6,550 research outputs found

    MR-CUDASW - GPU accelerated Smith-Waterman algorithm for medium-length (meta)genomic data

    Get PDF
    The idea of using a graphics processing unit (GPU) for more than simply graphic output purposes has been around for quite some time in scientific communities. However, it is only recently that its benefits for a range of bioinformatics and life sciences compute-intensive tasks has been recognized. This thesis investigates the possibility of improving the performance of the overlap determination stage of an Overlap Layout Consensus (OLC)-based assembler by using a GPU-based implementation of the Smith-Waterman algorithm. In this thesis an existing GPU-accelerated sequence alignment algorithm is adapted and expanded to reduce its completion time. A number of improvements and changes are made to the original software. Workload distribution, query profile construction, and thread scheduling techniques implemented by the original program are replaced by custom methods specifically designed to handle medium-length reads. Accordingly, this algorithm is the first highly parallel solution that has been specifically optimized to process medium-length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent). Results show that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single-GPU graphic card running on a commodity desktop hardware. As a result it is the fastest GPU-based implemen- tation of the Smith-Waterman algorithm tailored for processing medium-length nucleotide reads. Despite being designed for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, this program also presents great potential for improving heterogeneous computing with CUDA-enabled GPUs in general and is expected to make contributions to other research problems that require sensitive pairwise alignment to be applied to a large number of reads. Our results show that it is possible to improve the performance of bioinformatics algorithms by taking full advantage of the compute resources of the underlying commodity hardware and further, these results are especially encouraging since GPU performance grows faster than multi-core CPUs

    GenomeVIP: A cloud platform for genomic variant discovery and interpretation

    Get PDF
    Identifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a result, the search for alternative approaches to the traditional “download and analyze” paradigm on local computing resources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis. Here, we introduce the Genome Variant Investigation Platform (GenomeVIP), an open-source framework for performing genomics variant discovery and annotation using cloud- or local high-performance computing infrastructure. GenomeVIP orchestrates the analysis of whole-genome and exome sequence data using a set of robust and popular task-specific tools, including VarScan, GATK, Pindel, BreakDancer, Strelka, and Genome STRiP, through a web interface. GenomeVIP has been used for genomic analysis in large-data projects such as the TCGA PanCanAtlas and in other projects, such as the ICGC Pilots, CPTAC, ICGC-TCGA DREAM Challenges, and the 1000 Genomes SV Project. Here, we demonstrate GenomeVIP's ability to provide high-confidence annotated somatic, germline, and de novo variants of potential biological significance using publicly available data sets.</jats:p

    Rqc: a bioconductor package for quality control of high-throughput sequencing data

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOAs sequencing costs drop with the constant improvements in the field, next-generation sequencing becomes one of the most used technologies in biological research. Sequencing technology allows the detailed characterization of events at the molecular level,87CN2114FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2013/24801-2sem informaçã

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Transcript assembly and abundance estimation with high-throughput RNA sequencing

    Get PDF
    We present algorithms and statistical methods for the reconstruction and abundance estimation of transcript sequences from high throughput RNA sequencing ("RNA-Seq"). We evaluate these approaches through large-scale experiments of a well studied model of muscle development. We begin with an overview of sequencing assays and outline why the short read alignment problem is fundamental to the analysis of these assays. We then describe two approaches to the contiguous alignment problem, one of which uses massively parallel graphics hardware to accelerate alignment, and one of which exploits an indexing scheme based on the Burrows-Wheeler transform. We then turn to the spliced alignment problem, which is fundamental to RNA-Seq, and present an algorithm, TopHat. TopHat is the first algorithm that can align the reads from an entire RNA-Seq experiment to a large genome without the aid of reference gene models. In the second part of the thesis, we present the first comparative RNA-Seq as- sembly algorithm, Cufflinks, which is adapted from a constructive proof of Dilworth's Theorem, a classic result in combinatorics. We evaluate Cufflinks by assembling the transcriptome from a time course RNA-Seq experiment of developing skeletal muscle cells. The assembly contains 13,689 known transcripts and 3,724 novel ones. Of the novel transcripts, 62% were strongly supported by earlier sequencing experiments or by homologous transcripts in other organisms. We further validated interesting genes with isoform-specific RT-PCR. We then present a statistical model for RNA-Seq included in Cufflinks and with which we estimate abundances of transcripts from RNA-seq data. Simulation studies demonstrate that the model is highly accurate. We apply this model to the muscle data, and track the abundances of individual isoforms over development. Finally, we present significance tests for changes in relative and absolute abundances between time points, which we employ to uncover differential expression and differential regulation. By testing for relative abundance changes within and between transcripts sharing a transcription start site, we find significant shifts in the rates of alternative splicing and promoter preference in hundreds of genes, including those believed to regulate muscle development

    FPGA-based acceleration of the RMAP short read mapping tool

    Get PDF
    Bioinformatics is a quickly emerging field. Next generation sequencing technologies are producing data up to several gigabytes per day, making bioinformatics applications increasingly computationally intensive. In order to achieve greater speeds for processing this data, various techniques have been developed. These techniques involve parallelizing algorithms and/or spreading data across many computing nodes composed of devices such as Microprocessors, Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). In this thesis, an FPGA is used to accelerate a bioinformatics application called RMAP, which is used for Short-Read Mapping. The most computationally intensive function in RMAP, the read mapping function, is implemented on the FPGA\u27s reconfigurable hardware fabric. This is a first step in a larger effort to develop a more optimal hardware/software co-design for RMAP. The Convey HC-1 Hybrid Computing System was used as the platform for development. The short-read mapping functionality of RMAP was implemented on one of the four Xilinx Virtex 5 FPGAs available in the HC-1 system. The RMAP 2.0 software was rewritten to separate the read mapping function to facilitate its porting over to hardware. The implemented design was evaluated by varying input parameters such as genome size and number of reads. In addition, the hardware design was analyzed to find potential bottlenecks. The implementation results showed a speedup of ~5x using datasets with varying number of reads and a fixed reference genome, and ~2x using datasets with varying genome size and a fixed number of reads, for the hardware-implemented short-read mapping function of RMAP
    • 

    corecore