
NASA Technical Memorandum 1.06597

r_ /w -e_

7 q _gd,

Implementing Software Safety in the
NASA Environment

Martha S. Wetherholt

Lewis Research Center

Cleveland, Ohio

and

N

_'_ r0 o_
I ,- o_

",!" u o
o, c o

co
f,q

r_

Charles F. Radley
EBASCO Services, Inc.

Brook Park, Ohio

Prepared for the
Safety Through Quality Conference

sponsored by the Real Time Associates, Ltd.
Old W'mdsor, Berkshire, United Kingdom, June 6-7, 1994

National Aeronautics and

Space Administration

U
t.
m

z

z_
uJ_ _
E z..-
w 3

o. _ ..j

I

Z_

_'>'Z

_uj

Ew_

ZC) Z
•-, u'; tu _j

t

https://ntrs.nasa.gov/search.jsp?R=19940028526 2020-06-16T12:19:48+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Implementing Software Safety in the NASA Environment

Martha S. Wetherholt

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

Charles E Radley
EBASCO Services, Inc.

Brook Park, Ohio 44142

ABSTRACT. Until recently, NASA did not consider allowing computers

total control of flight systems. Human operators, via hardware, have

constituted the ultimate safety control. In an attempt to reduce

costs, NASA has come to rely more and more heavily on computers and

software to control space missions. (For example, software is now

planned to control most of the operational functions of the

International Space Station.) Thus the need for systematic software

safety programs has become crucial for mission success.

Concurrent engineering principles dictate that safety should be

designed into software up front, not tested into the software after the

fact. 'Cost of Quality' studies have statistics and metrics to prove

the value of building quality and safety into the development cycle.

Unfortunately, most software engineers are not familiar with designing

for safety, and most safety engineers are not software experts.

Software written to specifications which have not been safety analyzed

is a major source of computer related accidents.

Safer software is achieved step by step throughout the system and

software lifecycle. It is a process that includes requirements

definition, hazard analyses, formal software inspections, safety

analyses, testing, and maintenance. The greatest emphasis is placed on

clearly and completely defining system and software requirements,

including safety and reliability requirements. Unfortunately,

development and review of requirements are the weakest link in the

process. While some of the more academic methods, e.g. mathematical

models, may help bring about safer software, this paper proposes the

use of currently approved software methodologies, and sound software

and assurance practices to show how, to a large degree, safety can be

designed into software from the start.

NASA's approach today is to first conduct a preliminary system hazard

analysis (PHA) during the concept and planning phase of a project.

This determines the overall hazard potential of the system to be built.

Shortly thereafter, as the system requirements are being defined, the

second iteration of hazard analyses takes place, the systems hazard

analysis (SHA). During the systems requirements phase, decisions are

made as to what functions of the system will be the responsibility of

software. This is the most critical time to affect the safety of the

software. From this point, software safety analyses as well as

software engineering practices are the main focus for assuring safe



software. While many of the steps proposed in this paper seem like
just sound engineering practices, they are the best technical and most
cost effective means to assure safe software within a safe system.

THE CURRENTNASA ENVIRONMENT

NASA, for the most part, is a research and development organization

where development of hardware - rockets, jet engines, turbo props,

satellites, etc. - has been, and still is, the primary focus.

Software, coming late into this hardware dominated environment, has

typically been viewed as; I) highly suspect, 2) a low cost catch-

all, and 3) necessary but not worth putting too much effort into.

In the cases where it is viewed as highly suspect, there have

always been hardware back-ups and crew operations to work around

the software. Ten to fifteen years ago, in the few situations

where software had to be used for some safety critical operation,

N-version programming with voting logic was used (e.g. shuttle

General Purpose Computers). However, that approach is too costly

for most programs today.

Hardware is more familiar. The ways to develop, test and operate

hardware have a long standing tradition and are trusted. Software,

on the other hand, is not generally well understood by managers,

the majority of which are hardware oriented. It makes sense and

can be considered sound engineering to rely on what is most

familiar, tried and true - the hardware and the ground and flight

crew which operate it. Thus, software was relegated to non-safety

related tasks with only a few exceptions.

Software's greatest asset is often, paradoxically, its greatest

liability. Software is flexible. It can perform a multitude of

tasks with little power or space. Software controlled hardware is

often lighter and more standardized. Its very versatility, its

ability to change without retooling or new weight calculations, its

ability to provide information quickly and in human readable

formats with less space and lower power consumption, are the very

reasons why we must exploit all the possibilities software presents

us. However, being considered "so easy to change" often leads to

many of the problems encountered with software. Software designs

are either left until last in a project or, if started early, keep

changing throughout the project because there is very little

understanding of the actual implications of how software is

properly designed and built. On one hand, software is not trusted,

on the other hand, the poor processes used in developing software

lead to justification of that mistrust.

NASA has, over the course of its many programs and projects, tended

to let each center, even each project within a center, choose it's

own software standards. Unlike our military, which is strict about

having one set of standards and enforcing contractor compliance to

2



them, NASA (excluding hardware safety) has only 'guidelines' and
'suggested' standards. That is not to say that there are no
standards applied. It is merely up to each project manager to
choose the standards he/she thinks are best suited for their
project. There are no 'standard', or required, standards except
for hardware safety standards [I] and most of those are space
shuttle payload specific. This becomes a problem when large
dissimilar systems have to interface or interoperate. The largest
NASA systems, e.g. Space Shuttle and Kennedy Space Center launch
control systems, were developed in isolation without regard to
interoperability and with contractors using their own standards.

NASA is in the process of changing its approach to developing
projects that utilize software and, hopefully, this will lead to a
change in attitude about software's role as well. More and more
sophisticated controls and monitoring are needed as we do more and
more work in space and on the ground. Software is performing
safety critical tasks, despite claims to the contrary. So, like
hardware, software must also rely on a set of safety standards that
must be followed.

It is difficult for NASA, as a whole, to accept the need for
software standardization for a variety of reasons. To some degree,
a distaste for rules and regulations that is traditionally found in
many software engineers as well as a lack of understanding of
software in R&D oriented hardware managers, has lead to questioning
the need to place so much emphasis on a comprehensive software
process. Also, many managers and engineers are accustomed to
working on small projects. In this environment, different
management skills are stressed; the same five to ten people on a
project have usually conceived, designed, built, coded, and tested
all the hardware and software. Thus, due partly to the lack of
opportunity, there is a need to build the broader management skills
and appreciation for high level planning needed for today's more
complex systems. On larger systems, contractors handle the
majority of software management and choose the standards, usually
with limited guidance from NASA and a dictate that software "shall
not be used in critical applications". While there are many
successes, projects like Space Station have drawn attention to
NASA's difficulties. Both the Aeronautical Safety Advisory Panel
(ASAP) and the National Research Council (NRC) [2] have pointed out
to NASA the need for software standardization, especially where
safety is concerned.

THE PATH TO CHANGE

This paper presents the emerging NASA approach to software safety.

First, NASA's goal must be to have effective software standards and

techniques that are adhered to by all developers of NASA software,

both in-house and by our contractors. Second, a comprehensive set

of software safety specific requirements and analyses must be



defined, understood, and used.

NASA is still working to achieve the first goal. As the Aerospace
Safety Advisory Panel annual report of March, 1994 shows:

"Findina #31: NASA's past approach to software

development has been to incorporate it within the

individual programs, allowing them to determine their own

requirements and development, verification and validation

procedures. In the future, as the complexity of NASA's

computer systems and the need for interoperability grow,

this mode of operation will be increasingly less

satisfactory. While NASA has some good software

practices, it does not have the overall management

policies, procedures, or organizational structure to deal

with these complex software issues."

"Recommendation _31: NASA should proceed to develop and

implement an agency wide policy and process for software

development, verification, and safety as quickly as

possible."

A few common techniques, procedures and practices are starting to

be applied within, if not across, the NASA centers. Some of these

practices are briefly discussed.

A Software Safety Standard (SSS) which addresses both the software

safety requirements and the safety analyses, is now in review

across NASA. It is due to be published by fall, 1994. Like its

hardware predecessor, it must be universally applied. The basic

approach to software safety as described in the standard, is

outlined below. A NASA Software Safety Guidebook will provide

more of the explanations of how, where, and where not, to apply the

software safety requirements and analyses put forth in the

Software Safety Standard. The guidebook will be completed about a

year after the standard is released.

THE SOFTWARE DEVELOPMENT LIFECYCLE

NASA usually views the software lifecycle as a waterfall. While

proto-typing and spiral lifecycle methods are used, they are not

currently the typical approach. Thus most of our terminology is

based on the phases of the waterfall lifecycle model. While not

explicitly discussed in the Software Safety Standard, most of the

software safety process is applicable to all lifecycle models.

Figure 1 shows the typical software waterfall lifecycle, its

milestones, and the usual software tasks performed in each

progressive step (or phase). Figure 2 shows the software safety

lifecycle.



CONCEPT
PHASE

REQUIREMENTS
DEFINITION
PHASE

ARCHITECTURAL
DESIGN PHASE

CONCEPT

eREVIEW SYSTEM DOC.
eREVlEW MNGMNT PLANS
eREVIEW SAFETY PLAN
eUSE PHA TO IDENTIFY S/W

SAFETY FUNCTIONS

REQUIRMENTS

DEFINITION

• DOCUMENT S/W REQ
• INCORPORATE SAFETY

& RELIABIUTY REQ
• FORMAL INSPECTIONS

DETAILED
DESIGN
PHASE

IMPLEMENTATION
PHASE

"ST &
INTEE
PHASE

OPERATIONS &
MAI NTENANCE
PHASE

DESIGN

• DESIGN & DOCUMENT
• INCORPORATE S/W SAFETY FEATURES

• FORMAL INSPECTIONS

• S/W FAULT ANALYSIS
• FDIR DESIGN
• TEST PLAN S

IMPLEMENTATION

• CODI NG
• UNIT TEST
• FDIR
• SAFETY FEATURES
• FORMAL INSPECTIONS

TESTING

• CSCI TESTING
• S/W INTEGRATION TESTS
• H/W INTEGRATION TESTS
• ACCEPTANCE TESTS
• DATA ACCEPTANCE PKG

Figure 1. The Software Waterfall Lifecycle



PHA SYSTEMS & SUB SYSTEMS HAZARD ANALYSES

:ONCEPT

SYSTEM REQUIREMENTS :;:i!:!i!:,;

SYSTEM ARCHITECTURE DESIGN

SYSTEM DETAILED DESIGN

• j SYSTEM BUlleD _ii_::z::_:_:;:i:.hi_:!i!ii_i_i:__:

SYSTEM & ACCEPTANCE

S/W CONCEPT
S/W REQUIREMENTS

/
S/W SAFETY REOUIREMENTS
- IDENTIFIED FROM SYSTEM RECL
• DEVELOPEDFOR SPECIFIC

ANALYZEFOR POTENTIAL HAZARDS

IDENTIFY SAFETY DESIGN FEATURES
ASSURE SAFETY REO. FLOWED INTO DESIGN
ANALYZE PRELII_NARY DESIGN FOR

POTENTIAL HAZARDS

S/W DESIGN

S/W IMPLEMENTATION

S/W TESTING

DETAILED DESIGN ANALYSIS (DDA)
_ARE SAFETY TESTING
OPERATIONAL SAFETY PROCEDURE

ASSURE USE OF SAFETY SPECIFICCODING STDS TESTING
IMPLEMENTATION OF SAFETY DESIGN FEATURES
CODE-LEVEL SOFT'WAREANALYSIS(CSA)

Figure 2. System & Software Lifecycles and the Safety Tasks

JUST PLAIN GOOD DEVELOPMENT PRACTICES

The overall software development process is very important to

achieving complete, safe and reliable software. What good are

safety requirements and hazard report recommendations if the

software or the software development process is the major cause of

errors? Software development must have, as a minimum:

D

w

software management plans that are followed;

configuration management of all documents, code and tests;

complete and unambiguous definition of all requirements early

in the lifecycle;

use of software language standards;

use of Yourdon, de Marco, etc. design techniques;

clear, well defined interfaces;

documented code that helps those that must maintain it;

comprehensive tests plans and procedures for unit through

acceptance testing;

problem tracking system that ties into the system problem

tracking during the software and hardware integration tests;

a software product assurance program that, as a minimum,

6



m

m

assures the software completely meets, tests, and delivers all

requirements, the documentation is complete and up to date,
and established standards have been followed, or appropriately

waived;

pre-flight reviews that incorporate software status;

sign-off/acceptance procedures which include data acceptance

packages to insure what is shipped is what is meant to fly.

NASA has standards and/or guidelines which address all of the above

mentioned practices. However, many developers/project managers at

NASA may use a modified/tailored DoD-STD-2167A, IEEE software

standards, or other approaches.

There is a lot of work that must go into achieving complete, safe

and reliable software. However, schedules are tight and budgets

even tighter. We need to get the most "bang for our buck", that is

put the most effort into what will yield the highest pay-off.

Studies indicate that the most costly software errors ("error -

Human action that results in software containing a fault." IEEE

definition) occur during the requirements definition phase of the

software lifecycle.

Robyn Lutz of the Jet Propulsion Laboratory (JPL), in a study of

errors found during integration and systems testing of the Voyager

and Galileo spacecraft [3] revealed that the majority of safety

related errors resulted from failure to identify or understand

functional requirements (62% on Voyager, 79% on Galileo). Of those

missing functional requirements, the majority were from

misunderstood hardware and software interface specifications (65%

Voyager, 48% Galileo). Non-safety related functional faults were

usually caused during implementation of the requirements.

As an error propagates through the software development lifecycle,

it becomes more and more expensive to fix as each requirement

becomes documented, designed to, implemented, and tested prior to

being found incorrect or missing. The 'cost of quality' is very

evident in estimating the cost to correct software errors. To fix

a problem when it is created costs little. Finding the problem in

the next development phase costs I0 times what it would have cost

to fix the problem before. If the problem is found during the

operational phase, it is I00 times more expensive to fix. Thus,

NASA is concentrating on getting the requirements correct first.

The next level of emphasis is to ensure that most errors are found

during the phase in which they are inserted. The old idea of

testing safety and quality into a product have just not proved to

be technically or cost effective. Software is notoriously

difficult, even impossible, to test for all possible paths that can

be taken.

Software Formal Inspections [4] is one method for finding errors at

the point within the development cycle in which they occur. It has

built in checklists that target each software lifecycle phase.



SFI has proved effective in discovering missing, incomplete and
wrong requirements early in the development process. JPL has
developed training, standards and guidelines for use of the Formal
Inspection process. The process was based on methods originally
created in 1972 by Michael Fagan when he was at IBM [5,6] and
expanded by John Kelly of JPL [7]. Software Formal Inspections
(SFI) are a series of very structured, intra-lifecycle phase, peer
reviews of the non-released software product (documents, code, test
procedures, etc.). The method is straight forward, well laid out
and provides built in metrics. The results are quite impressive,
using formal inspections, the hours needed to fix a defect found by
SFI is about .7 hours as opposed to 5-18 hours if the defect is
left to be found during testing.

This method is being adopted, albeit slowly, within most of the
NASA centers. In addition to its built in metrics, checklists and
straight forward process, Formal Inspections target errors within
the lifecycle in which they are created. Taking small pieces of
the product and reviewing it in a non-adversarial atmosphere with
only those peers and experts which can contribute technically (i.e.
without management involvement), builds the team work and
empowerment aspects so important in NASA's goal to embrace Total
Quality Management. To a large extent, besides its logical
methodology, the growing success of Formal Inspections can be
attributed to the training and support that JPL provides to each
center to get the center started. NASA headquarters has further
supported this methodology by issuing a NASA Software Formal
Inspection Standard and Guidebook which follow the JPL SFI training
course.

THE NASA SOFTWARE SAFETY STANDARD

While a separate NASA Software Safety Standard is being created, it

is heavily stressed that software safety is a part of the overall

system safety effort and is not performed in isolation to the rest

of the system. Software gets its first indication of criticality

from the preliminary system safety analysis. As the iterative

process of both the system and software safety analysis progresses

to deeper levels of detail, information from each analysis flows to

the other.

Due to some uniqueness of software safety analyses and in order to

call attention to the need for a software safety

program/methodology within NASA, the Software Safety Standard is

currently a separate document and not combined within the NASA

Safety Policy and Requirements Document. This Software safety

standard is to be applied to all software acquired by NASA and all

software developed by NASA that is used as a part of a system that

possesses the potential of directly, or indirectly, causing harm to

humans or damage to property exterior to the system. When



software is acquired by NASA, this standard is to be specified in
contract clauses or memoranda of understanding. When software is
developed by NASA, this standard applies and will be specified in
the program plan, software management plan, or other controlling
document.

Software safety requires a coordinated effort among all
organizations involved in the development of NASA software.
Those conducting the Software Safety effort must interface with
personnel from disciplines such as reliability, Independent
Verification and Validation (when available), and human factors.

The purpose of the software safety process is to ensure that
software does not cause, or contribute to, a system reaching a
hazardous state; that it does not fail to detect or take
corrective action if the system reaches a hazardous state; and
that it does not fail to mitigate damage if an accident occurs.

The overall software safety process is to:

a o

bo

Ensure that the system/subsystem safety analyses

identify which software is safety-critical. Any software

that has the potential to cause a hazard or is required

to support control of a hazard, as identified by safety

analyses, is safety-critical software.

Ensure that the system/subsystem safety analyses clearly

identify the key inputs into the software requirements

specification e.g., identification of hazardous commands,

limits, interrelationship of limits, sequence of events,

timing constraints, voting logic, failure tolerance,

etc.

C. Ensure that the development of the software requirements

specification includes the software safety requirements

that have been identified by software safety analysis.

d° Ensure that the software design and implementation

properly incorporates the software safety requirements.

e . Ensure that the appropriate verification and validation

requirements are established to ensure proper

implementation of the software safety requirements.

f . Ensure that test plans and procedures satisfy the intent

of the verification requirements.

g.
Ensure that the results of the verification effort are

satisfactory.

Software safety procedures are to be performed as an integrated

9



activity of the system safety effort. Those performing software
safety provide support during system concept definition, safety
planning, design of system architecture to minimize safety
critical configuration items, and identification of Safety Critical
Computer Software Components (SCCSCs). Using the results of the
system Preliminary Hazard Analysis (PHA) and system safety
requirements allocated to software as the starting point for SCCSC
identification, software safety continues to work software safety
requirements definition and analysis activities throughout software
development and test.

The software safety effort provides hazard analysis reports,
software safety analyses and testing results to system safety, on
a continuous basis, for inclusion in the System Hazard Analysis and
Integrated Hazard Analysis.

RISK ASSESSMENT

Once identified, a potential hazard may be I) eliminated, 2)

mitigated, or 3) accepted. Hazards are categorized based on both

severity and likelihood of occurrence with "i" being the most

critical. (See Figure 3.) The order of precedence for satisfying

system and software safety requirements and for resolving

identified hazards is as follows:

a. Design for Minimum Risk. From the onset, design to

eliminate hazards. If an identified hazard cannot be

eliminated, reduce the associated risk to an acceptable

level, as defined by management, through design

selection.

b. Incorporate Safety Devices and/or Failure Tolerance

(These can be either software, hardware, or software and

hardware combined). If identified hazards cannot be

eliminated or their associated risk adequately reduced

through design selection, that risk is to be reduced to

a level acceptable to the management through the use of

fixed, automatic, or other protective safety design

features or devices, or redundancy.

C • Provide Warning Devices (These can be either software,

hardware, or software and hardware combined). When

neither design nor safety features/devices can

effectively eliminate identified hazards or adequately

reduce associated risk, devices are to be used to detect

the condition and to produce an adequate warning signal

to alert personnel of the hazard. Warning signals and

their application are to be designed to minimize the

probability of incorrect personnel reaction to the

signals and be standardized within like types of systems.

I0



do Develop Procedures and Training. Where it is impractical

to eliminate hazards through design selection or

adequately reduce the associated risk with safety and

warning devices, procedures and training are to be used.

However, without a specific waiver, no warning, caution,

or other form of written advisory can be used as the only

risk reduction method for Category 1 and 2 hazards (See

Figure 3).

The decision (based on all relevant factors) to accept a hazard

with its associated risk is a management responsibility, and

requires coordination and concurrence by the designated safety

official and the Program Manager. If there is a lack of
concurrence on the decision between management and safety at any

level, those performing safety on that project will elevate the
decision to the next Safety, Reliability, Maintainability, and

Quality Assurance (SRM&QA) management level. The probability of

mishap coupled with the severity of the possible consequences is

the major consideration in that decision. The Risk Assessment
approach to determine the hazard category is shown in Figure 3.

PROBABLE

LIKELIHOOD OF OCCURRENCE

OCCASIONAL REMOTE IMPROBABLE

SEVERITY

LEVELS

CATASTROPHIC

CRITICAL

MARGINAL

1

1

2

1 2

2 3

3 4 5

Figure 3. Safety Categorization

SYSTEM SAFETY

The Software Safety process really begins during the system concept

and requirements phase. The system Preliminary Hazard Analysis

(PHA), and subsequent system and software safety analyses,

11



initially identify when software is a potential cause of a hazard

or will be used to support the control of a hazard. This software

is classified as safety-critical and is subjected to software

safety analysis. Safety-critical software is typically I) software
which exercises direct command and control over potentially

hazardous functions and or hardware, 2) software that monitors

critical hardware components, 3) software which monitors the system

for possible critical conditions and/or states, and/or 4) software

that if not executed or is executed incorrectly, inadvertently, or

out of sequence could result in a hazard or allow a hazardous

condition to exist.

The system safety analyses are the first place to identify

software safety requirements necessary to support the development

of the software requirements specification. These requirements are

then provided to the developer for inclusion into the software

requirements document. Some examples of software safety

requirements include limits (e.g., redlines, boundary values),

sequence of events, timing constraints, interrelationship of

limits, voting logic, hazardous hardware failure recognition,

failure tolerance, caution and warning interfaces, hazardous

commands, etc.

Within each phase of the software development lifecycle, two

interrelated safety activities take place. One is the safety

analysis of the deliverables produced within that lifecycle phase.

These analyses determine if new potential hazards have arisen and

if previously identified hazards have been properly removed or

mitigated. The other activity consists of providing or building

into the process and products known software safety requirements,

practices, implementation techniques, and test methods.

SOFTWARE REQUIREMENTS PHASE

There are two main software safety tasks that are performed at this

stage of the lifecycle, i) further development of software safety

requirements and 2) analysis of the software requirements for

potential hazards.

Analysis of the software requirements can reveal potential hazards

that the system safety analysis was unable to surface or can show

where system requirements were not flowed into the software

properly. These potential hazards can then be addressed by adding

or changing system and/or software requirements.

Software Formal Inspections can have their highest affect when used

at this stage of the software development lifecycle. The

procedures help ensure that all appropriate personnel (e.g. system

engineers, hardware designers, users, etc.) work together to focus

on ensuring that all the requirements are in place and correctly

defined.

12



SOFTWARE ARCHITECTURE/PRELIMINARY DESIGN PHASE

The software architectural design process develops the high level

design that implements the software requirements. This includes

all software safety requirements. During the design process, the

software safety engineer identifies safety design features and

methods (e.g., inhibits, traps, interlocks and assertions) that can

be used throughout the software to implement the software safety

requirements. Safety specific coding standards are also developed

which identify requirements for annotation of safety-critical code

and limitation on use of certain language features which can reduce

software safety. After allocation of the software safety

requirements to the software design, the next level SCCSCs are

identified. These are all software components which implement

software safety requirements or components which interface with

SCCSCs which can affect their output.

Analysis is performed on the architectural design to identify

potential hazards and on the test plans to verify incorporation of

safety related testing. Input/ output timing, multiple event,

out-of-sequence event, failure of event, wrong event, inappropriate

magnitude, incorrect polarity, adverse environmental, deadlocking,

and hardware failure sensitivities are included in the analysis.

SOFTWARE DETAILED DESIGN PHASE

After development of the detailed design, unit level SCCSCs are

identified. These are all software units that implement software

safety requirements or units which interface with SCCSCs which can

affect their output.

During this phase, safety-related information is incorporated into

all user manuals. This information includes cautions, warnings,

and procedures for handling safety related procedures and hazards.

These documents include the User's Guides and Operational

Procedures. Software Formal Inspections of these documents will

help assure the incorporation of the appropriate safety features.

Test cases which verify the software safety requirements and

identify potential hazards are developed during this phase. The

safety related test cases are to ensure that the software responds

correctly to potential hazards and does not initiate any hazards.

These test cases support Computer Software Component Item (CSCI),

system and acceptance level testing.

A Detailed Design Analysis (DDA) is performed on the design to

identify potential hazards and on test cases to ensure

incorporation of safety related testing. A comprehensive Fault

Detection, Isolation, and Recovery (FDIR) philosophy should be

13



incorporated in the design as well as implementation of the caution
and warning requirements and further breakout of safety
requirements. All of which are analyzed and related to the system
safety requirements to assure that the software design is still on
target with system requirements, design, and implementation.

SOFTWARE IMPLEMENTATION/CODING PHASE

The software implementation translates the detailed design into

code in the selected programming language. As part of the

process, the detailed design for the SCCSC is translated into the

code in accordance with the safety specific coding standards. The

code also implements any safety design features and methods

developed during the design process.

Safety-critical code is to be commented with enough information and

warning so that any future changes can be made with a reduced

probability of introducing new software hazards.

Test procedures which support CSCI, system and acceptance level

testing are developed during this phase to verify the software

safety requirements and identify potential hazards. The safety

related procedures include negative, no-go and stress testing to

ensure that the software responds correctly to potential hazards

and does not initiate any hazards.

The safety engineer performs and documents a Code-Level Software

Analysis (CSA). Using the results of the Detailed Design Analysis,

if previously accomplished, the safety activity analyzes program

code and system interfaces for events, faults, and conditions that
could cause or contribute to undesired events affecting safety.

This analysis starts when coding begins and continues throughout

the system life cycle. The results of the CSA are presented at

software in-process reviews and system level safety reviews.

Activities to be accomplished during CSA are described below:

a. Analyze:

i) SCCSCs for correctness and completeness, and for

input/output timing, multiple event,

out-of-sequence event, failure of event, adverse

environment, deadlocking, wrong event,

inappropriate magnitude, improper polarity, and

hardware failure sensitivities.

2) Software implementation of safety criteria called

out in the system specifications and requirements

documents.

3) Possible combinations of hardware failures,

14

14



b,

C •

software failures, transient errors, and other

events that could cause the system to operate in a

hazardous manner.

4) Proper error handling for inappropriate or

incorrect data in the input data stream.

5) Fail-safe and fail-soft modes.

6) Input overload or out-of-bound conditions.

Perform an internal path and control process flow

analysis on SCCSCs.

Any resulting design, coding, and testing change
recommendations must be documented first in a hazard

report or safety analysis report. Approved changes are

then incorporated into the codes, design and if need be,

the requirements specification and test documents as

well.

d. Use formal methods and Software Formal Inspections

procedures to verify that the as-written code conforms to

the logical design specification and as a means to assure
concurrence with standards. In addition, use of a

checklist of common coding pitfalls, available from the

SFI guidebook, helps reduce the chance of avoidable

errors.

SOFTWARE TESTING AND ACCEPTANCE PHASE

Safety testing is performed to verify correct incorporation of

software safety requirements and identify potential hazards not

identified earlier in the lifecycle. Software safety testing is

performed at the integration, Computer Software Component Item

(CSCI) level, the system and acceptance levels. Testing at the

system and acceptance level verifies correct operation of the

SCCSCs in conjunction with system hardware and operators. It also

verifies correct operational stress conditions in the presence of

system faults. In addition, the testing verifies that safety

related procedures incorporated in the user's manuals perform as

expected.

Unacceptable hazards, as defined by the safety plan, identified

during testing, are corrected and reverified prior to software

delivery or usage.

15



SOFTWARE OPERATIONS AND MAINTENANCE

The above processes used to specify, develop, analyze and test
SCCSCs are also used when changes are made to that software. The

process includes updating the software safety requirements,
identification of new SCCSCs, updating of specification, design,

and operator documentation for SCCSCs, updating and adding

comments for safety critical code, and testing of the SCCSCs.

Testing includes regression testing to verify correct

implementation of all software safety requirements.

SAFETY RELATED TASKS PERFORMED THROUGHOUT THE LIFECYCLE

A tracking system within the configuration management structure is
used to ensure that software safety requirements are properly

implemented and verified. A description of the implementation of
each requirement is essential. The tracking of software hazard
closures and verification should be accomplished through safety

analysis documentation (e.g., hazard reports).

A project/program is required to conduct a series of formal safety
reviews/audits to ensure that implementation of safety controls

for hazards are adequate for the system and to approve any safety
related waivers or deviations.

User interface analyses are performed to ensure that all necessary

status related to safety functions is presented to the user to
allow the user to take the necessary actions. Included is an

evaluation of the User's Guide and Operational Procedures Manual to

ensure I) they contain any safety related operations to mitigate or

respond to hazards, and 2) they do not contain procedures which
initiate or contribute to hazards.

SUMMARY

While there remains much to do, NASA is taking the right steps to

address software safety and the software process as a whole. The

Software Safety Standard lays the foundation; next we need to work

towards full compliance across NASA. While tailoring is permitted

to account for project severity and size, a core safety activity
and a minimum set of software safety requirements must remain. To

meet NASA Administrator Daniel Goldin's challenge of "faster,

better, cheaper, without compromising safety" we need to utilize

software, with all its versatility, more and more heavily. Created

within the right environment, with proper safety definition and

analyses, methods like Software Formal Inspections, and standard
software procedures and practices, NASA software can, and will be,

safer and more reliable.

16



ACKNOWLEDGEMENTS

I wish to thank Mike Gilson and Tom Ziemianski for their

patience as well as their editing and technical skills. Also,

I wish to thank my management which has been very supportive.

REFERENCES

[I] NASA Safety Policy and Requirements Document, NHB 1700.1 (IV-

B), June 1993.

[2] "An Assessment of the Space Shuttle Flight Software

Development Processes" National Research Council Report. 1993.

[3] Lutz, Robyn R., "Analyzing Software Errors in Safety-Critical,

Embedded Systems," Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA. February 1994.

[4] Software Formal Inspections Class Notes, FI-JPL/NASA, Rev A,

1992.

[5] Fagan, Michael E., "Design and Code Inspections to Reduce

Errors in Program Development," from IBM Systems Journal, Vol.

15, No. 3, 1976, pp 182-211.

[6] Fagan, Michael E., "Advances in Software Inspections," IEEE

Transactions on Software Engineering, Vol SE-12, No. 7, July

1986, pp. 744-751.

[7] Kelly, John C., Sherif, Joseph S., and Hops, Jonathan, "An

Analysis of Defect Densities Found during Software

Inspections," in J. Systems Software, Elservier Science

Publishing Co., Inc, 1992: 17:111-117.

[8] Knisely, Merle H., Yang, Ling, and Chen H., Basilio, "Software

Safety in Software Product Development," Hazard Prevention

Ist Quarter 1994, pp. 20-27.

[9] Brown, Michael L., "Software System Safety Technical Review

Panel," Hazard Prevention Ist Quarter 1994, pp. 8-11.

17



Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

.m

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for rev_..wing instructions, searching existing data sources.,

gathering and maintaSning the data needed, and completing and reviewing the collect,on of reformat=on. Send comments regarding thts burden est=mate or any other aspect ov this

collection of information, includ'mg suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202.4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 1994

4. TITLE AND SUBTITLE

Implementing Software Safety in the NASA Environment

6. AUTHOR(S)

Martha S. Wetherholt and Charles F. Radley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

WU-323-88--03

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

E-8870

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASATM-106597

111'SUPPLEMENTARY NOTES
Prepared for the Safety Through Quality Conference sponsored by the Real Time Associates, Ltd., Old Windsor, Berkshire, United Kingdom, June
6-7, 1994. Martha S. Wetherholt, NASA Lewis Research Center and Charles F. Radley, EBASCO Services, Inc., 2001 Aerospace Parkway, Brook

Park, Ohio 44142 (work funded by NASA Conwact NAS3-26764). Responsible person, Martha S. Wetherholt, organization code 0152,

(216) 433-2416.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories 38 and 66

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the

ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space

missions. (For example, software is now planned to control most of the operational functions of the International Space Station.) Thus the need for

systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be

designed into software up front, not tested into the software after the fact. "Cost of Quality' studies have statistics and metrics to prove the value of

building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most

safety engineers am not software experts. Software written to specifications which have not been safety analyzed is a major source of computer
related accidents. Safer software is achieved step by step throughout the system and software lifecycle. It is a process that includes requirements

definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and
completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of

requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer
software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a

large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis

(PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to he built. Shortly thereafter,

as the system requirementsarcbeing defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the
systems requirements phase, decisions am made as to what functions of the system will be the responsibility of software. This is the most critical

time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for

assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and
most cost effective means to assure safe software within a safe system.

14. SUBJECT TERMS

Safety; NASA; Lifecycle; Software

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITYCLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

19

16. PRICE CODE

A03

20. LIMITATION OF AB:_iRACT

Standard Form 298 (Rev. 2-89)
PrescribedbyANSI Std, Z39-18
298-102


