586,505 research outputs found

    A bi-directional analysis technique for software safety and software security

    Get PDF
    With the recent rapid development of software technology, safety-critical and security-critical software is playing a more important role in people\u27s lives. The importance of system safety and system security has promoted much research on systematic techniques to develop complete safety and security requirements. Among the techniques used in the analysis of the software safety, bi-directional analysis has shown promise in security requirement analysis. This method combines a forward search from potential failure modes to their effects with a backward search from feasible hazards to the contributing causes of each hazard. We use bi-directional analysis to investigate the requirements for two applications in the areas of safety analysis and security analysis. The two contributions of this work both involve the application of the bi-directional analysis and develop systematic methods to apply it to these two different types of non-functional requirements analysis. The first application is to construct a systematic safety requirements analysis technique for a smart door product line. The final results include a reusable safety analysis and the discovery of missing safety requirements. The second application investigates a systematic security requirements technique for a Delay Tolerant Network protocol called the Bundle Protocol. This work improves an existing security analysis technique by integrating it with the bi- directional analysis to demonstrate and challenge the correctness and completeness of the resulting security requirements specifications. We also report the discovery of missing security requirements and the remediation of the security requirements. Both applications explore the technique of applying bi-directional analysis to software safety analysis and software security analysis and find that the bi-directional analysis assists in finding incorrect and incomplete requirements

    Keeping Continuous Deliveries Safe

    Full text link
    Allowing swift release cycles, Continuous Delivery has become popular in application software development and is starting to be applied in safety-critical domains such as the automotive industry. These domains require thorough analysis regarding safety constraints, which can be achieved by formal verification and the execution of safety tests resulting from a safety analysis on the product. With continuous delivery in place, such tests need to be executed with every build to ensure the latest software still fulfills all safety requirements. Even more though, the safety analysis has to be updated with every change to ensure the safety test suite is still up-to-date. We thus propose that a safety analysis should be treated no differently from other deliverables such as source-code and dependencies, formulate guidelines on how to achieve this and advert areas where future research is needed.Comment: 4 pages, 3 figure

    Integration of Safety Analysis in Model-Driven Software Development

    Get PDF
    I Safety critical software requires integrating verification techniques in software development methods. Software architectures must guarantee that developed systems will meet safety requirements and safety analyses are frequently used in the assessment. Safety engineers and software architects must reach a common understanding on an optimal architecture from both perspectives. Currently both groups of engineers apply different modelling techniques and languages: safety analysis models and software modelling languages. The solutions proposed seek to integrate both domains coupling the languages of each domain. It constitutes a sound example of the use of language engineering to improve efficiency in a software-related domain. A model-driven development approach and the use of a platform-independent language are used to bridge the gap between safety analyses (failure mode effects and criticality analysis and fault tree analysis) and software development languages (e.g. unified modelling language). Language abstract syntaxes (metamodels), profiles, language mappings (model transformations) and language refinements, support the direct application of safety analysis to software architectures for the verification of safety requirements. Model consistency and the possibility of automation are found among the benefits

    Functional Requirements-Based Automated Testing for Avionics

    Full text link
    We propose and demonstrate a method for the reduction of testing effort in safety-critical software development using DO-178 guidance. We achieve this through the application of Bounded Model Checking (BMC) to formal low-level requirements, in order to generate tests automatically that are good enough to replace existing labor-intensive test writing procedures while maintaining independence from implementation artefacts. Given that existing manual processes are often empirical and subjective, we begin by formally defining a metric, which extends recognized best practice from code coverage analysis strategies to generate tests that adequately cover the requirements. We then formulate the automated test generation procedure and apply its prototype in case studies with industrial partners. In review, the method developed here is demonstrated to significantly reduce the human effort for the qualification of software products under DO-178 guidance

    Implementing Software Safety in the NASA Environment

    Get PDF
    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system

    Safety and Security Analysis of AEB for L4 Autonomous Vehicle Using STPA

    Get PDF
    Autonomous vehicles (AVs) are coming to our streets. Due to the presence of highly complex software systems in AVs, there is a need for a new hazard analysis technique to meet stringent safety standards. System Theoretic Process Analysis (STPA), based on Systems Theoretic Accident Modeling and Processes (STAMP), is a powerful tool that can identify, define, analyze and mitigate hazards from the earliest conceptual stage deployment to the operation of a system. Applying STPA to autonomous vehicles demonstrates STPA\u27s applicability to preliminary hazard analysis, alternative available, developmental tests, organizational design, and functional design of each unique safety operation. This paper describes the STPA process used to generate system design requirements for an Autonomous Emergency Braking (AEB) system using a top-down analysis approach to system safety. The paper makes the following contributions to practicing STPA for safety and security: 1) It describes the incorporation of safety and security analysis in one process and discusses the benefits of this; 2) It provides an improved, structural approach for scenario analysis, concentrating on safety and security; 3) It demonstrates the utility of STPA for gap analysis of existing designs in the automotive domain; 4) It provides lessons learned throughout the process of applying STPA and STPA-Sec

    Development of a software safety process and a case study of its use

    Get PDF
    The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    Eliminating stack overflow by abstract interpretation

    Get PDF
    ManuscriptAn important correctness criterion for software running on embedded microcontrollers is stack safety: a guarantee that the call stack does not overflow. Our first contribution is a method for statically guaranteeing stack safety of interrupt-driven embedded software using an approach based on context-sensitive dataflow analysis of object code. We have implemented a prototype stack analysis tool that targets software for Atmel AVR microcontrollers and tested it on embedded applications compiled from up to 30,000 lines of C. We experimentally validate the accuracy of the tool, which runs in under 10 sec on the largest programs that we tested. The second contribution of this paper is the development of two novel ways to reduce stack memory requirements of embedded software
    corecore