-261, Pisa, Italy, 1998. Springer Verlag.

M. (Ed). Pettersson. Compiling Natural Semantics, volume Lecture Notes in Computer
Science. Springer Verlag, 1999. ISBN 3-540-65968-4.

Keshav Pingali and Kattamuri Ekanadham. Accumulators: A new logic variable abstrac­
tions for functional languages. In FSTTCS, pages 377-399, 1988.

G. Plotkin. A structured approach to operational semantics. Technical report, Technical
Report DAIMI FN-19, 1981.

G. Plotkin. The origins of structural operational semantics, 2003. URL ci teseer. ist.
psu.edu/plotkin030rigins.html.

Sanjiva Prasad and S. Arun-Kumar. Introduction to operational semantics. In The
Compiler Design Handbook, pages 841-890. 2002.

A. V. S. Raj an, S. Bavan, and G. Abeysinghe. Semantics for a distributed programming
language using sacs and weakest pre-conditions. In ADC~M .2006, the 14th Int~r­
national Conference on Advanced Computing and Commumcatwn, Mangalore, Indla,

2006. IEEE press.

147

A. V. S'. Rajan, A. S. Bavan, and G. Abeysinghe. Semantics for an Asynchronous Nlessage
Pa~smg System, volume XYUI of Advances and Innovations in Systems, Computing
SC'lences and Software Engmeering. Springer, 2007a. ISBN 978-1-4020-6263-6.

A. V. S. Raj an, S. Bavan, and G. Abeysinghe. Semantics for a distributed programming
language using sacs and weakest pre-conditions. International Journal of Information
Processing (IJIP), l(l):I.K. Published Journals, 2007b.

A.V.S. Raj an. Verifying compiler generation for a domain specific language. In In pro­
ceedings of International Conference on Functional Programming. ACM Press, 2004.

A.V.S. Raj an. Software verification for parallel/distributed systems. In Proceedings of
PREP 2005. The Engineering and Physical Sciences Research Council (EPSRC), 2005a.

A.V.S. Raj an. Developing a verifying compiler for lips. In In Proceedings of SIGCSE.
ACM Press, 2005b. ISBN 1-58113-997-7.

Linda Rising. Tasking troubles and tips (abstract). In CSC '88: Proceedings of the 1988
ACM sixteenth annual conference on Computer science, pages 729-730, New York,
NY, USA, 1988. ACM. ISBN 0-89791-260-8. doi: http://doi.acm.org/10.1145/322609.
323187.

D. A. Schmidt. Denotational Semantics: A Methodology for Language Developement.
Allyn & Bacon, Inc." Boston, 1986.

Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer
languages. Programming Research Group Technical Monograph PRG-6, Oxford Univ.
Computing Lab., 1971.

N. B. Serbedzija. Asynchronous communication in occam. ACM SIGPLAN Notices, 23
(12):51-62, 1988.

E. Y. Shapiro. Concurrent prolog: A progress report. IEEE Computer, 19(8):44-58, 1986.

D. B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM
Computing Surveys, 30(2):123-169, 1998.

K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming Languages­
a Laboratory-based Approach. Addison Wesley, 1995.

P. Stenstram and F. Dahlgren. Applications for shared memory multiprocessors. Com­

puter, 29(12) :29-31, 1996.

M. Strecker. Formal verification of a java compiler in isabelle. In A. Voronkov, editor,
18th International Conference on Automated Deduction, pages 63-77, Copenhagen,
Denmark, 2002. LNAI 2382, Springer.

R. Strom and S. Yemini. Nil: an integrated language and system for distributed pro­

gramming. pages 73-82, 1983.

R. Strom and S. Yemini. The nil distributed systems programming language: A status
report. ACM Sigplan Notices, 20(5):36-43, 1985.

148

K. Taguchi and K. Araki. The state-based ccs semantics for concurrent z specification. In
1st Internation Conference on Formal Engineering Methods (ICFE1\[,97) , 1997. URL
http://icaps03.itc.it/tutorials/tutoria14.htm,Accessedon22/07/2004.

A. S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and C. J. H. Jacobs. The design
of very fast portable compilers. ACM SIGPLAN Not., 2.1(11):125 - 131, 1989.

G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, Cambridge.
2000.

G. K. Theodoropoulos, G. K. Tsakogiannis, and J. V. Woods. Occam: An asynchronous
hardware description language? pages 249-256, 1997.

E. Tuosto. Non Functional Aspects of Wide area Network Programming. PhD thesis,
Dipartimento di Informatica, Univ. Pisa, 2003.

David von Oheimb. Axiomatic semantics for Javafight in Isabelle/HOL. In
S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Mliller, and A. Poetzsch­
Heffter, editors, Formal Techniques for Java Programs. Technical Report 269,
5/2000, Fernuniversitat Hagen, Fernuniversitat Hagen, 2000. ECOOP2000 Work­
shop proceedings available from http://www.informatik.fernuni-hagen.de/pi5/
publications.html.

P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Semantics, Implementation
and Application. In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C.
Wood, editors, Communicating Process Architectures 2005, volume 63 of Concurrent
Systems Engineering Series, pages 289-316, Amsterdam, The Netherlands, September
2005. lOS Press. ISBN: 1-58603-561-4.

A. Wijngaarden. Revised report of the algorithmic language algol 68. Technical Report
Sup 47, Mountain View, CA, United States, 1981.

Glynn Winskel. The formal semantics of programming languages: an introduction. MIT
Press, Cambridge, MA, USA, 1993. ISBN 0-262-23169-7.

149

	568405_0000
	568405_0001
	568405_0002
	568405_0003
	568405_0004
	568405_0005
	568405_0006
	568405_0007
	568405_0008
	568405_0009
	568405_0010
	568405_0011
	568405_0012
	568405_0013
	568405_0014
	568405_0015
	568405_0016
	568405_0017
	568405_0018
	568405_0019
	568405_0020
	568405_0021
	568405_0022
	568405_0023
	568405_0024
	568405_0025
	568405_0026
	568405_0027
	568405_0028
	568405_0029
	568405_0030
	568405_0031
	568405_0032
	568405_0033
	568405_0034
	568405_0035
	568405_0036
	568405_0037
	568405_0038
	568405_0039
	568405_0040
	568405_0041
	568405_0042
	568405_0043
	568405_0044
	568405_0045
	568405_0046
	568405_0047
	568405_0048
	568405_0049
	568405_0050
	568405_0051
	568405_0052
	568405_0053
	568405_0054
	568405_0055
	568405_0056
	568405_0057
	568405_0058
	568405_0059
	568405_0060
	568405_0061
	568405_0062
	568405_0063
	568405_0064
	568405_0065
	568405_0066
	568405_0067
	568405_0068
	568405_0069
	568405_0070
	568405_0071
	568405_0072
	568405_0073
	568405_0074
	568405_0075
	568405_0076
	568405_0077
	568405_0078
	568405_0079
	568405_0080
	568405_0081
	568405_0082
	568405_0083
	568405_0084
	568405_0085
	568405_0086
	568405_0087
	568405_0088
	568405_0089
	568405_0090
	568405_0091
	568405_0092
	568405_0093
	568405_0094
	568405_0095
	568405_0096
	568405_0097
	568405_0098
	568405_0099
	568405_0100
	568405_0101
	568405_0102
	568405_0103
	568405_0104
	568405_0105
	568405_0106
	568405_0107
	568405_0108
	568405_0109
	568405_0110
	568405_0111
	568405_0112
	568405_0113
	568405_0114
	568405_0115
	568405_0116
	568405_0117
	568405_0118
	568405_0119
	568405_0120
	568405_0121
	568405_0122
	568405_0123
	568405_0124
	568405_0125
	568405_0126
	568405_0127
	568405_0128
	568405_0129
	568405_0130
	568405_0131
	568405_0132
	568405_0133
	568405_0134
	568405_0135
	568405_0136
	568405_0137
	568405_0138
	568405_0139
	568405_0140
	568405_0141
	568405_0142
	568405_0143
	568405_0144
	568405_0145
	568405_0146
	568405_0147
	568405_0148
	568405_0149
	568405_0150
	568405_0151
	568405_0152
	568405_0153
	568405_0154
	568405_0155
	568405_0156
	568405_0157
	568405_0158
	568405_0159

