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We present algorithms and statistical methods for the reconstruction and

abundance estimation of transcript sequences from high throughput RNA sequenc-

ing (“RNA-Seq”). We evaluate these approaches through large-scale experiments of

a well studied model of muscle development.

We begin with an overview of sequencing assays and outline why the short

read alignment problem is fundamental to the analysis of these assays. We then

describe two approaches to the contiguous alignment problem, one of which uses

massively parallel graphics hardware to accelerate alignment, and one of which ex-

ploits an indexing scheme based on the Burrows-Wheeler transform. We then turn

to the spliced alignment problem, which is fundamental to RNA-Seq, and present

an algorithm, TopHat. TopHat is the first algorithm that can align the reads from

an entire RNA-Seq experiment to a large genome without the aid of reference gene

models.

In the second part of the thesis, we present the first comparative RNA-Seq as-



sembly algorithm, Cufflinks, which is adapted from a constructive proof of Dilworth’s

Theorem, a classic result in combinatorics. We evaluate Cufflinks by assembling the

transcriptome from a time course RNA-Seq experiment of developing skeletal muscle

cells. The assembly contains 13,689 known transcripts and 3,724 novel ones. Of the

novel transcripts, 62% were strongly supported by earlier sequencing experiments

or by homologous transcripts in other organisms. We further validated interesting

genes with isoform-specific RT-PCR.

We then present a statistical model for RNA-Seq included in Cufflinks and

with which we estimate abundances of transcripts from RNA-seq data. Simulation

studies demonstrate that the model is highly accurate. We apply this model to the

muscle data, and track the abundances of individual isoforms over development.

Finally, we present significance tests for changes in relative and absolute abun-

dances between time points, which we employ to uncover differential expression and

differential regulation. By testing for relative abundance changes within and be-

tween transcripts sharing a transcription start site, we find significant shifts in the

rates of alternative splicing and promoter preference in hundreds of genes, including

those believed to regulate muscle development.
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Chapter 1

Introduction

1.1 Algorithms and statistics for sequencing assays

Often, the phrase “DNA sequencing” conjures images of the race to determine

the nucleotide sequence of the human genome, the storage medium for our ge-

netic information. Within the last 15 years, the genomes of hundreds of organisms,

ranging in size from bacteria to large mammals have been sequenced, most using

fully-automated DNA sequencers. The complete sequence of the human genome is

expected to greatly assist in the effort to understand our molecular biology, evo-

lutionary history, and physiological diversity. However, the task of unraveling and

understanding the enormously complex biological program stored in our DNA has

barely begun.

Around the time scientists were starting to sequence whole genomes, others

started using the sequencing technology to discover genes and determine the con-

ditions in which they are expressed. Adams et al used sequencing technology to

determine the sequence of the signature of an expressed gene1. Expressed sequence

tag (EST) experiments uncovered first hundreds and then thousands of genes, many

before the human genome was fully sequenced. As sequencing technology became

less expensive and more reliable, researchers have continued the tradition of using

sequencing technology to take measurements of the molecular activities of the cell.
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Coupling bench techniques such as polymerase chain reaction (PCR), reverse tran-

scription of RNA, and chromatin immunoprecipitation (to cite just a few of many

examples) with high-throughput sequencing has revealed not only new protein cod-

ing genes, but non-coding RNA, DNA-protein interactions, regulatory sites in the

genome, and other features central to our biology. Many of these assays go be-

yond discovery to measure the abundance of RNAs in a tissue sample or cell or the

strength of an interaction, allowing scientists to design more powerful and sensitive

experiments.

Until recently, assays such as EST sequencing produced modest amounts of

raw sequence data compared to whole genome sequencing projects. Recently how-

ever, advances in reversible-terminator chemistry, optics, and robotics have enabled

commercial sequencing technologies that produce a staggering amount of data from

each experiment. For example, using a machine from Illumina, we describe here

an experiment that produced over 30 gigabases of sequencing reads, or roughly the

number of nucleotides as were stored in the entire GenBank database, a repository

of all publicly available sequences, as of 2003. We expect this experiment to be

considered relatively small-scale within a few years, as the throughput and quality

of sequencers is rapidly improving. With this amount of data comes not only the

great challenge of simply storing, analyzing, and summarizing it all, but exploiting

the accompanied improvements in sensitivity and resolution to gain new biological

insights. This thesis describes algorithms to meet the computational and statistical

challenges associated with recent ultra high-throughput sequencing assays.

This chapter first highlights fundamental principles of sequencing assay design,
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and makes clear why certain computational tasks, such as short read alignment, are

at the core of most sequencing assay analyses. Next, two of the first (and still

most common) sequencing assays are discussed. We used both high-throughput

transcriptome sequencing46, 47, 9 (“RNA-Seq”), and chromatin-immunoprecipitation

sequencing 29, 55, 44 (“ChIP-Seq”) to investigate gene expression dynamics in devel-

oping embryonic muscle cells. The promise of RNA-Seq, which is to provide a precise

measurement of the abundance of every RNA in the transcriptome of a tissue or

cell, has not yet been realized, primarily due to computational challenges.

RNA-Seq, ChIP-Seq, and many other recent assays measure the state of a

cell or tissue by examining the distribution of alignments of sequenced fragments

across a population of reference sequences. In RNA-Seq, genes covered by aligned

fragments are inferred to be undergoing active transcription. For ChIP-Seq, “peaks”

of piled-up reads reveal locations where proteins are binding to DNA - a critical piece

of information for the study of gene regulation. We describe several algorithms

to compute these alignments in Chapter 2, beginning with a hardware-accelerated

approach that explored the use of commodity graphics processing units (GPUs)

in short read alignment. While GPUs yielded a several-fold speedup over a CPU

implementation of a classic sequence alignment algorithm, the sheer volume of short

read data produced from a single experiment called for faster algorithms. Through

the use of Burrows-Wheeler indexing, Langmead et al achieved a dramatically faster

short read alignment algorithm called Bowtie31, which we briefly review. We built

the RNA-Seq read alignment program TopHat64 around Bowtie, allowing reads to

be aligned to the transcriptome in the absence of gene annotations and enabling the
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discovery of novel splicing events.

In Chapter 3 we turn to the estimation of the abundances of a set of transcripts

in a given sample. We briefly review the method of Jiang and Wong28 for estimat-

ing isoform abundances with short (36bp) single-read RNA-Seq before describing

our model, which accommodates arbitrarily long paired-end reads. The model is

linear, which means that its likelihood function has a unique maximum and can

be found with numerical means. However, this model is still subject to limitations

described by Jiang and Wong of their model, so we adopt their importance sampling

techniques to make reliable abundance estimates even near the boundaries of the

model’s parameter space. This importance sampling procedure allows us to estimate

a variance-covariance matrix, which we will use to provide confidence intervals and

integrate in statistical tests described in Chapter 5.

In Chapter 4, we address the problem of assembling full length transcript se-

quences from the alignment of RNA-Seq reads. The Cufflinks assembler produces a

minimal set of transcript sequences necessary to explain the alignments. The assem-

bler implements a constructive proof of a classic theorem in combinatorics. Given

a directed acyclic graph (DAG), Dilworth’s Theorem states that a minimum cover

of the vertices of the DAG by paths has cardinality equal to the largest subset of

vertices with the property that none can be reached from any other14. Reducing

the problem of finding the cardinality of the cover to finding a maximum matching

in a bipartite graph produces the cover itself. Cufflinks stores RNA-Seq fragment

alignments in a directed acyclic graph, finds the minimum path cover via maximum

matching, and converts cover elements into transcripts, thus producing a parsimo-
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nious assembly that explains all of the fragment alignments.

A principle aim of many RNA-Seq experiments is not just to quantify RNA

abundance in a sample, but to identify transcripts that are significantly more or

less abundant between a pair of samples. In Chapter 5, we develop a set of statis-

tical tests for RNA-Seq experiments, and describe a novel approach to testing that

reveals changes not just in expression, but in gene regulation. Using the information-

theoretic Jensen-Shannon divergence, we describe tests for significance of changes

in the relative abundance of transcripts that discriminates transcriptional and post-

transcriptional effects (see sections 1.2 and 1.3).

Before proceeding to the algorithms and mathematics, some biological back-

ground is necessary.

1.2 Transcription of RNA

Proteins and functional nucleic acids are molecules that make up cells and

participate in their biomolecular interactions. These molecules are synthesized in

cells by a complex machinery composed itself of proteins and nucleic acids, and the

rate of production, or expression determines the extent of their impact on the cell’s

activities. The information necessary to construct a protein or non-coding RNA is

stored in a gene, which is a subsequence of DNA in the genome. The synthesis of

these molecules begins with the direct copying or transcription of the gene sequence,

into an precursor RNA. This precursor RNA (pre-mRNA) is further processed in

subsequent steps that will determine the functional properties of the molecule, as
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described in the next section.

promoter 
sequence

enhancer 
sequences

precursor mRNA (pre-mRNA)

Transcription

Pol II

Transcription

Pol II

a b

promoter 
sequence

enhancer 
sequences

Figure 1.1: Synthesis of RNA, or transcription, is catalyzed by RNA polymerase. Messenger

RNA, which forms templates for translation of genes into protein, is synthesized by RNA poly-

merase II (Pol II). (a) Pol II binds to a recognition sequence, or promoter, upstream of a gene,

and then proceeds along the template strand of the DNA, producing a precursor mRNA molecule.

(b) Proteins called transcription factors can bind to PolII or to proteins bound to PolII, as well

as to other recognition sequences called enhancers near or within the gene to increase the rate

of transcription. By stabilizing PolII and increasing its promoter-binding efficiency, or by making

the locus more accessible to the transcriptional machinery, transcription factors may specifically

target a gene for an increase in mRNA synthesis and thus protein production.

Transcription is a chemical reaction catalyzed by RNA polymerase, an enzyme

that adds nucleotides (‘A’, ‘C’, ‘G’, and ‘T/U’) to a growing chain, forming the pre-

mRNA. RNA polymerase binds to the double stranded DNA at one side of the

gene (the “5’-end”) and proceeds along it, simultaneously separating the strands

and copying one of them into a growing pre-mRNA molecule. RNA polymerase

binds to a specific site “upstream” of the gene, called the promoter, which contains
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a short string of nucleotides that are chemically recognized by the enzyme. Once

it is securely bound, the reaction begins and it starts to move toward the “3’-end”

of the gene. For secure binding to occur, other proteins called transcription factors

must also bind near the promoter to help stabilize RNA polymerase and help initiate

transcription. Where nearly all genes are transcribed by a subtype of polymerase

called RNA Polymerase II (polII) and several other generic transcription factors,

most genes also require one or more transcription factors that bind only to the

promoters of a subset of an organism’s genes. These factors are specific for their

target genes, and the targets will only be expressed if some or all of their specific

transcription factors are also expressed.

Exactly what makes particular transcription factor specific for their targets is

an area of intense research, but there is general consensus that:

1. Organisms have many transcription factors

2. Transcription factors help initiate, amplify, dampen, or entirely inhibit the

transcription of their targets by either binding directly to DNA or interacting

with other proteins that are bound to DNA in a complex.

3. A target gene may be transcribed starting at several different sites, with dif-

ferent promoters, giving rise to multiple pre-mRNAs.

4. A target gene may have multiple specific transcription factors whose interac-

tions may determine its expression in a complex way.

These principles imply that a complex network of regulatory relationships
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exists among the genes of an organism, and transcriptional regulation is believed to

be a central strategy that has evolved to direct the cell’s activities and determine

its function within the organism. In other words, a liver cell differs from a muscle

cell in large part due to differences in how these cells’ genes (which are identical)

are regulated. Cataloging the transcription factors, identifying their targets, and

determining how they regulate the expression of these targets is believed to be

central for a complete understanding of the molecular biology of our cells.

1.3 Alternative splicing

Pre-mRNA is often modified before being exported to the cytoplasm and used

to synthesize proteins. There are several types of post-transcriptional pre-mRNA

modifications, but we consider here only splicing, one of the most common and well

understood. Splicing is the removal of subsequences of a pre-mRNA, followed by the

joining of the remainder into a contiguous piece of RNA. There is mounting evidence

that a majority of pre-mRNAs can be spliced in more than one way. Alternative

splicing results from the differential use of splice sites, the positions at which the

pre-mRNA is cut and ligated. Because alternative splicing can alter the nucleotide

sequence of the final mRNA molecule, multiple proteins can be synthesized from

a single pre-mRNA. Further, some splice variants are aggressively targeted by the

cell’s RNA degradation machinery before they are translated into proteins. The cell

can thus use alternative splicing not just as a means to select which proteins are

produced from an actively transcribed gene, but also how much total protein may
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be produced from each pre-mRNA.

Cassette exon

Alternative splice site

Mutually exclusive exons

Figure 1.2: Before pre-mRNA are translated into protein, they are processed and exported

from the nucleus to the cytoplasm. One type of post-transcriptional processing is called splicing,

where sections of the mRNA (introns) are removed, and the remaining subsequences (exons) are

concatenated together into the mature mRNA. A single pre-mRNA can be processed in more than

one way, giving rise to multiple mRNAs. Three common types of alternative splicing events are

shown above.

1.4 Biological inferences through fragment sequencing

Sequencing assays observe the state of cells and tissues and measure their

activity at the molecular level with the following (very general) workflow:

1. Pick a cellular state or process that one wishes to observe.

2. Construct or capture a pool of nucleic acid sequences which, if known, would

be informative about the sample.

3. Sequence that pool, which often requires fragmentation.

4. Reconstruct the sequences present in the pool (if they were fragmented) and
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estimate their relative or absolute abundances through computational analysis

of the sequencing reads, reference sequences, and other experimental data.

5. From the pool sequences and their abundances, make biological inferences,

ideally in a statistically rigorous and principled way.

Prepare sample of target 
DNA molecules

Fragment and sequence 
molecule population

Map fragments to individual 
molecule sequences

Infer relative molecular 
abundance from normalized

fragment counts

a b c d

?

Figure 1.3: Quantitative sequencing assays aim to identify the sequences present in a sample

along with their relative abundances. (a) A sample of DNA molecules is first prepared in which

the relative abundance of each sequence (illustrated as a pie chart) is unknown. (b) This sample

is sequenced, producing a set of randomly selected substrings of each molecular sequence. The

number of fragments produced from each sequence in the sample is a function of that sequence’s

abundance (and other properties for some assays). (c) These fragments are mapped back to the

sample sequences from which they originated. (d) The sample sequence abundances are inferred

using the fragment mapping and a statistical model of how the fragment abundances relate to

the sample sequences. Because there may be uncertainty in the mapping of fragments to sample

sequences, and because the fragments are generated by the stochastic process of DNA sequencing,

there may be uncertainty in the inferred abundances for the sample molecules (shown as a pie

chart with “fuzzy” edges).

Depending on the assay, the computational analysis needed to make reliable

inferences ranges from trivial to enormously challenging. Some types of small RNA

sequencing require essentially no reconstruction of the underlying pool, because
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each molecule is short enough to be entirely sequenced with a single read - and

abundance estimation can reduce to counting sequences. Other assays, such as

surveying complex structural variants with genomic resequencing, can in some cases

amount to de novo whole genome shotgun assembly, a notoriously hard problem.

Further, estimating the abundances of sequences in the assayed pool may be difficult,

because the dynamic range of abundances may be many orders of magnitude (as in

transcriptome sequencing), and can be complicated by issues of sampling, sequencing

bias, and difficulties in protocol modeling.

Analysis strategies for many protocols have relied on aligning fragments to

an available reference genome as a means of assembling the pool sequences and

identifying which pool sequence each fragment came from. Aligning the sequenced

fragments projects the pool sequences into the genomic coordinate space, which

can make the task of inferring the underlying pool sequences either trivial or much

easier. Often, finding the locations in the genome to which fragments align is a

major goal of the assay (see section 1.6). Assembling pool sequences de novo with a

short read assembler such as Velvet can produce a highly fragmented set of sequences

(due to repeats in the pool) and often demands large amounts of memory. Aligning

fragments to the genome reduces the computational load by eliminating the need

for a general sequence overlap graph or other data structure used in assembly, and

also can minimize the problems caused by repeats in the pool sequences.

Many sequencing assays are quantitative - the number of fragments originating

from a given pool sequence are proportional its abundance in the pool. Depending

on the assay protocol, the number of fragments generated from each pool sequence
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may also depend on other properties such as the sequence’s length. By calculating

the number of alignments mapped to each pool sequence (and normalizing for its

length), and dividing by the total number of fragments mapped in the assay, one

can estimate pool sequence abundances. While some protocols introduce sampling

bias that makes the correlation between fragment abundance and the abundance of

length-normalized pool sequences less than perfect, many quantitative sequencing

assays (e.g. RNA-Seq and ChIP-Seq, summarized below) have been demonstrated

to be far more accurate and sensitive than previous technologies.

The favored units for reporting sample sequence abundances in many quanti-

tative assays to date is not using the abundances directly, but rather using a measure

abbreviated as FPKM, which means “expected number of fragments per kilobase

of sample sequence per million fragments mapped”. These units are equivalent to

measuring sample sequence abundances (multiplied by a scalar). The computational

advantage of FPKM, is that the normalization constants conveniently simplify some

of the formulas for the variances of abundance estimates.

1.5 RNA-Seq

For many years, the standard method for determining the sequence of tran-

scribed genes has been to capture and sequence messenger RNA using expressed

sequence tags (ESTs)1 or full-length complementary DNA (cDNA) sequences using

conventional Sanger sequencing technology. Recently a new experimental method,

RNA-Seq, has emerged that has a number of advantages over conventional EST
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sequencing: by direct, high-throughput sequencing of a tissue or single-cell tran-

scriptome, it avoids the need for bacterial cloning of cDNA and it generates data

that can be used as a measure of the level of gene expression. Thus RNA-Seq

experiments not only discover novel transcripts, they can replace conventional mi-

croarray experiments for measuring expression. Compared to microarray technology,

RNA-Seq experiments provide much higher-resolution measurements of expression

at comparable cost and reproducibility43.

The major drawback of RNA-Seq over conventional EST sequencing is that the

sequences themselves are much shorter. When first described, RNA-Seq produced

millions of 25-36bp reads from each experiment. Recent improvements to the proto-

col and sequencing technology extend reads to 75-125bp, but remain short relative

to the reads produced with Sanger sequencers. There are several variants of RNA-

Seq, but we limit our discussion to the now widely-adopted described in Mortazavi

et al and its extensions. RNA is first isolated from the sample, and is generally

enriched for polyadenylated transcripts. Because single-stranded molecules may be

self-complementary, they can fold into secondary structures, which may interfere

with subsequent steps of the protocol. Thus, single stranded RNA is fragmented by

a chemical reaction or by physical means (e.g. sonication). From these fragments,

a randomly-primed cDNA library is built, size selected using an agarose gel, and

loaded on to a sequencer such as a the Illumina Genome Analyzer. Each fragment,

which in most protocols is 100-300bp long, is sequenced from one or both ends,

producing a 25-125bp read from each end. The number of fragments produced by a

transcript is proportial to its relative abundance in the transcriptome, after dividing
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by it’s length. That is, the longer of two equally abundant transcripts will produce

more fragments.

Because RNA-Seq experiments generate fragments in proportion to the under-

lying abundance of transcripts, the first application of the assay was the estimation

of gene expression. Directly measuring the relative abundance of all proteins in a

sample is not currently feasible. However, measuring the relative abundance of the

mRNAs giving rise to each protein is believed to be a good proxy for protein abun-

dance. In RNA-Seq, “gene expression” refers to the fraction of the transcriptome

occupied by the transcripts for each gene. A näıve, yet popular, current approach

to expression estimation is to sum the fragments mapping to a gene (where the sum

is taken across all exons appearing in all possible isoforms), and then to normalize

the count by either the total number of exonic bases, or by the average length of

the transcripts. We call the former method the “projective normalization” method,

and the latter the “average length” method.

Proposition 1. If a gene has two or more isoforms in the sample the expression of

that gene is underestimated by projective normalization.

Proof: Suppose gene g has k isoforms, and from isoform i of length li, the

sequencing experiment produced fi fragments. Then if the fraction of the transcrip-

tome occupied by isoform i is ρi = fi
li

, the fraction of the transcriptome occupied by

g is

ρg =
k∑
i=0

fi
li

(1.1)

Let the length of the projective normalization of g be denoted lP (g). Note that
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for each isoform i, li ≤ lP (g). Thus, the projectively normalized expression of g,

computed by

ρgP =
k∑
i=0

fi
lP (g)

(1.2)

is always less than the true gene expression ρg.

Stated differently, the projective normalization method has the problem that

it produces numbers that are not proportional to the abundances of the gene when

the sample contains multiple isoforms for that gene. Further, expression values com-

puted in this way are not additive, severely limiting the use of RNA-Seq in systems

biology analyses and other settings. The average length method is flawed for the

same reason. In some cases the method might produce the correct answer (for the

wrong reasons), but it is bound to be incorrect on many examples, especially in genes

with transcripts of variable lengths and non-uniform abundances. In RNA-Seq, the

expression of a gene should simply be the sum of its individual transcript values.

Even if one is interested only in the expression of whole genes rather than individ-

ual transcripts, the abundances for those transcripts must be computed. However,

computing those values is computationally difficult.

The central computational challenge of analyzing RNA-Seq experiments lies

in assigning fragments to transcripts. However, because the transcriptomes are

incomplete even for well-studied species such as human and mouse, it is generally

necessary to discover or assemble transcript sequences before assigning reads. This

can be done in two steps: (1) aligning fragments to the genome as a proxy for aligning

them to the transcriptome and (2) inferring full-length transcript sequences from
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these alignments. In higher eukaryotes such as vertebrates, alternative splicing is

common, which adds a further layer of complexity to the analysis. Even with a

complete transcriptome, reads may not be uniquely assigned to a single alternative

splice variant of a gene because that gene’s isoforms share many exons.

1.6 ChIP-Seq

ChIP-Seq is a quantitative sequencing assay that aims to identify sites where

a specific transcription factor is binding to genomic DNA and quantify the strength

of binding activity at each site. ChIP-Seq can also be used to identify the locations

and modification states of histones, protein complexes around which genomic DNA

is wrapped, and which are believed to greatly influence the transcription and pos-

sibly even splicing of genes. ChIP-Seq begins with a “cross-linking” step in which

proteins bound to DNA are treated with formaldehyde, fixing the proteins to their

binding sites with strong chemical bonds. The DNA is then sheared by sonication

or chemically via nuclease, resulting in DNA fragments typically 200-1000bp long.

Fragments with bound proteins are then enriched by adding an antibody that binds

specifically to the protein of interest. The cross-links between the protein of interest

and the bound fragments are then reversed. As a control to establish the rate of

background (i.e. fragments not bound to protein) precipitation, the sample is also

immunoenriched with a non-specific antibody.

The target and control IP fragments are then size selected via methods sim-

ilar to for RNA-Seq, and a pair of sequencing libraries are built. These libraries
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are sequenced, and the reads are aligned and mapped to the genome. Locations

where reads from the target library represent possible binding sites for the target

protein. The more reads that pile up in a given spot, the more immunoenriched

fragments originated from that location in the genome, and thus the greater the

binding strength. However, antibodies for different proteins have different affinities,

which means that they are not equally effective at pulling down bound fragments.

Moreover, even IPs performed with high-affinity antibodies will also pull down some

unbound fragments. The depth of coverage of the genome by the control sample is

thus crucial for establishing what constitutes a genuine binding site.

1.7 A case study: sequencing the myogenic transcriptome

Expression analysis is a central technique for identifying important genes in

many biological settings, but it is particularly common in developmental studies.

In the development of the fruit fly embyro, concentration patterns and gradients of

several master regulatory proteins are responsible for establishing the “patterning”

of the organism. The development of the major anatomic structures of the adult

fly, such as the head, thorax, wings, and abdomen is specified by the differential

expression of genes at different positions within the embryo33. A similar, but less

well understood system of coordinated differential expression also drives vertebrate

development20. While vertebrates are anatomically diverse and diverge in their de-

velopmental programs, the development of some parts of the vertebrate body are

believed to be driven by essentially the same program of gene expression. Striated
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muscle, which includes skeletal and cardiac muscle in vertebrates and arthropods,

is believed to have evolved more than 700 million years ago, before vertebrates and

arthropods diverged from a common ancestor49. Both in vivo gene expression studies

of and in vitro models have revealed much about the regulation of muscle develop-

ment, or myogenesis. Beyond understanding the evolution of muscle, unraveling the

dynamics of protein, DNA, and RNA interactions that relate its development would

greatly increase our understanding of wound healing along with the pathology of a

wide array of human muscle diseases.

As a demonstration of the computational methods described in this thesis,

we performed a timecourse of paired-end 75bp RNA-Seq on a well-studied model

of skeletal muscle development, the C2C12 mouse myoblast cell line. Regulated

RNA expression of key transcription factors drives myogenesis and the execution of

the differentiation process involves changes in expression of hundreds of genes71, 62.

Prior studies have not measured global transcript isoform expression, though there

are well-documented expression changes at the whole gene level for a set of marker

genes in this system. We aimed to establish the prevalence of differential promoter

use and differential splicing, because such data could reveal much about the models

regulatory behavior. A gene with isoforms that code for the same protein may be

subject to complex regulation in order to maintain a certain level of output in the

face of changes in expression of its transcription factors. Alternatively, genes with

isoforms that code for different proteins could be functionally specialized for different

cell types or states. By analyzing changes in relative abundances of transcripts

produced by the alternative splicing of a single primary transcript, we hoped to
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Figure 1.4: RNA-Seq samples taken at strategic time points in C2C12 development. Illustration

after Ohtake et al48

Figure 1.5 (following page): Overview of Cufflinks. The algorithm takes as input cDNA

fragment sequences that have been (a) aligned to the genome by software capable of producing

spliced alignments, such as TopHat. With paired-end RNA-Seq, Cufflinks treats each pair of

fragment reads as a single alignment. The algorithm assembles overlapping bundles of fragment

alignments (b-c) separately, which reduces running time and memory use because each bundle

typically contains the fragments from no more than a few genes. Cufflinks then estimates the

abundances of the assembled transcripts (d-e).
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infer the impact of post-transcriptional processing (e.g. splicing) on RNA output

separately from rates of primary transcription. Such analysis could identify genes

with a role in the system and suggest experiments to establish precisely how they

are regulated.

Total RNA was extracted from developing C2C12 cells, and subsequently

mRNA was isolated at four different time points (-24 hours, 60 hours, 120 hours, 168

hours). cDNA was prepared following a similar procedure to the one described in46,

with modifictions described in Appendix C. Fragmentation of the mRNA followed

by size selection resulted in fragment lengths 200nt long for all of the time-points.

The timepoint sequences totaled 430,467,018 paired 75bp reads sequenced from the

transcriptome of mouse skeletal muscle C2C12 cells induced to undergo myogenic

differentiation.

We first mapped these fragments to the mouse genome using TopHat (see sec-

tion 2.4. We then used Cufflinks to assemble the alignments into transcripts and

estimate their abundances (see Chapters 4 and 3). Figure 1.5. gives an overview of

Cufflinks. After the fragments have been mapped with TopHat (a), Cufflinks assem-

bles the transcripts from the alignments. (b) The first step in fragment assembly is

to identify pairs of incompatible fragments that must have originated from distinct

spliced mRNA isoforms. Fragments are connected in an overlap graph when they

are compatible and their alignments overlap in the genome. Each fragment has

one node in the graph, and an edge, directed from left to right along the genome,

is placed between each pair of compatible fragments. In this example, the yellow,

blue, and red fragments must have originated from separate isoforms, but any other
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fragment could have come from the same transcript as one of these three. (c) As-

sembling isoforms from the overlap graph. Paths through the graph correspond to

sets of mutually compatible fragments that could be merged into complete isoforms.

The overlap graph here can be minimally covered by three paths, each representing

a different isoform. Dilworths Theorem states that the number of mutually incom-

patible reads is the same as the minimum number of transcripts needed to explain

all the fragments. Cufflinks implements a proof of Dilworths Theorem that produces

a minimal set of paths that cover all the fragments in the overlap graph by finding

the largest set of reads with the property that no two could have originated from

the same isoform. (d) Estimating transcript abundance. Fragments are matched

(denoted here using color) to the transcripts from which they could have originated.

The violet fragment could have originated from the blue or red isoform. Gray frag-

ments could have come from any of the three shown. Cufflinks estimates transcript

abundances using a statistical model in which the probability of observing each frag-

ment is a linear function of the abundances of the transcripts from which it could

have originated. Because only the ends of each fragment are sequenced, the length

of each may be unknown. Assigning a fragment to different isoforms often implies a

different length for it. Cufflinks can incorporate the distribution of fragment lengths

to help assign fragments to isoforms. For example, the violet fragment would be

much longer, and very improbable according to Cufflinks model, if it were to come

from the red isoform instead of the blue isoform. (e) The program then numerically

maximizes a function that assigns a likelihood to all possible sets of relative abun-

dances of the yellow, red and blue isoforms (γ1, γ2, γ3), producing the abundances
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that best explain the observed fragments, shown as a pie chart.

As discussed in Chapter 4 , we analyzed the transcripts at each point dur-

ing C2C12 development by comparing them to databases of known mouse RNAs

and also by performed wet validation experiments. Because we aimed to identify

promoter switching and dynamics, we performed ChIP-Seq experiments targeting

RNA Polymerase II and TAF1, a general transcription factor that marks active

promoters. Determining the fraction of transcripts that had a polII or TAF1 peak

immediately upstream of the 5’ ends allowed us to validate novel transcription start

sites (and thus, novel promoters) using independent experimental means.

We then analyzed the expression dynamics of the myogenic transcriptome

using the statistical model detailed in Chapter 3. The mathematical background

needed and the simulation experiments we performed to validate the model are also

discussed. Cufflinks also includes software that performs statistical significance test-

ing for changes between pairs of RNA-Seq samples. We discuss these tests in Chap-

ter 5, along with the results of testing conducted on the myogenic transcriptome.

We tracked changes in more than 10,000 genes, and uncovered not only widespread

expression changes at the level of individual transcripts, but also changes in the

transcriptional and post-transcriptional regulation of hundreds of genes.
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Chapter 2

Short read alignment

2.1 Overview

Current sequencing assays measure molecular biological activity by sequencing

nucleic acid fragments and mapping them to reference molecules (e.g. a reference

genome). The positions of these alignments, their density in certain loci, and the

differences (mismatches, insertions, and deletions or ‘indels’) between the fragment

sequences and the reference are all informative. Thus, computing the alignments

between sequenced fragments and a set of potentially very long reference sequences

is a core computational step in a sequencing assay. Current sequencing machines

from Illumina, Life Technologies, and Helicos produce tens to hundreds of millions of

sequencing reads per run. Each run takes a few days to over one week to complete,

and multiple assays can be prepped and processed in a single machine run. Thus, a

single lab could produce billions of basepairs of raw sequencing data in a short time.

The individual sequencing reads from the above technologies are short - typ-

ically a string 25bp to 125bp long. The reference sequences to which these reads

This chapter discusses three programs: MUMmerGPU, Bowtie, and TopHat.

MUMmerGPU58, 65 is joint work with Michael Schatz, Arthur Delcher, and Amitabh Varshney.

Bowtie31 is joint work with Ben Langmead, Mihai Pop, and Steven Salzberg, and was primarily

written by Ben. TopHat64 is joint work with Lior Pachter and Steven Salzberg.
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must be aligned are typically chromosomes from a single genome, which combined

form a string billions of basepairs long. The task of aligning even one small read

to a string the size of a genome is challenging, especially when mismatches and

indels must be allowed. To extract meaningful biological insights from a sequencing

assay, it is generally necessary to map all of the millions of reads, making assay

analysis computationally very demanding. However, in many assays, the reads may

be aligned independently, making short read alignment an “embarassingly parallel”

problem. As data from the Illumina Genome Analyzer began to be made publicly

available, we turned to another rapidly evolving technology - commodity graphics

processing units (GPUs) - for a solution to the short read alignment problem.

2.2 Hardware-accelerated read mapping

Our early efforts to provide efficient tools for mapping short reads to large

genomes resulted MUMmerGPU, an open-source high-throughput parallel pairwise

local sequence alignment program that runs on commodity Graphics Processing

Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Uni-

fied Device Architecture (CUDA) from nVidia to align multiple query sequences

against a single reference sequence stored as a suffix tree. The program is a adapta-

tion of the popular MUMmer suffix-tree-based alignment program13. By processing

the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves

more than a 10-fold speedup over a serial CPU version of the sequence alignment

kernel, and outperforms the exact alignment component of MUMmer on a high end
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CPU by 3.5-fold in total application time when aligning reads from recent sequencing

projects using Solexa/Illumina, 454, and Sanger sequencing technologies.

Most personal computer workstations today contain hardware for 3D graphics

acceleration called graphics processing units. Recently, GPUs have been harnessed

for non-graphical, general purpose (GPGPU) applications. GPUs feature hardware

optimized for simultaneously performing many independent floating-point arith-

metic operations for displaying 3D models and other graphics tasks. Thus, GPGPU

programming has been successful primarily in the scientific computing disciplines

which involve a high level of numeric computation. However, other applications

could be successful, provided those applications feature significant parallelism.

As the GPU has become increasingly more powerful and ubiquitous, researchers

have begun exploring ways to tap its power for non-graphics, or general-purpose

(GPGPU) applications50. This has proven challenging for a variety of reasons. Tra-

ditionally, GPUs have been highly specialized with two distinct classes of graph-

ics stream processors: vertex processors, which compute geometric transformations

on meshes, and fragment processors, which shade and illuminate the rasterized

products of the vertex processors. The GPUs are organized in a streaming, data-

parallel model in which the processors execute the same instructions on multiple

data streams simultaneously. Modern GPUs include several (tens to hundreds) of

each type of stream processor, so both graphical and GPGPU applications are faced

with parallelization challenges21. Furthermore, on-chip caches for the processing

units on GPUs are very small (often limited to what is needed for texture filtering

operations) compared to general purpose processors, which feature caches measured
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in megabytes. Thus, read and write operations can have very high latency relative

to the same operations when performed by a CPU in main memory.

Most GPGPU successes stem from scientific computing or other areas with

a homogeneous numerical computational component24. These applications are well

suited for running on graphics hardware because they have high arithmetic intensity

the ratio of time spent performing arithmetic to the time spent transferring data

to and from memory12. In general, the applications that have performed well as a

GPGPU application are those that can decompose their problems into highly in-

dependent components each having high arithmetic intensity. Some bioinformatics

applications with these properties have been successfully ported to graphics hard-

ware. Liu et al. implemented the Smith-Waterman local sequence alignment al-

gorithm to run on the nVidia GeForce 6800 GTO and GeForce 7800 GTX, and

reported an approximate 16 speedup by computing the alignment score of multiple

cells simultaneously40. Charalambous et al. ported an expensive loop from RAxML,

an application for phylogenetic tree construction, and achieved a 1.2 speedup on the

nVidia GeForce 5700 LE8.

nVidia’s new G80 architecture radically departs from the traditional ver-

tex+fragment processor pipeline. It features a set of multiprocessors that each

contain a number of stream processors. Graphics applications can use these as ei-

ther vertex or fragment processors, and GPGPU applications can program them

for general computation. All processors on a single multiprocessor simultaneously

execute the same instruction, but different multiprocessors can execute different in-

structions. nVidia anticipated the benefits of such a unified architecture for GPGPU
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computing, and released the Compute Unified Device Architecture (CUDA) SDK

to assist developers in creating non-graphics applications that run on the G80 and

future GPUs. CUDA offers improved flexibility over previous GPGPU program-

ming tools, and does not require application writers to recast operations in terms

of geometric primitives, as was required by earlier GPGPU environments.

The MUMmerGPU algorithm performs parallelized exact string alignment on

the GPU. First a suffix tree of the reference sequence is constructed on the CPU

using Ukkonen’s algorithm67 and transfered to the GPU. Then the query sequences

are transfered to the GPU, and are aligned to the tree on the GPU using the

alignment algorithm described above. Alignment results are temporarily written to

the GPU’s memory, and then transfered in bulk to host RAM once the alignment

kernel is complete for all queries. Finally, all maximal alignments longer than a

user-supplied value are reported by post-processing the raw alignment results on

the CPU.

Operations on the suffix tree have extremely low arithmetic intensity—they

consist mostly of following a series of pointers. Thus, sequence alignment with a

suffix tree might be expected to be a poor candidate for a parallel GPGPU appli-

cation. However, our results show that a significant speedup, as much as a 10-fold

speedup (Figure 1(a)), can be achieved through the use of cached texture memory

and data reordering to improve access locality. Even though MUMmerGPU is a low

arithmetic memory intensive program, and the stream processor cache on a typical

GPUs is limited, MUMmerGPU achieved a significant speedup, in part, by reorder-

ing the nodes to match the access patterns and fully use the cache. We therefore
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expect with careful analysis of the access pattern, essentially any highly parallel al-

gorithm to perform extremely well on a relatively inexpensive GPU, and anticipate

widespread use of GPGPU and other highly parallel multicore technologies in the

near future.

An update to MUMmerGPU aimed to eliminate bottlenecks in the computa-

tion by accelerating output of results and reducing latency in the alignmnent kernel.

MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13x

faster than the serial CPU version of the alignment code and nearly 4x faster in to-

tal computation time than MUMmerGPU 1.0. We exhaustively examined 128 GPU

data layout configurations to improve register footprint and running time and con-

clude higher occupancy has greater impact than reduced latency. MUMmerGPU

2.0 uses the same suffix tree based match kernel as described in the original version

of MUMmerGPU, but we have added several significant improvements to increase

performance and capabilities for the overall application. First, we implemented

a new query streaming model in which reads are streamed past overlapping seg-

ments of the reference, allowing us to compute alignments to Mammalian-sized ref-

erence genomes. Second, we implemented a new GPU-based print-kernel that post-

processes the results from the match kernel into alignments suitable for printing.

This computation had previously been the limiting factor in end-to-end application

time for commonly used parameters (Figure 1(b)).

The print kernel performs the computation via an iterative depth-first-search

on the suffix tree using a constant amount of memory and no stack. This non-

traditional implementation is required to meet the severe restrictions on kernel code,
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Figure 2.1: (a) Speedup of MUMmerGPU on the GPU over the CPU. The decrease in speedup

when processing error-free synthetic reads as read length increases is due to a combination of

thread divergence and poor cache hit rate.(b) Breakdown of MUMmerGPU processing time. The

stacked bar charts indicate the amount of time spent in each phase of the MUMmerGPU for the

three test sets. Given a sufficiently large number of sequencing reads, the time spent building the

suffix tree is small compared to time spent aligning queries.
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but is between 1.5- and 4-fold faster than the previous (CPU-based) version of the

routine. Popov et al recently reported a different algorithm for traversing trees in a

CUDA kernel53 which requires additional pointers between the leaf nodes in a kd-

tree, but our technique is applicable to any tree without additional pointers. Finally,

we optimized performance for both kernels by identifying the best organization of the

DNA sequencing reads and suffix tree in GPU memory. We explored 128 variations

of the data layout policy, and quantify the tradeoffs involved for kernel complexity,

cache use, and data placement. We find that optimizing these choices can greatly

accelerate performance, and mistuned choices have an equal but negative effect on

performance compared to the nave version. For example, storing the suffix array

as a one-dimensional array proved to be faster than storing it as a two-dimensional

array, despite the fact that GPUs are typically cached with two-dimensional access

locality in mind (Figure 2.2). Processor occupancy determined performance for

our data-intensive application, but techniques that reduce GPU memory latency

without compromising occupancy were also generally beneficial. We describe several

techniques to reduce kernel register footprint and thus improve occupancy that are

widely applicable to GPGPU programs. Overall, MUMmerGPU 2.0 is nearly 4x

faster in total computation time than the originally published version of the code

for the most commonly encountered workloads.

MUMmerGPU demonstrated that a surprisingly large speedup was possible

for applications with essentially no arithmetically intense component. In absolute

performance terms though, it has proved unable to align reads at the throughput

required by recent sequencing experiments. In a recent effort to find driving muta-
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Figure 2.2: Performance impact of MUMmerGPU data layout policy. Storing the MUMmerGPU

suffix array as a 1D array instead of a 2D texture accelerates MUMmerGPU.

tions in acute myeloid leukemia, Ley et al sequenced the tumor and normal genomes

from a single individual with Illumina, producing 140 gigabases of raw sequencing

reads34. To process this data with, Maq36 or SOAP38, two of the fastest available

alignment programs at the time would have taken more than 5 months of CPU

time31.

2.3 Ultra-high throughput mapping with Burrows-Wheeler indexing

Maq and SOAP take the same basic algorithmic approach as other recent

read mapping tools such as RMAP59, ZOOM39, and SHRiMP56. Each tool builds

a hash table of short oligomers present in either the reads (SHRiMP, Maq, RMAP,

and ZOOM) or the reference (SOAP). Some employ recent theoretical advances to

align reads quickly without sacrificing sensitivity. For example, ZOOM uses ‘spaced

seeds’ to significantly outperform RMAP, which is based on a simpler algorithm

developed by Baeza-Yaetes and Perleberg3. Spaced seeds have been shown to yield

higher sensitivity than contiguous seeds of the same length6, 42. SHRiMP employs

32



a combination of spaced seeds and the Smith-Waterman60 algorithm to align reads

with high sensitivity at the expense of speed. Eland is a commercial alignment

program available from Illumina that uses a hash-based algorithm to align reads.

Bowtie uses a different and novel indexing strategy to create an ultrafast,

memory-efficient short read aligner geared toward mammalian re-sequencing. In

our experiments using reads from the 1,000 Genomes project, Bowtie aligns 35-base

pair (bp) reads at a rate of more than 25 million reads per CPU-hour, which is more

than 35 times faster than Maq and 300 times faster than SOAP under the same

conditions (see Tables 1 and 2). Bowtie employs a Burrows-Wheeler index based on

the full-text minute-space (FM) index, which has a memory footprint of only about

1.3 gigabytes (GB) for the human genome. The small footprint allows Bowtie to

run on a typical desktop computer with 2 GB of RAM. The index is small enough

to be distributed over the internet and to be stored on disk and re-used. Multiple

processor cores can be used simultaneously to achieve even greater alignment speed.

We used Bowtie to align 14.3 coverage worth of human Illumina reads from the

1,000 Genomes project in about 14 hours on a single desktop computer with four

processor cores.31

Bowtie indexes the reference genome using a scheme based on the Burrows-

Wheeler transform (BWT)7 and the FM index17, 18. A Bowtie index for the human

genome fits in 2.2 GB on disk and has a memory footprint of as little as 1.3 GB

at alignment time, allowing it to be queried on a workstation with under 2 GB of

RAM. The common method for searching in an FM index is the exact-matching al-

gorithm of Ferragina and Manzini, illustrated in figure 2.3. Bowtie does not simply
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Figure 2.3: Exact string matching with a Burrows-Wheeler index

adopt this algorithm because exact matching does not allow for sequencing errors or

genetic variations. We introduced two novel extensions that make the technique ap-

plicable to short read alignment: a quality-aware backtracking algorithm that allows

mismatches and favors high-quality alignments; and ‘double indexing’, a strategy to

avoid excessive backtracking. The Bowtie aligner follows a policy similar to Maq’s,

in that it allows a small number of mismatches within the high-quality end of each

read, and it places an upper limit on the sum of the quality values at mismatched

alignment positions.

2.4 TopHat: Alignment of RNA-Seq reads

MUMmerGPU and Bowtie both align reads to a reference genome, and Bowtie

allows for mismatches in order to tolerate sequencing errors in the reads and dis-

cover single base differences between the donor and the reference. In principle, an

algorithm that infers individual transcript abundances by measuring the fraction of

fragments originating from each of a set of known transcripts would begin by com-
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puting alignments between fragments and the set of known transcripts that may

be contained in the sample using a tool like Bowtie. However, because the tran-

scriptome for mouse is incompletely annotated, such an analysis requires mapping

of fragments to the genome as a proxy for mapping directly to transcripts, so that

new transcript structures can be discovered and so alignments will not be missed.

This means that alignments of short sequencing reads must be allowed to span

exon-exon splice junction in genomic coordinate space. We previously developed a

program called TopHat to map RNA-Seq reads to the genome. TopHat does not

require a reference transcriptome and can therefore be used to discover novel splice

junctions.64

TopHat finds junctions by mapping reads to the reference in two phases. In

the first phase, the pipeline maps all reads to the reference genome using Bowtie.

All reads that don’t map to the genome are set aside as “initially unmapped reads,”

or IUM reads. Bowtie reports, for each read, one or more alignments containing no

more than a few mismatches (two, by default) in the 5’-most s bases of the read.

The remaining portion of the read on the 3’ end may have additional mismatches,

provided that the Phred-quality-weighted Hamming distance is less than a specified

threshold (70 by default). This policy is based on the empirical observation that

the 5’ end of a read contains fewer sequencing errors than the 3’ end26. TopHat

allows Bowtie to report more than one alignment for a read (default = 10), and

suppresses all alignments for reads that have more than this number. This policy

allows so called “multireads” from genes with multiple copies to be reported, but

excludes alignments to low-complexity sequence, to which failed reads often align.
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Low complexity reads are not included in the set of IUM reads; they are simply

discarded.

When TopHat was first released, RNA-Seq experiments used a single-end se-

quencing protocol - cDNA fragments were sequenced only from one end. These

reads were also no longer than 36bp. TopHat’s algorithm for detecting novel splice

junctions was designed specifically to work with these reads, but as the sequenc-

ing technology improved, TopHat evolved to exploit features of “second-generation”

RNA-Seq. In the next section, the original, first-generation TopHat algorithms are

described and evaluated. Improvements to TopHat made since its initial release are

outlined briefly below.

Figure 2.4: The TopHat pipeline for first-generation RNA-Seq.
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2.4.1 Junction discovery with short, unpaired reads

Fragment alignments in the initial map are typically clustered together, where

each cluster or “island” of coverage coincides with the core of an exon. To map reads

to splice junction between exons, TopHat first enumerates all donor and acceptor

dinucleotides (e.g. ‘GT’ and ‘AG’) within the or near each island to the genome.

Next, it considers all pairings of these dinucleotides that could form canonical (GT-

AG) introns between neighboring (but not necessarily adjacent) islands of map cov-

erage. Each possible intron is checked against the IUM reads for reads that span the

splice junction, as described below. By default, TopHat only examines potential in-

trons longer than 70bp and shorter than 20000bp when working with first-generation

reads, but these default minimum and maximum intron lengths can be adjusted by

the user. These values describe the vast majority of known eukaryotic introns. For

example, more than 93% of mouse introns in the UCSC known gene set fall within

this range. However, users willing to make a small sacrifice in sensitivity will see

substantially lower running time by reducing the maximum intron length.

To improve running times and avoid reporting false positives, the program ex-

cludes donor-acceptor pairs that fall entirely within a single island, unless the island

is very deeply sequenced. An example of a “single island” junction is illustrated

in Figure 2.5. The gene shown has two alternate transcripts, one of which has an

intron that coincides with the UTR of the other transcript. The figure shows the

normalized coverage of the intron and its flanking exons by uniquely-mappable reads

as reported by Mortazavi et al. Both transcripts are clearly present in the RNA-
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Figure 2.5: An intron entirely overlapped by the 5’ UTR of another transcript. Both isoforms

are present in the brain tissue RNA sample. The top track is the normalized uniquely-mappable

read coverage reported by ERANGE for this region46. The lack of a large coverage gap causes

TopHat to report a single island containing both exons. TopHat looks for introns within single

islands in order to detect this junction.

Seq sample, and TopHat reports the entire region as a single island. In order to

detect such junctions without sacrificing performance and specificity, TopHat looks

for introns within islands that are deeply sequenced. During the island extraction

phase of the pipeline, the algorithm computes the following statistic for each island

spanning coordinates i to j in the map:

Dij =

∑j
m=i dm
j − i

· 1∑n
m=0 dm

(2.1)

where dm is the depth of coverage at coordinate m in the Bowtie map, and

n is the length of the reference genome. When scaled to range [0,1000], this value

represents the normalized depth of coverage for an island. We observed that single-
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island junctions tend to fall within islands with high D (data not shown). TopHat

thus looks for junctions contained in islands with D ≥ 300, though this parameter

can be changed by the user. A high D value will prevent TopHat from looking for

junctions within single islands, which will improve running time. A low D value

will force TopHat to look within many islands, slowing the pipeline, but potentially

finding more junctions.

Figure 2.6: The seed and extend alignment used to match reads to possible splice sites. For each

possible splice site, a seed is formed by combining a small amount of sequence upstream of the

donor and downstream of the acceptor. This seed, shown in dark gray, is used to query the index

of reads that were not initially mapped by Bowtie. Any read containing the seed is checked for

a complete alignment to the exons on either side of the possible splice. In the light gray portion

of the alignment, TopHat allows a user specified number of mismatches. Because reads typically

contain low-quality base calls on their 3’ ends, TopHat only examines the first 28 base pairs on

the 5’ end of each read by default.

For each splice junction, Tophat searches the IUM reads in order to find reads

that span junctions using a seed-and-extend strategy. The pipeline indexes the

IUM reads using a simple lookup table to amortize the cost of searching for a
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spliced alignment over many reads. As illustrated in Figure 2.6, TopHat finds any

reads that span splice junctions by at least k bases on each side (where k = 5bp

by default), so the table is keyed by 2k-mers, where each 2k-mer is associated with

reads that contain that 2k-mer. For each read, the table contains (s−2k+1) entries

corresponding to possible positions where a splice may fall within a read, where s

is the length of the high-quality region on the 5’ end (default = 28bp). Users

with longer reads may wish to increase s to improve sensitivity. Lowering s will

improve running time, but may reduce sensitivity. Increasing k will improve running

time, but may limit TopHat to finding junctions only in highly expressed (and thus

deeply covered) genes. Reducing it will dramatically increase running time, and

while sensitivity will improve, the program may report more false positives. Next

TopHat takes each possible splice junction and makes a 2k-mer “seed” for it by

concatenating the k bases downstream of the acceptor to the k bases upstream of

the donor. The IUM read index is then queried with this 2k-mer to find all reads

which contain the seed. This exact 2k-mer match is extended to find all reads that

span the splice junction. To extend the exact match for the seed region, TopHat

aligns the portions of the read to the left and right of the seed with the left island and

right island, respectively, allowing a user-specified number of mismatches. TopHat

will miss spliced alignments to reads with mismatches in the seed region of the splice

junction, but we expect this tradeoff between speed and sensitivity will be favorable

for most users.

The algorithm reports all of the spliced alignments it finds, and then builds a

set of non-redundant splice junctions using these alignments. However, some spliced
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alignments are discarded prior to reporting junctions in order to avoid reporting

false junctions. In their large-scale RNA-Seq study, Wang et al reported millions of

alternative splicing events in humans and observed that 86% of the minor isoforms

were expressed at at least 15% of the level of the major isoform68. TopHat’s heuristic

filter for spliced alignments is based on this observation. For each junction, the

average depth of read coverage is computed for the left and right flanking regions of

the junction separately. The number of alignments crossing the junction is divided

by the coverage of the more deeply covered side to obtain an estimate of the minor

isoform frequency. If TopHat estimates that the splice junction occurs at less than

15% of the depth of coverage of the exons flanking it, the junction is not reported.

The minimum minor isoform frequency parameter is adjustable by the user, and

may be entirely disabled. While the default value in TopHat reflects a result from

a human RNA-Seq study, we expect that minor isoforms are expressed at similar

frequencies in other mammals, and that the value will be suitable when the software

is used to process reads from other mammals.

We compared TopHat with ERANGE on a set of 47,781,892 reads, each 25

bp long, from a recent RNA-Seq study using Mus musculus brain tissue 46. To

align reads across splice junctions, ERANGE appends to the reference genome a

set of spanning sequences that contain all annotated splice sites. For each splice

site, a sequence of length L− 4 (for reads of length L) is extracted from the exons

flanking that site, and these are concatenated to create a spanning sequence. This

constituted a total of 205,151 junctions for M. musculus. Mortazavi et al trimmed

reads to 25bp, so we chose s = 25 and k = 5, which caused TopHat to report
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junctions spanned by the 25 bp on the 5’ end of a read, with at least 5 bp on each

side of the junction. We also required reads to match the exon sequence on each

side of the junction exactly.

For each gene, ERANGE reports the number of mapped reads per kilobase of

exon per million mapped reads (RPKM), a measure of transcription activity. The

authors characterize 15.0 and 25.0 as moderate and high levels of transcription,

respectively. ERANGE reported 108,674 splice junctions in genes with positive

RPKM, and 37,675 junctions in genes with RPKM ≥ 15.0. TopHat reported 81.9%

of the ERANGE junctions in genes above 15.0 RPKM, and 72.2% of all ERANGE

junctions. Figure 2.7 shows how TopHat’s sensitivity in detecting junctions varies

with the RPKM of the genes. An example of TopHat’s ability to detect junctions

even in genes with very low RPKM is illustrated in Figure 9(a). Of the 30,121

junctions reported by ERANGE and not reported by TopHat, 15,689 (52%) fell

within genes expressed below 5 RPKM and were likely missed due to lack of coverage.

A further 3,209 (10%) of the missed junctions had RPKM ≥ 5.0 but had endpoints

more than 20,000bp apart. Filtering based on minor isoform fraction excluded 4,560

(15%). TopHat detected several thousand known splice junctions that ERANGE

excluded, presumably during its multiread ‘rescue’ phase, where it randomly assigns

each spliced multiread to matched genes according to their relative expression levels.

Of the 104,711 junctions reported by TopHat, 84,988 are listed among the UCSC

gene models for M. musculus, or 81.1%. The remaining 19,722 may represent novel

junctions.

To assess TopHat’s ability to identify true junctions without reporting false
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Table 2.6: TopHat junction finding under simulated sequencing of transcripts. The simulation

sampled a set of transcripts with 9,879 true splice junctions.

Depth of True (% total) False (% of reported)

sequence coverage Positives Positives

1 1744 17 114 6

5 7666 77 585 7

10 8737 88 428 4

25 9275 93 267 2

50 9351 94 235 2

positives, we simulated the results of Illumina short-read sequencing of alternatively

spliced genes at several depths. The EMBL-EBI Alternative Splicing Transcript

Database (ASTD)63 contains 1,295 transcripts from mouse chromosome 7. These

were generated by the short read simulator from Maq. The simulator computes an

empirical distribution of read quality scores and uses these to generate sequencing

errors in the reads it produces. We trained the simulator using the reads from the

Mortazavi et al study, so the sequencing error profile on simulated reads should

be similar to the real reads. We generated simulated sequence from the ASTD

transcripts, which contained 9,879 splice junctions, at 1-, 5-, 10-, 25-, and 50-fold

coverage. TopHat’s junction predictions at each coverage level are summarized in

Table 2.6. TopHat captures up to 94% of the 9,879 ASTD splice junctions on

mouse chromosome 7. Sensitivity suffers when transcripts are sequenced at less

than five-fold coverage. TopHat reports few false positives even in deeply sequenced

transcripts.
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Figure 2.7: TopHat sensitivity as RPKM varies. For genes transcribed above 15.0 RPKM,

TopHat detects more than 80% reported by ERANGE in the M. musculus brain tissue study.

TopHat detects more than 72% of all junctions observed by ERANGE, including those in genes

expressed at only a single transcript per cell. A de novo assembly of the RNA-Seq reads, followed

by spliced alignment of the assembled transcripts produces markedly poorer sensitivity, detecting

around 40% of junctions in genes transcribed above 25.0 RPKM, but comparatively few junctions

in more highly transcribed genes

The UCSC gene models are relatively conservative, so we searched the Gen-

Bank mouse EST database using BLAT30 for the previously unreported junctions.

We also searched the database for known junctions and randomly generated junc-

tions as positive and negative controls, respectively. The positive control group was

drawn from the 205,151 junction sequences constructed by Mortazavi et al as part

of the ERANGE study. The second set consisted of previously unreported junction

sequences reported by TopHat. The negative control consisted of random pairings of

the left and right halves of junction sequences from the second group. All sequences
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in each of the three groups were 42bp long, and each group contained 1,000 sequences

chosen randomly. Figure 2.8 shows the distribution of E-values for each sequence’s

best BLAST hit against the GenBank mouse EST database. As expected, nearly all

of the known junctions are confirmed by high-quality hits to ESTs. Also expected is

the lack of high-quality hits for sequences in the “random-pairing” negative control.

More than 11% of the 1,000 TopHat junctions we searched for actually have high-

quality hits to mouse ESTs. In total, 2,543 of the 19,722 junctions not in UCSC

gene models had hits to mouse ESTs with E-value < 1× 10−6.

We examined the previously unreported junctions that lacked high quality hits

to mouse EST by dividing them into three categories: junctions between two known

exons, junctions between a known exon and a novel one, and junctions between

two novel exons. Of the 17,719 junctions without EST hits, 10,499 joined novel

exons, 6,077 joined a novel exon with a known one, and 603 joined a pair of known

exons. One example of a junction from the second category is occurred in the

ADP-ribosylation factor Arfgef1, which is important in vesicular trafficking45. The

junction in figure 9(b) skips two of the gene’s 38 exons. TopHat reported several

junctions in Arfgef1 that were previously unknown and indicates that Arfgef1 is

alternatively spliced.

We also compared TopHat to a simple strategy based on de novo assembly of

RNA-Seq reads. The advantage of such a strategy is that, like TopHat, no known

junctions or gene models are needed. We ran the Velvet short read assembler72 (ver-

sion 0.7.11, -k=21) on our RNA-Seq reads to produce 149,628 transcript contigs with

N50=131. We then aligned these contigs back to the mouse reference genome using
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the spliced alignment program GMAP69, one of the leading methods for alignment of

ESTs and full-length cDNAs to genomic DNA. The sensitivity of the Velvet+GMAP

method is shown in Figure 2.7. The method detects around 20% of all junctions

reported by ERANGE. While the method detects around 40% of junction in genes

transcribed above an RPKM value of 25.0, its detection rate decreases as RPKM

further increases. We speculate that many of these highly transcribed genes have

several alternate isoforms, and that junctions in these genes may cause Velvet to

break contigs at the transcript junctions shared by multiple isoforms.

The entire TopHat run took 21 hours, 50 minutes on a 3.0Ghz Intel Xeon 5160

processor, using less than 4GB of RAM, a throughput of nearly 2.2 million reads

per CPU hour.

2.4.2 Improved junction discovery with second-generation RNA-Seq

We extended our previous algorithms described to exploit longer paired reads

enabled by improvements to the sequencing technology and the RNA-Seq proto-

col. The original TopHat program used a seed-and-extend alignment strategy to

find spliced alignments of unpaired RNA-Seq experiments. However, due to com-

putational limitations, our original method reported only alignments across GT-AG

introns shorter than 20Kb by default. This strategy also could not align reads that

spanned multiple splice junctions. However, as sequencing technology has improved

and longer (paired end) reads have become available, we have modified the software

to employ new strategies to align reads across splice junctions. TopHat version 1.0.7
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and later splits a read 75bp or longer in three or more segments of approximately

equal size (25bp), and maps them independently. Reads with segments that can

be mapped to the genome only non-contiguously are marked as possible intron-

spanning reads. These “contiguously unmappable” reads are used to build a set of

possible introns in the transcriptome. With reads 75bp or longer, TopHat no longer

depends on coverage islands in an initial mapping to find junctions. This allows the

program to discover junctions within islands at no additional computational cost.

Suppose read S is a read of length l that crosses a splice junction. TopHat

splits S into n = bk/lc segments, each k bases long, where k = 25bp default. At most

one of these segments must cross the splice junction. TopHat maps the segments

s1, ..., sn with Bowtie to the genome, and checks for internal segments s2, ..., sn−1

that do not map anywhere to the genome, as well as for pairs of successive segments

si, si+1 that both align to the genome, but not adjacently. When a segment si fails

to align because it crosses a splice junction, but si−1 and si+1 are aligned (say at

starting at positions x and y, respectively), TopHat looks for the donor and acceptor

sites for the junction near x and y. Assuming the transcript is on Crick strand of

the genome (without loss of generality) the donor must fall within k bases upstream

of position x + k, and the acceptor must be within k bases downstream of y, a

total of k possible exon-exon splice junctions. Similarly, when successive segments

si and si+1 align to the genome non-adjacently at positions x and y, the junction

spanned by the read must be from positions x+ k to y in the genome. The original

TopHat algorithm only discovered introns with canonical (GT-AG) dinucleotides, in

order to keep running time low. A single read, with segments aligned on each side
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of a potential junction, is sufficiently strong evidence that TopHat does not need

to require that the junction be canonical. Thus, TopHat searches for GC-AG and

AT-AC introns when aligning reads 50bp or longer (by default).

While early versions of TopHat used a seed-and-extent strategy to align spliced

reads, versions since 1.0.7 construct a Bowtie index of splice sequences on the fly.

The advantage of this approach is that junction discovery is separated from spliced

read alignment, and spliced alignments are not more constrained in terms of al-

lowable mismatches than contiguous genomic alignment. Moreover, user-supplied

junctions or those from annotation can be mixed into the junction database along

with newly discovered ones. This allows users to exploit other sources of intron

evidence, such as spliced EST alignments, homologous gene structures from related

species, and computationally predicted genes from software such as Glimmer57 or

Augustus61. For each junction the program concatenates kbp upstream of the donor

to kbp downstream of the acceptor to form a synthetic spliced sequence around

the junction. The segments of the contiguously unmappable reads are then aligned

against these synthetic sequences with Bowtie. The resulting contiguous and spliced

segment alignments for these reads are merged to form complete alignments to the

genome, each spanning one or more splice junctions.

2.4.3 Resolving multiple alignments for fragments

The alignments for both reads from a mate pair are examined together to

produce a set of alignments for the corresponding library fragment as a whole,
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reported in SAM format37. These fragment alignments are ranked heuristically, and

only highest ranking alignments are reported. The ranks are designed to incorporate

very loose assumptions on intron and gene length, namely that introns longer than

20kb are rare. Let x and y be fragment alignments. Then x < y if any of the

following (applied in order) are true:

1. x is a singleton, and y has both ends mapped

2. x cross more splice junctions than y

3. The reads for x map significantly farther apart in the genome than expected

according to the library’s fragment length distribution (≥ 3 s.d.), and y’s are

not.

4. The reads for x are significantly closer together than expected according to

the library’s fragment length distribution, and y’s are not.

5. x’s reads map more than 100bp farther apart than y’s

6. x and y both span an intron, and x spans a longer one.

7. x has more mismatches than y to the genome.

Fragments that have multiple equally good alignments according to the above

rules are ambiguously mapped, and so all of the equally good alignments are re-

ported. If there are n alignments for a fragment, each has a probability of only 1/n

of being correct. The SAM format encodes this probability in the mapping quality

field, which is later used by Cufflinks to reduce the contribution of multiply mapping
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fragments (to 1/n of a uniquely mappable read) in FPKM calculations (FPKM is a

measurement of expression, and is formally defined in Chapter 3).

Using first generation RNA-Seq reads, TopHat reported more than 72% of all

exon splice junctions captured by the ERANGE annotation-based analysis pipeline,

including junctions from genes transcribed at around one transcript per cell. TopHat

captured around 80% of splice junctions in more actively transcribed genes. More

significant is its ability to detect novel splice junctions. While it is difficult to assess

how many of TopHat’s 19,722 newly discovered junctions are genuine, TopHat’s

alignment parameters for this run were quite strict: only exact matches were re-

ported for splice junctions, and reads were required to have relatively long anchors

on each side of the splice site. Close inspection of junctions strengthened the case

that many are true splices. The TopHat pipeline processed an entire RNA-Seq run

in less than a day on a single processor of a standard workstation. ERANGE is

appropriate for high-quality measurement of gene expression in mammalian RNA-

Seq projects, provided that a reliable annotation of exon-exon junctions is available.

QPALMA can accurately align short reads across junctions without an annotation,

but makes such substantial sacrifices in speed that it may not be practical for large

mammalian projects. TopHat thus represents a significant advance over previous

RNA-Seq splice detection methods, both in its performance and its ability to find

junctions de novo.

The TopHat pipeline and its default parameter values are designed for detect-

ing junctions even in genes transcribed at very low levels. However, the system may

fail to detect junctions for a variety of reasons. The most common reason for missing
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a junction is that the transcript has very low sequencing coverage, in which case

there might be no read that straddles the junction with sufficient sequence on each

side. With first-generation reads, junctions spanning very long introns or introns

with non-canonical donor and acceptor sites (such as GC-AG introns) will also be

missed. New RNA-Seq protocols that produce long, paired-end reads have made

TopHat’s task easier.

2.5 Mapping of reads from the myogenesis case study

The exact distribution of the C2C12 fragment lengths is shown in Figure 2.10

(in Chapters 3 and 5 this distribution of fragment lengths is referred to as F ). These

estimates are based on alignments of the spiked-in sequences using Bowtie 0.1231

(see Chapter 2).

Fragments were mapped to build 37.1 of the mouse genome with TopHat

version 1.0.13.

Sample Sequenced Aligned Singleton Spliced Multi-mapping Total

fragments fragments fragments fragments fragments alignments

-24 hours 42,184,539 35,852,366 11,031,886 8,824,825 1,768,041 41,663,170

60 hours 70,192,031 57,071,494 18,104,211 15,778,114 2,265,378 64,637,511

120 hours 41,069,106 27,914,989 14,431,734 7,711,026 1,881,772 33,929,133

168 hours 61,787,833 50,705,080 20,396,250 14,585,287 2,458,292 58,797,912

Total 215,233,509 171,543,929 63,964,081 46,899,252 8,373,483 199,027,726

Table 2.10: Number of fragments sequenced, aligned and mapped with TopHat.

51



−38 −32 −28 −22 −18 −12 −7.5 −2.5 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BLAT E−values − Junctions vs. GenBank ESTs

log(E−value)

F
ra

ct
io

n 
of

 ju
nc

tio
ns

TopHat junctions
Random
Known junctions

Figure 2.8: The BLAT E-value distribution of known, previously unreported, and randomly

generated splice junction sequences when searched against GenBank mouse ESTs. As expected,

known junctions have high-quality BLAT hits to the EST database. Randomly-generated junction

sequences do not. High-quality BLAT hits for more than 11% of the junctions identified by TopHat

suggest that the UCSC gene models for mouse are incomplete. These junctions are almost certainly

genuine, and because the mouse EST database is not complete, 11% is only a lower bound on the

specificity of Tophat
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Gap

Spliced ESTs

RepeatMasker

10180000 10185000 10190000
TopHat junctions

Gap Locations

RefSeq Genes

Mouse ESTs That Have Been Spliced

Repeating Elements by RepeatMasker

Arfgef1

(b) A novel junction in Arfgef1

Figure 2.9: (a) TopHat detects junctions in genes transcribed at very low levels. The gene

Pnlip was transcribed at only 7.88 RPKM in the brain tissue according to ERANGE, and yet

TopHat reports the complete known gene model. (b) A previously unreported splice junction

detected by TopHat is shown as the topmost horizontal line. This junction skips two exons in the

ADP-ribosylation gene Arfgef1.
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Figure 2.10: Length distribution of C2C12 RNA-Seq fragments.
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Chapter 3

Estimating transcript abundances

For the purposes of estimating transcript abundances, we developed a statisti-

cal model parameterized by the abundances of these transcript sequences. Cufflinks

model allows for the probabilistic deconvolution of RNA-Seq fragment densities to

account for cases where genome alignments of fragments do not uniquely corre-

spond to source transcripts. The model incorporates minimal assumptions5 about

the sequencing experiment, and extends the single read sequencing model of Jiang

and Wong28 to the paired-end case. Despite the added complexity, the likelihood

function remains concave, allowing us to find the maximum likelihood estimates

of abundances numerically. Abundances were reported in Fragments Per Kilobase

of transcript per Million fragments mapped (FPKM). Confidence intervals for esti-

mates were obtained using a Bayesian inference method based on importance sam-

pling from the posterior distribution. Abundances of spiked control sequences and

benchmarks with simulated data revealed that Cufflinks abundance estimates are

highly accurate. The inclusion of novel isoforms of known genes during abundance

estimation had a dramatic impact on the estimates of known isoforms in many

genes, highlighting the importance of coupling transcript discovery together with

This chapter discusses a statistical model of RNA-Seq experiments, and is joint work with Lior

Pachter. The validation of this model is joint work with Brian Williams, Ali Mortazavi, Gordon

Kwan, and Barbara Wold.

55



abundance estimation.

3.1 Definitions

A transcript is an RNA molecule that has been transcribed from DNA. A

primary transcript is an RNA molecule that has yet to undergo modification. The

genomic location of a primary transcript consists of a pair of coordinates in the

genome representing the 5′ transcription start site and the 3′ polyadenylation cleav-

age site. We denote the set of all transcripts in a transcriptome by T . We partition

transcripts into transcription loci (for simplicity we refer to these as loci) so that

every locus contains a set of transcripts all of whose genomic locations do not over-

lap the genomic location of any transcript in any other locus. Formally, we consider

a maximal partition of transcripts into loci, a partition denoted by G, where the

genomic location of a transcript t ∈ g ∈ G does not overlap the genomic location of

any transcript u where u ∈ h ∈ G and h 6= g. We emphasize that the definition of a

transcription locus is not biological; transcripts in the same locus may be regulated

via different promoters, and may differ completely in sequence (for example if one

transcript is in the intron of another) or have different functions. The reason for

defining loci is that they are computationally convenient.

We assume that at the time of an experiment, a transcriptome consists of

an ensemble of transcripts T where the proportion of transcript t ∈ T is ρt, so

that
∑

t∈T ρt = 1 and 0 ≤ ρt ≤ 1 for all t ∈ T . Formally, a transcriptome is a

set of transcripts T together with the abundances ρ = {ρt}t∈T . For convenience
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we also introduce notation for the proportion of transcripts in each locus. We let

σg =
∑

t∈g ρt. Similarly, within a locus g, we denote the proportion of each transcript

t ∈ g by τt = ρt
σg

. We refer to ρ, σ and τ as transcript abundances.

Transcripts have lengths, which we denote by l(t). For a collection of tran-

scripts S ⊂ T in a transcriptome, we define the length of S using the weighted

mean:

l(S) =

∑
t∈S ρtl(t)∑
t∈S ρt

. (3.1)

It is important to note that the length of a set of transcripts depends on their relative

abundances; the reason for this will be clear later.

One grouping of transcripts that we will focus on is the set of transcripts within

a locus that share the same transcription start site (TSS). Unlike the concept of a

locus, grouping by TSS has a biological basis. Transcripts within such a group are

by definition alternatively spliced, and if they have different expression levels, this

is most likely due to the spliceosome and not due to differences in transcriptional

regulation.

3.2 A statistical model for RNA-Seq

In order to analyze expression levels of transcripts with RNA-Seq data, it is

necessary to have a model for the (stochastic) process of sequencing. A sequencing

experiment consists of selecting a total of M fragments of transcripts uniformly at

random from the transcriptome. Each fragment is identified by sequencing from

its ends, resulting in two reads called mate pairs. The length of a fragment is a
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random variable, with a distribution we will denote by F . That is, the probability

that a fragment has length i is F (i) and
∑∞

i=1 F (i) = 1. In this paper we assume

that F is normal, however in principle F can be estimated using data from the

experiment (e.g. spike-in sequences). We decided to use the normal approximation

to F (allowing for user specified parameters of the normal distribution) in order to

simplify the requirements for running Cufflinks at this time.

The assumption of random fragment selection is known to oversimplify the

complexities of a sequencing experiment, however without rigorous ways to normal-

ize we decided to work with the uniform at random assumption. It is easy to adapt

the model to include more complex models that address sequencing bias as RNA-Seq

experiments mature and the technologies are better understood.

The transcript abundance estimation problem in paired-end RNA-Seq is to

estimate ρ given a set of transcripts T and a set of reads sequenced from the ends

of fragments. In Cufflinks, the transcripts T can be specified by the user, or al-

ternatively T can be estimated directly from the reads. The latter problem is the

transcript assembly problem which we discuss in Chapter 4.

The fact that fragments have different lengths has bearing on the calculation

of the probability of selecting a fragment from a transcript. Consider a transcript t

with length l(t). The probability of selecting a fragment of length k from t at one

of the positions in t assuming that it is selected uniformly at random, is 1
l(t)−k . For

this reason, we will define an adjusted length for transcripts as
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l̃(t) =

l(t)∑
i=1

F (i)(l(t)− i+ 1). (3.2)

We also revisit the definition of length for a group of transcripts, and define

l̃(S) =

∑
t∈S ρtl̃(t)∑
t∈S ρt

. (3.3)

It is important to note that given a read it may not be obvious from which

transcript the fragment it was sequenced from originated. The consistency of frag-

ments with transcripts is important and we define the fragment-transcript matrix

AR,T to be the M × |T | matrix with A(r, t) = 1 if the fragment alignment r is com-

pletely contained in the genomic interval spanned by t, and all the implied introns in

r match introns in t (in order), and with A(r, t) = 0 otherwise. Note that the reads

in Figure 1.5c are colored according to the matrix AR,T , with each column of the

matrix corresponding to one of the three colors (yellow, blue, red) and reads colored

according to the mixture of colors corresponding to the transcripts their fragments

are contained in.

Even given the read alignment to a reference genome, it may not be obvious

what the length of the fragment was. Formally, in the case that AR,T (r, t) = 1

we denote by It(r) the fragment length from within a transcript t implied by the

(presumably unique) sequences corresponding to the mate pairs of a fragment r. If

AR,T (r, t) = 0 then It(r) is set to be infinite and F (It(r)) = 0.

Given a set of reads, we assume that we can identify for each of them the

set of transcripts with which the fragments the reads belonged to are consistent.

The rationale for this assumption is the following: we map the reads to a reference
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genome, and we assume that the read lengths are sufficiently long so that mate-

pairs can be aligned to the genome. We refer to the alignment of a pair of mated

reads to the genome as a single fragment alignment. We also assume that we know

all the possible transcripts and their alignments to the genome. Therefore, we can

identify for each read the possible transcripts from which the fragment it belonged

to originated.

t2

t1

Figure 3.1: Alignments of reads to the genome (rectangles) may be consistent with multiple

transcripts (in this case both t1 and t2). The transcripts t1 and t2 differ by an internal exon;

introns are indicated by long dashed lines. If we denote the fragment alignment by r, this means

that AR,T (r, t1) = 1 and AR,T (r, t2) = 1. It is apparent that the implied length It1(r) > It2(r) due

to the presence of the extra internal exon in t1.

We are now ready to write down the likelihood equation for the model. We

will write L(ρ|R) for the likelihood of a set of fragment alignments R constructed

from M reads. The notation Pr(trans. = t) means “the probability that a fragment

selected at random originates from transcript t”.
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L(ρ|R) =
∏
r∈R

Pr(rd. aln. = r) (3.4)

=
∏
r∈R

∑
t∈T

Pr(rd. aln. = r|trans. = t)Pr(trans. = t) (3.5)

=
∏
r∈R

∑
t∈T

ρtl̃(t)∑
u∈T ρul̃(u)

Pr(rd. aln. = r|trans. = t) (3.6)

=
∏
r∈R

∑
t∈T

ρtl̃(t)∑
u∈T ρul̃(u)

(
F (It(r))

l(t)− It(r) + 1

)
(3.7)

=
∏
r∈R

∑
t∈T

αt

(
F (It(r))

l(t)− It(r) + 1

)
, (3.8)

where

αt =
ρtl̃(t)∑
u∈T ρul̃(u)

. (3.9)

Observe that αt is exactly the probability that a fragment selected at random

comes from transcript t, and we have that
∑

t∈T αt = 1. In light of the probabilistic

meaning of the α = {αt}t∈T , we refer to them as fragment abundances.

It is evident that the likelihood function is that of a linear model and that

the likelihood function is concave (Proposition 15) so a numerical method can be

used to find the α. It is then possible, in principle, to recover the ρ using Lemma

14. However the number of parameters is in the tens of thousands, and in practice

this form of the likelihood function is unwieldy. Instead, we re-write the likelihood

utilizing the fact that transcripts in distinct loci do not overlap in genomic location.

We first calculate the probability that a fragment originates from a transcript
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within a given locus g:

βg :=
∑
t∈g

αt (3.10)

=

∑
t∈g ρtl̃(t)∑
u∈T ρul̃(u)

(3.11)

=

∑
t∈g σgτtl̃(t)∑

h∈G
∑

u∈h σhτul̃(u)
(3.12)

=
σg
∑

t∈g τtl̃(t)∑
h∈G σh

∑
u∈h τul̃(u)

(3.13)

=
σg l̃(g)∑
h∈G σhl̃(h)

. (3.14)

Recall that σg =
∑

t∈g ρt and that τt = ρt
σg

for a locus g.

Similarly, the probability of selecting a fragment from a single transcript t

conditioned on selecting a transcript from the locus g in which t is contained is

γt =
τtl̃(t)∑
u∈g τul̃(u)

. (3.15)

The parameters γ = {γt}t∈g are conditional fragment abundances, and they are

the parameters we estimate from the data in the next Section. Note that for a

transcript t ∈ g, αt = βg · γt and it is easy to convert between fragment abundances

and transcript abundances using Lemma 14.

We denote the fragment counts by X; specifically, we denote the number of

alignments in locus g by Xg. Note that
∑

g∈GXg = M . We also use the notation

gr to denote the (unique) locus from which a read alignment r can be obtained.
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The likelihood function is given by

L(ρ|R) =
∏
r∈R

Pr(aln. = r) (3.16)

=
∏
r∈R

∑
g∈G

Pr(aln. = r|loc. = g)Pr(loc. = g) (3.17)

=
∏
r∈R

σgr l̃(gr)∑
g∈G σg l̃(g)

Pr(aln. = r|loc. = gr) (3.18)

=
∏
r∈R

βgr
∑
t∈gr

Pr(aln. = r|loc. = gr, trans. = t)Pr(trans. = t|loc. = gr)

(3.19)

=
∏
r∈R

βgr
∑
t∈gr

τtl̃(t)∑
u∈gr τul̃(u)

Pr(aln. = r|loc. = gr, trans. = t) (3.20)

=

(∏
r∈R

βgr

)(∏
r∈R

∑
t∈g

γt · Pr(aln. = r|loc. = gr, trans. = t)

)
(3.21)

=

(∏
r∈R

βgr

)(∏
r∈R

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

)
(3.22)

=

(∏
g∈G

βXg
g

)(∏
g∈G

( ∏
r∈R:r∈g

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

))
. (3.23)

Explicitly, in terms of the parameters ρ, Equation (3.23) simplifies to Equation

(3.8) but we will see in the next section how the maximum likelihood estimates ρ̂

are most conveniently obtained by first finding β̂ and γ̂ using Equation (3.23).

We note that it is biologically meaningful to include prior distributions on σ

and τ that reflect the inherent stochasticity and resulting variability of transcrip-

tion in a cell. This will be an interesting direction for further research as more

RNA-Seq data (with replicates) becomes available allowing for the determination of

biologically meaningful priors. In particular, it seems plausible that specific isoform

abundances may vary considerably and randomly within cells from a single tissue
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and that this may be important in studying differential splicing. We mention to

this to clarify that in this paper, the confidence intervals we report represent the

variability in the maximum likelihood estimates σ̂j and τ̂ kj , and are not the variances

of prior distributions.

3.3 Estimation of parameters

We begin with a discussion of identifiability of our model. Identifiability refers

to the injectivity of the model, i.e.,

if Prob(ρ1|r) = Prob(ρ2|r),∀r, then ρ1 = ρ2. (3.24)

The identifiability of RNA-Seq models was discussed in25, where a standard

analysis for linear models is applied to RNA-Seq (for another related biological ex-

ample, see52which discusses identifiability of haplotypes in mixed populations from

genotype data). The results in these papers apply to our model. For complete-

ness we review the conditions for identifiability. Recall that AR,T is the fragment-

transcript matrix that specifies which transcripts each fragment is compatible with.

The following theorem provides a simple characterization of identifiability:

Theorem 2. The RNA-Seq model is identifiable iff AR,T is full rank.

Therefore, for a given set of transcripts and a read set R, we can test whether

the model is identifiable using elementary linear algebra. For the results in this

paper, when estimating expression with given annotations, when the model was

not identifiable we picked a maximum likelihood solution, although in principle it
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is possible to bound the total expression of the locus and/or report identifiability

problems to the user.

Returning to the likelihood function(∏
g∈G

βXg
g

)(∏
g∈G

( ∏
r∈R:r∈g

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

))
, (3.25)

we note that both the β and γ parameters depend on the ρ parameters. However,

we will see that if we maximize the β separately from the γ, and also each of the

sets {γt : t ∈ g} separately, then it is always possible to find ρ that match both the

maximal β and γ. In other words, the problem of finding ρ̂ is equivalent to finding

β̂ that maximizes
∏

g∈G β
Xg
g and separately, for each locus g, the γ̂t that maximize

∏
r∈R:r∈g

∑
t∈g

γt
F (It(r))

l(t)− It(r) + 1
. (3.26)

We begin by solving for the β̂ and γ̂ and the variances of the maximum like-

lihood estimates, and then explain how these are used to report expression levels.

We can solve for the γ̂ using the fact that the model is linear. That is, the

probability of each individual read is linear in the read abundances γt. It is a

standard result in statistics (see, e.g., Proposition 1.4 in Pachter and Sturmfels51)

that the log likelihood function of a linear model is concave. Thus, a hill climbing

method can be used to find the γ̂. We used the EM algorithm for this purpose.

Rather than using the direct ML estimates, we obtained a regularized estimate

by importance sampling from the posterior distribution with a proposal distribu-

tion we explain below. The samples were also used to estimate variances for our

estimates.
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It follows from standard MLE asymptotic theory that the γ̂ are asymptotically

multivariate normal with variance-covariance matrix given by the inverse of the

observed Fisher information matrix. This matrix is defined as follows:

Definition 3 (Observed Fisher information matrix). The observed Fisher informa-

tion matrix is the negative of the Hessian of the log likelihood function evaluated

at the maximum likelihood estimate. That is, for parameters Θ = (θ1, . . . , θn), the

n× n matrix is

Fk,l(Θ̂) = −∂
2 log(L(Θ|R))

∂θkθl
|θ=θ̂. (3.27)

In our case, considering a single locus g, the parameters are Θ = (γt1 , . . . , γt|g|),

and as expected from Proposition 15:

Ftk,tl(Θ̂) =
∑

r∈R:r∈g

 1(∑
h∈g γ̂h

F (Ih(r))
l(h)−Ih(r)+1

)2

F (Itk(r))F (Itl(r))

(l(tk)− Itk + 1)(l(tl)− Itl + 1)

 .
(3.28)

Because some of the transcript abundances may be close to zero, we adopted

the Bayesian approach of28 and instead sampled from the joint posterior distribution

of Θ using the proposal distribution consisting of the multivariate normal with mean

given by the MLE, and variance-covariance matrix given by the inverse of (3.28).

If the Observed Fisher Information Matrix is singular then the user is warned and

the confidence intervals of all transcripts are set to [0, 1] (meaning that there is no

information about relative abundances).

The method used for sampling was importance sampling. The samples were

used to obtain a maximum-a-posterior estimate for γ̂t for each t and for the variance-
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covariance matrix which we denote by Ψg (where g ∈ G denotes the locus). Note

that Ψg is a |g| × |g| matrix. The covariance between γ̂tk and γ̂tl for tk, tl ∈ g is

given by Ψg
tk,tl

.

Turning to the maximum likelihood estimates β̂, we use the fact that the model

is the log-linear. Therefore,

β̂g =
Xg

M
. (3.29)

Viewed as a random variable, the counts Xg are approximately Poisson and

therefore the variance of the MLE β̂g is approximately Xg. We note that for the tests

in this paper we directly used the total counts M and the proportional counts Xg,

however it is easy to incorporate recent suggestions for total count normalization,

such as quantile normalization5 into Cufflinks.

The abundance of a transcript t ∈ g in FPKM units is

106 · 103 · αt
l̃(t)

=
106 · 103 · βg · γt

l̃(t)
. (3.30)

Equation (3.30) makes it clear that although the abundance of each transcript

t ∈ g in FPKM units is proportional to the transcript abundance ρt it is given in

terms of the read abundances βg and γt which are the parameters estimated from

the likelihood function.

The maximum likelihood estimates of βg and γt are random variables, and

we denote their scaled product (in FPKM units) by At. That is Pr(At = a) is

the probability that for a random set of fragment alignments from a sequencing

experiment, the maximum likelihood estimate of the transcript abundance for t in

FPKM units is a.
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Using the fact that the expectation of a product of independent random vari-

ables is the product of the expectations, for a transcript t ∈ g we have

E[At] =
109Xgγ̂t

l̃(t)M
. (3.31)

Given the variance estimates for the γ̂t we turn to the problem of estimating

V ar[At] for a transcript t ∈ g. We use Lemma 13 to obtain

V ar[At] =

(
109

l̃(t)M

)2 (
Ψg
t,tXg + Ψg

t,tX
2
g + (γ̂t)

2Xg

)
(3.32)

= Xg

(
109

l̃(t)M)

)2 (
Ψg
t,t(1 +Xg) + (γ̂t)

2
)
. (3.33)

This variance calculation can be used to estimate a confidence interval by

utilizing the fact2 that when the expectation divided by the standard deviation of

at least one of two random variables is large, their product is approximately normal.

Next we turn to the problem of estimating expression levels (and variances

of these estimates) for groups of transcripts. Let S ⊂ T be a group of transcripts

located in a single locus g, e.g. a collection of transcripts sharing a common TSS.

The analogy of Equation (3.30) for the FPKM of the group is

106 · 103 · βg ·
(∑

t∈S γt
)

l̃(S)
(3.34)

= 106 · 103 · βg ·
∑
t∈S

γt

l̃(t)
. (3.35)

As before, we denote by BS the random variables for which Pr(BS = b)

is the probability that for a random set of fragment alignments from a sequencing

experiment, the maximum likelihood estimate of the transcript abundance for all the

transcripts in S in FPKM units is b. We note that the BS are products and sums of
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random variables (Equation (3.35)). This makes Equation (3.35) significantly more

useful than the equivalent unsimplified Equation (3.34), especially because l̃(S) is,

in general, a ratio of two random variables.

We again use the fact that the expectation of independent random variables

is the product of the expectation, in addition to the fact that expectation is a linear

operator to conclude that for a group of transcripts S,

E[BS] =
109 ·Xg ·

∑
t∈S

γ̂t
l̃(t)

M
. (3.36)

In order to compute the variance of BS, we first note that

V ar

[∑
t∈S

γ̂t

l̃(t)

]
=
∑
t∈S

1

l̃(t)2
Ψg
t,t +

∑
t,u∈S

1

l̃(t)l̃(u)
Ψg
t,u. (3.37)

Therefore,

V ar[BS] =

Xg

(
109

M

)2
(1 +Xg)

(∑
t∈S

1

l̃(t)2
Ψg
t,t +

∑
t,u∈S

1

l̃(t)l̃(u)
Ψg
t,u

)
+

(∑
t∈S

γ̂t

l̃(t)

)2
 .

(3.38)

We can again estimate a confidence interval by utilizing the fact that BS is

approximately normal2.

3.4 Assessment of abundance estimation

We evaluated the accuracy of Cufflinks’ transcript abundance estimates by

first comparing the estimated FPKM values for the spiked-in sequences in each

sample against their intended concentrations (see C.2). Spike FPKMs were highly
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correlated across a 5-log dynamic range in all four samples (Figure 3.2). However,

because sequenced spike fragments were unambiguously mappable, we performed

additional simulation to measure the accuracy of the software in alternatively spliced

loci.
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Figure 3.2: Cufflinks’ abundance estimates of spiked-in sequences.

To assess the accuracy of Cufflinks’ estimates, we simulated an RNA-Seq
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Figure 3.3: In silico assessment of the accuracy of Cufflinks abundance estimation when provided

with a perfect assembly (a) and after de novo comparative assembly (b). Red points indicate in

silico transcripts that were only partially recovered, where black points were fully reconstructed

by Cufflinks. Simulated reads were aligned with TopHat and the alignments were provided to

Cufflinks along with the structures of the transcripts in the simulated sample.

experiment using the FluxSimulator (http://flux.sammeth.net), a freely available

software package that models whole-transcriptome sequencing experiments with the

Illumina Genome Analyzer. The software works by first randomly assigning ex-

pression values to the transcripts provided by the user, constructing an amplified,

size-selected library, and sequencing it. Mouse UCSC transcripts were supplied to

the software, along with build 37.1 of the genome. FluxSimulator then randomly as-

signed expression ranks to 18,935 transcripts, with the expression value y computed

from the rank x according to the formula
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y =

(
x

5.0× 107

)−0.6

e
−
(

x
9.5×103

)
−
(

x
9.5×103

)2
. (3.39)

From these relative expression levels, the software constructed an in silico

RNA sample, with each transcript assigned a number of molecules according to

its abundances. The software modeled the polyadenylation of each transcript by

adding a poly-A tail (of mean length 125nt) after the terminal exon. FluxSimu-

lator then simulated reverse transcription of in silico mRNAs by random hexamer

priming, followed by size selection of RT products to between 175 and 225 nt. The

resulting “library” of 6,601,805 cDNA fragments was then sampled uniformly at

random for simulated sequencing, where the initial and terminal 75bp of each se-

lected fragment were reported as reads. FluxSimulator does not allow precise control

over the number of reads generated (Michael Sammeth, personal communication),

but nevertheless generated 13,203,516 75nt paired-end RNA-Seq reads. These reads

included sequencing errors; FluxSimulator includes a position-specific sequencing

error model.

Fragments were mapped with TopHat to the mouse genome using identical

parameters to those used to map the C2C12 reads, mapping a total of 6,176,961

(93% of the library). These alignments were supplied along with the exact set

of expressed transcripts to Cufflinks, to measure Cufflinks’ abundance estimation

accuracy when working with a “perfect” assembly (Figure 3.3). Estimated FPKM

was very close to true in silico FPKM across a dynamic range of expression of nearly

six orders of magnitude (R2 = 0.95).
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Figure 3.4: Excluding novel C2C12 transcripts from abundance estimation results in inaccurate

estimates for known transcripts.

Estimation of transcript abundances by assigning fragments to them may be

inaccurate if one is working with an incomplete set of transcripts for a particular

sample. To evaluate the impact of missing transcripts, we removed the newly dis-

covered transcripts from our high-confidence set and re-estimated the abundances

of known transcripts, and then compared them to those obtained when working

with the complete high-confidence set. While estimates of known transcripts were

overall similar or identical when working with both sets, reflecting single-isoform or

fully annotated genes, isoforms of some alternatively spliced genes differed greatly.

(Figure 3.4)
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Chapter 4

Assembly of full-length transcripts

To recover the minimal set of transcripts supported by our fragment align-

ments, we designed a comparative transcriptome assembly algorithm. EST assem-

blers such as PASA introduced the idea of collapsing alignments to transcripts based

on splicing compatibility23, and Dilworths Theorem14 has been used to assemble a

parsimonious set of haplotypes from virus population sequencing reads16. Cufflinks

extends these ideas, reducing the transcript assembly problem to finding a maximum

matching in a weighted bipartite graph that represents compatibilities23 among frag-

ments. Non-coding RNAs22 and microRNAs10 have been reported to regulate cell

differentiation and development, and coding genes are known to produce noncoding

isoforms as a means of regulating protein levels through nonsense-mediated decay32.

For these biologically motivated reasons, the assembler does not require that assem-

bled transcripts contain an open reading frame. Since Cufflinks does not make use

of existing gene annotations during assembly, we validated the transcripts by first

comparing individual time point assemblies to existing annotations.

Cufflinks takes as input alignments of RNA-Seq fragments to a reference

This chapter discusses a transcript assembly algorithm and is joint work with Lior Pachter

and Steven Salzberg. Geo Pertea wrote Cuffcompare, described in Section 4.4, which is included

with the assembler. The validation of this assembler is joint work with Geo Pertea, Ali Mortazavi,

Brian Williams, Marijke J. van Baren, and Barbara Wold.
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genome and, in the absence of an (optional) user provided annotation, initially

assembles transcripts from the alignments. Transcripts in each of the loci are as-

sembled independently. The assembly algorithm is designed to aim for the following:

1. Every fragment is consistent with at least one assembled transcript.

2. Every transcript is tiled by reads.

3. The number of transcripts is the smallest required to satisfy requirement (1).

4. The resulting RNA-Seq models (in the sense of Section 3.3) are identifiable.

In other words, we seek an assembly that parsimoniously explains the fragments from

the RNA-Seq experiment; every fragment in the experiment (except those filtered

out during a preliminary error-control step) should have come from a Cufflinks

transcript, and Cufflinks should produce as few transcripts as possible with that

property. Thus, Cufflinks seeks to optimize the criterion suggested in70, however,

unlike the method in that paper, Cufflinks leverages Dilworth’s Theorem14 to solve

the problem by reducing it to a matching problem via the equivalence of Dilworth’s

and König’s theorems (Theorem 19 in Appendix A).

4.1 A partial order on fragment alignments

The Cufflinks program loads a set of alignments in SAM format sorted by ref-

erence position and assembles non-overlapping sets of alignments independently. Af-

ter filtering out any erroneous spliced alignments or reads from incompletely spliced

RNAs, Cufflinks constructs a partial order (Definition 16), or equivalently a directed
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acyclic graph (DAG), with one node for each fragment that in turn consists of an

aligned pair of mated reads. First, we note that fragment alignments are of two

types: those where reads align in their entirety to the genome, and reads which

have a split alignment (due to an implied intron).

In the case of single reads, the partial order can be simply constructed by

checking the reads for compatibility. Two reads are compatible if their overlap con-

tains the exact same implied introns (or none). If two reads are not compatible they

are incompatible. The reads can be partially ordered by defining, for two reads x, y,

that x ≤ y if the starting coordinate of x is at or before the starting coordinate of

y, and if they are compatible.

In the case of paired-end RNA-Seq the situation is more complicated because

the unknown sequence between mate pairs. To understand this, we first note that

pairs of fragments can still be determined to be incompatible if they cannot have

originated from the same transcript. As with single reads, this happens when there

is disagreement on implied introns in the overlap. However compatibility is more

subtle. We would like to define a pair of fragments x, y to be compatible if they do

not overlap, or if every implied intron in one fragment overlaps an identical implied

intron in the other fragment.

However it is important to note that it may be impossible to determine the

compatibility (as defined above) or incompatibility of a pair of fragments. For ex-

ample, an unknown region internal to a fragment may overlap two different introns

(that are incompatible with each other). The fragment may be compatible with

one of the introns (and the fragment from which it originates) in which case it is
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incompatible with the other. Since the opposite situation is also feasible, compati-

bility (or incompatibility) cannot be assigned. Fragments for which the compatibil-

ity/incompatibility cannot be determined with respect to every other fragment are

called uncertain. Finally, two fragments are called nested if one is contained within

the other.

y4

y5

x4

x4

x3
y3

y2

x2

y1

x1a

b

c

d

Figure 4.1: Compatibility and incompatibility of fragments. End-reads are solid lines, unknown

sequences within fragments are shown by dotted lines and implied introns are dashed lines. The

reads in (a) are compatible, whereas the fragments in (b) are incompatible. The fragments in (c)

are nested. Fragment x4 in (d) is uncertain, because y4 and y5 are incompatible with each other.

Before constructing a partial order, fragments are extended to include their

nested fragments and uncertain fragments are discarded. These discarded fragments

are used in the abundance estimation. In theory, this may result in suboptimal

(i.e. non-minimal assemblies) but we determined empirically that after assembly
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uncertain fragments are almost always consistent with one of the transcripts. When

they are not, there was no completely tiled transcript that contained them. Thus,

we employ a heuristic that significantly speeds up the program, and that works in

practice.

A partial order P is then constructed from the remaining fragments by declar-

ing that x ≤ y whenever the fragment corresponding to x begins at, or before, the

location of the fragment corresponding to y and x and y are compatible. In what

follows we identify P with its Hasse diagram (or covering relation), equivalently a

directed acyclic graph (DAG) that is the transitive reduction.

Proposition 4. P is a partial order.

Proof: The fragments can be totally ordered according to the locations where

they begin. It therefore suffices to check that if x, y, z are fragments with x com-

patible with y and y compatible with z then x is compatible with z. Since x is not

uncertain, it must be either compatible or incompatible with z. The latter case can

occur only if x and/or z contain implied introns that overlap and are not identical.

Since y is not nested within z and x is not nested within y, it must be that y con-

tains an implied intron that is not identical with an implied intron in either x or z.

Therefore y cannot be compatible with both x and z.

4.2 Assembling a parsimonious set of transcripts

In order to assemble a set of transcripts, Cufflinks finds a (minimum) partition

of P into chains (see Definition 16). A partition of P into chains yields an assembly
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because every chain is a totally ordered set of compatible fragments x1, . . . , xl and

therefore there is a set of overlapping fragments that connects them. By Dilworth’s

theorem (Theorem 17), the problem of finding a minimum partition P into chains

is equivalent to finding a maximum antichain in P (an antichain is a set of mutually

incompatible fragments). Subsequently, by Theorem 19, the problem of finding

a maximum antichain in P can be reduced to finding a maximum matching in a

certain bipartite graph that emerges naturally in deducing Dilworth’s theorem from

König’s theorem 18. We call the key bipartite graph the “reachability” graph. It

is the transitive closure of the DAG, i.e. it is the graph where each fragment x has

nodes Lx and Rx in the left and right partitions of the reachability graph respectively,

and where there is an edge between Lx and Ry when x ≤ y in P . The maximum

matching problem is a classic problem that admits a polynomial time algorithm.

The Hopcroft-Karp algorithm27 has a run time of O(
√
V E) where in our case V is

the number of fragments and E depends on the extent of overlap, but is bounded

by a constant times the coverage depth. We note that our parsimony approach to

assembly therefore has a better complexity than the O(V 3) PASA algorithm23.

The minimum cardinality chain decomposition computed using the approach

above may not be unique. For example, a locus may contain two putative distinct

initial exons (defined by overlapping incompatible fragments), and one of two dis-

tinct terminal and a constitutive exon in between that is longer than any read or

insert in the RNA-Seq experiment. In such a case, the parsimonious assembly will

consist of two transcripts, but there are four possible solutions that are all minimal.

In order to “phase” distant exons, we leverage the fact that abundance inhomo-
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geneities can link distant exons via their coverage. We therefore weight the edges of

the bipartite reachability graph based on the percent-spliced-in metric introduced

by Wang et al.68. In our setting, the percent-spliced-in ψx for an alignment x is

computed by counting the alignments overlapping x in the genome that are com-

patible with x and dividing by the total number of alignments that overlap x, and

normalizing for the length of the x. The cost C(y, z) assigned to an edge between

alignments y and z reflects the belief that they originate from different transcripts:

C(y, z) = − log(1− |ψy − ψz|). (4.1)

Rather than using the Hopcroft-Karp algorithm, a modified version of the

LEMON (http://lemon.cs.elte.hu/trac/lemon) and Boost (http://www.boost.org) graph

libraries are used to compute a min-cost maximum cardinality matching on the bi-

partite compatibility graph. Even with the presence of weighted edges, our algorithm

is very fast. The best known algorithm for weighted matching is O(V 2logV + V E).

Some transcripts in a sample may be present at very low relative abundance,

and may not be sequenced at sufficient depth to be fully covered by reads. Cuf-

flinks will thus only report the parts of each transcript covered by reads, or “trans-

frags”. Because we isolated total RNA, we expected that a small fraction of our

reads would come from the intronic regions of incompletely processed primary tran-

scripts. Moreover, transcribed repetitive elements and low-complexity sequence re-

sult in “shadow” transfrags that we wished to discard as artifacts. Thus, Cufflinks

heuristically identifies artifact transfrags and suppresses them in its output. We also
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filter extremely low-abundance minor isoforms of alternatively spliced genes, using

the model described in Chapter 3 as a means of reducing the variance of estimates

for more abundant transcripts. A transcript x meeting any of the following criteria

is suppressed:

1. x aligns to the genome entirely within an intronic region of the alignment for

a transcript y, and the abundance of x is less than 15% of y’s abundance.

2. x is supported by only a single fragment alignment to the genome.

3. More than 75% of the fragment alignments supporting x, are mappable to

multiple genomic loci.

4. x is an isoform of an alternatively spliced gene, and has an estimated abun-

dance less than 5% of the major isoform of the gene.

Prior to transcript assembly, Cufflinks also filters out some of the alignments

for fragments that are likely to originate from incompletely spliced nuclear RNA, as

these can reduce the accuracy abundance estimates for fully spliced mRNAs. These

filters and the output filters above are detailed in the source file filters.cpp of the

source code for Cufflinks.

In the overview of this Section, we mentioned that our assembly algorithm has

the property that the resulting models are identifiable. This is a convenient property

that emerges naturally from the parsimony criterion for a “minimal explanation” of

the fragment alignments. Formally, it is a corollary of Dilworth’s theorem:
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Proposition 5. The assembly produced by the Cufflinks algorithm always results in

an identifiable RNA-Seq model.

Proof: By Dilworth’s theorem, the minimum chain decomposition (assembly)

we obtain has the same size as the maximum antichain in the partially ordered

set we construct from the reads. An antichain consists of reads that are pairwise

incompatible, and therefore those reads must form a permutation sub-matrix in

the fragment-transcript matrix AR,T with columns corresponding to the transcripts

in a locus, and with rows corresponding to the fragments in the antichain. The

matrix AR,T therefore contains permutation sub-matrices that together span all the

columns, and the matrix is full-rank.

4.3 The myogenic transcriptome

We recovered a total of 13,689 known isoforms from 10,372 genes, and 12,712

new isoforms of known genes. We estimate that 77% of the reads originated from

previously known transcripts (Table 4.2). Of the new isoforms, 7,395 (58%) con-

tain novel splice junctions, with the remainder being novel combinations of known

splicing outcomes. 11,712 (92%) have an open reading frame (ORF), 8,752 of which

end at an annotated stop codon. Although we sequenced deeply by current stan-

dards, at least 80% of the detected transcripts were recovered with a single lane

of GAII transcriptome sequencing. Because distinguishing a full-length transcript

from a partially assembled fragment is difficult, we conservatively excluded novel

isoforms that were unique to a single time point from further analyses. Out of the
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new isoforms, 3,724 were present in multiple time points, and 581 were present at all

time points. 6,518 (51%) of the new isoforms and 2,316 (62%) of the multiple time

point novel isoforms were tiled by high-identity EST alignments or matched Ref-

Seq isoforms from other organisms, and endpoint RT-PCR experiments confirmed

new isoforms in genes of interest (Table 4.4). We concluded that a majority of the

unannotated transcripts we found are in the myogenic transcriptome, and that the

mouse annotation remains incomplete.

4.4 Assessment of assembly quality

To compare Cufflinks transfrags against annotated transcriptomes, and also to

find transfrags common to multiple assemblies, we developed a tool called Cuffcom-

pare that builds structural equivalence classes of transcripts. We ran Cuffcompare

on each the assembly from each time point against the combined annotated tran-

scriptomes of the UCSC known genes, Ensembl, and Vega. Because of the stochastic

nature of sequencing, ab initio assembly of the same transcript in two different sam-

ples may result in transfrags of slightly different lengths. A Cufflinks transfrag was

considered a complete match when there was a transcript with an identical chain of

introns in the combined annotation.

When no complete match is found between a Cufflinks transfrag and the tran-

scripts in the combined annotation, Cuffcompare determines and reports if another

potentially significant relationship exists with any of the annotation transcripts that

can be found in or around the same genomic locus. For example, when all the introns
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of a transfrag match perfectly a part of the intron chain (sub-chain) of an annota-

tion transcript, a “containment” relationship is reported. For single-exon transfrags,

containment is also reported when the exon appears fully overlapped by any of the

exons of an annotation transcript. If there is no perfect match for the intron chain

of a transfrag but only some exons overlap and there is at least one intron-exon

junction match, Cuffcompare classifies the transfrag as a putative “novel” isoform

of an annotated gene. When a transfrag is unspliced (single-exon) and it overlaps

the intronic genomic space of a reference annotation transcript, the transfrag is clas-

sified as potential pre-mRNA fragment. Finally, when no other relationship is found

between a Cufflinks transfrag and an annotation transcript, Cuffcompare can check

the repeat content of the transfrag’s genomic region (assuming the soft-masked ge-

nomic sequence was also provided) and it would classify the transfrag as “repeat” if

most of its bases are found to be repeat-masked.

When provided multiple time point assemblies, Cuffcompare matches tran-

scripts between samples that have an identical intron structure, placing all mu-

tually matching transcripts in the same equivalence class. The program reports

a non-redundant set of transcript structures, choosing the longest transcript from

each equivalence class as the representative transcript. Cuffcompare also reports the

relationships found between each equivalence class (transcripts that have a complete

match across time points) and reference transcripts from the combined annotation

set, where applicable.

Table 4.2 includes the classifications of the transfrags reported by Cufflinks

after assembling the C2C12 reads. While only 13.5% of assembled transfrags repre-
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Figure 4.2: Categorization of Cufflinks transcripts by estimated depth of read coverage.

sent known transcripts, Cufflinks assigns more than 76% of reads to these, reflecting

the fact that moderate and highly-abundant transfrags generate most of the library

fragments in the experiment. Less abundant transcripts receive less complete se-

quencing coverage, resulting in numerous transfrags that partially but compatibly

match known transcripts. Figure 4.2 shows the categories of Cufflinks transfrags as

estimated depth of sequencing coverage increasing.

We selected the Cufflinks transfrags that did not have a complete match or

“containment” relationship with a known annotation transcript, but were classified

by Cuffcompare as putative “novel isoforms” of known genes. We explored the
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Category Transcripts (%) Assembled reads (%)

Match to known isoform 13.5 76.7

Novel isoform of known gene 6.3 11.3

Contained in known isoform 24.1 4.6

Repeat 14.2 0.6

Intronic 11.1 0.6

Polymerase run-on 6.3 0.5

Intergenic 16.5 1.2

Other artifacts 7.7 4.5

Table 4.2: Types of predicted transcripts.

sequence similarity between these transfrags and two sets of mRNA sequences: one

set representing the mouse transcriptome and consisting of all mouse ESTs in dbEST

plus all reviewed or validated RefSeq mouse mRNAs, and the other consisting of all

reviewed or validated RefSeq mRNAs from other mammalian species.

We used megablast to map all mouse ESTs onto this set of Cufflinks transfrags,

only keeping EST alignments where at least 80% of the EST length was aligned with

at least 95% identity. We calculated transfrag coverage by tiling overlapping EST

mappings on each transfrag and counted only those transfrags that are covered by

ESTs for at least 80% of the transfrag length without any coverage gaps, and with

coverage discontinuities only allowed at no more than 10% distance from either

end. For the mouse mRNAs alignments we also used megablast with the same

basic coverage cutoffs (minimum 80% covered with no more than 10% unaligned

on either side of the overlap) but applied to each pairwise alignment independently

(i.e. as opposed to EST alignments, no coverage tiling was considered for mRNA
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alignments). For alignments with the non-mouse mRNAs we used discontiguous

megablast with a dual (combined) discontiguous word template (option -N 2), with

the same coverage assessment protocol as in the case of mouse mRNA alignments

but with the percent identity cutoff lowered to 80%.
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168 hrs
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RefSeq

Depth of 
coverage

Cufflinks 
assemblies

a

b

Primers A B C D
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100 bp

500 bp

Predicted sizes:

Primers A+C: 221 bp
Primers B+D: 407 bp

Primers A+C Primers B+D

-24 60 120 168 -24 60 120 168 time (hrs)

Figure 4.3: New and known isoforms of Fhl3 recovered by Cufflinks at each time point (a) were

confirmed by form-specific RT-PCR (b).

4.5 Validation of novel transfrags

We selected the Cufflinks transfrags that did not have a complete match or

“containment” relationship with a known annotation transcript, but were classified
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by Cuffcompare as putative “novel isoforms” of known genes. We explored the

sequence similarity between these transfrags and two sets of mRNA sequences: one

set representing the mouse transcriptome and consisting of all mouse ESTs in dbEST

plus all reviewed or validated RefSeq mouse mRNAs, and the other consisting of all

reviewed or validated RefSeq mRNAs from other mammalian species.

We used megablast to map all mouse ESTs onto this set of Cufflinks transfrags,

only keeping EST alignments where at least 80% of the EST length was aligned with

at least 95% identity. We calculated transfrag coverage by tiling overlapping EST

mappings on each transfrag and counted only those transfrags that are covered by

ESTs for at least 80% of the transfrag length without any coverage gaps, and with

coverage discontinuities only allowed at no more than 10% distance from either

end. For the mouse mRNAs alignments we also used megablast with the same

basic coverage cutoffs (minimum 80% covered with no more than 10% unaligned

on either side of the overlap) but applied to each pairwise alignment independently

(i.e. as opposed to EST alignments, no coverage tiling was considered for mRNA

alignments). For alignments with the non-mouse mRNAs we used discontiguous

megablast with a dual (combined) discontiguous word template (option -N 2), with

the same coverage assessment protocol as in the case of mouse mRNA alignments

but with the percent identity cutoff lowered to 80%.
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4.6 Library complexity measurements, assembly accessibility

To assess the dependence of assembly quality on the depth of sequencing, we

mapped and assembled subsets of our reads at the 60 hour time point. We parti-

tioned the three Illumina lanes’ worth of data (a total of 140 million reads) into 64

subsets. We then processed a single subset with TopHat and Cufflinks, as above,

and compared the resulting transfrags to the output of Cufflinks on all three lanes

using Cuffcompare. We repeated the mapping and assembly with two subsets, four

subsets, eight, and so on. Figure 4.5 shows the fraction of reference transcripts

captured by Cufflinks using all three lanes that are still captured when less data

is available. For transcripts with extremely low abundance (<5 FPKM), increased

sequencing yields more full-length transcripts. However, for even moderately abun-

dant transcripts (≥5 FPKM), nearly 80% or more of the transcripts are recovered

with only 40 million reads, or a lane’s worth of Illumina GA II sequencing.
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Figure 4.4: RT-PCR of selected genes. For Schip1, Cufflinks assembled a known and a novel

isoform (with a new TSS), both of which are detected by RT-PCR. Prkar1a is annotated with two

alternate first exons and start sites in UCSC known genes, both of which were detected. Cufflinks

assembles the known isoform of the splicing factor Sfpq, along with a novel variant that contains

most of RIKEN clone. Tpm1, a gene known to have muscle- and non-muscle-specific isoforms

displays previously observed alternative first and last exons.
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Primer name sequence product length endpoint gel score

FHL3 Ex1Ex3

Left CTCGCCGCTGCTCTCTCG 221 +++

Right GTGTTGTCATAGCACGGAACG

FHL3 Ex2Ex3

Left AGGAAGGGCTCACAAGTGG 407 +++

Right ATAGCACGGAACGCAGTAGG

Sfpq Ex9Ex10

Left GTGGTGGCATAGGTTATGAAGC 936 +++

Right CCATTTTCAAAAGCTTTCAAGG

Sfpq Ex9Ex11

Left GTGGTGGCATAGGTTATGAAGC 172 +++

Right CTCAAGTAAATAAGACTCCAAAATCAGC

Prkar1aEx1Ex3

Left ACAGCAGGGATCTCCTTGTCC 418 +++

Right CCTCTCAAAGTATTCCCGAAGG

Prkar1aEx2Ex3

Left GCTATCGCAGAGTGGTAGTGAGG 279 +++

Right CCTCTCAAAGTATTCCCGAAGG

Schip1Ex1Ex3

Left GGCTATGAGGGTGAAAAGTGC 1050 +++

Right GTATAGATTCCTGGGCCATCG

Schip1Ex2Ex3

Left CAGCATGAGTGGTAACCAAGG 269 +++

Right GTATAGATTCCTGGGCCATCG

Tpm1Ex1Ex3

Left TGAACAAAAGACCCCAGAGG 565 +++

Right CTGAAGTACAAGGCCATCAGC

Tpm1Ex2Ex3

Left AGTTTTATTGAGCGTTGAGACG 318 +++

Right CTGAAGTACAAGGCCATCAGC

Table 4.4: Form-specific RT-PCR primers for selected genes, designed with Primer3

(http://frodo.wi.mit.edu/primer3/).
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ing varies

Figure 4.5: Robustness of assembly and abundance estimation as a function of expression level

and depth of sequencing. Subsets of the full 60-hour read set were mapped and assembled with

TopHat and Cufflinks and the resulting assemblies were compared for structural and abundance

agreement with the full 60 hour assembly. Colored lines show the results obtained at different

depths of sequencing in the full assembly; e.g., the light blue line tracks the performance for

transcripts with FPKM greater than 60. (a) The fraction of transcript fragments fully recovered

increases with additional sequencing data, though nearly 80% of moderately expressed (15 FPKM)

are recovered with less than 40 million 75bp paired-end reads, a fraction of the data generated

by a single run of the sequencer used in this experiment. (b) Abundance estimates are similarly

robust. At 40 million reads, transcripts determined to be moderately expressed using all 60 hour

reads were estimated at within 15% of their final FPKM values.
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Chapter 5

Differential transcription and regulation

In order to explore expression dynamics in the myogenic transcriptome, we

developed tests for statistically significant changes in transcript- and gene-level ex-

pression as determined by our model, and used these to characterize the “trajecto-

ries” of the RNAs across the time course. These tests are detailed below, followed

by the results of testing on the C2C12 experiment.

5.1 Expression curve shape assignment

Between any two consecutive time points, we tested whether a transcript was

significantly (after FDR control) up or down regulated (or flat). This was done

using the following testing procedure for absolute differential expression:

In order to test for differential transcription, we employ the standard method

used in microarray-based expression analysis and proposed for RNA-Seq5, which

is to compute the logarithm of the ratio of intensities (in our case FPKM), and

then use the delta method to estimate the variance of the log odds. We describe

this for testing differential transcription of individual transcripts and also groups of

This chapter describes an approach to differential analysis of expression and regulation from

RNA-Seq, and is joint work with Lior Pachter. We perform this analysis on differentiating my-

oblasts in an experiment conducted by Brian Williams, Ali Mortazavi, Gordon Kwan, and Barbara

Wold.
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transcripts (e.g. grouped by TSS).

We recall that the MLE FPKM for a transcript t ∈ g is given by

109Xgγ̂t

l̃(t)M
. (5.1)

Given two different experiments resulting in Xa
g ,M

a and Xb
g ,M

b respectively, as

well as γ̂at and γ̂bt , we would like to test the significance of departures from unity of

the ratio of MLE FPKMS, i.e.

(
109Xa

g γ̂
a
t

l̃(t)Ma

)
/

(
109Xb

g γ̂
b
t

l̃(t)M b

)
(5.2)

=
Xa
g γ̂

a
tM

b

Xb
g γ̂

b
tM

a
. (5.3)

This can be turned into a test statistic that is approximately normal by taking

the logarithm, and normalizing by the variance. We recall that using the delta

method, if X is a random variable then V ar[log(X)] ≈ V ar[X]
E[X]2

.

Therefore, our test statistic is

log(Xa
g ) + log(γ̂at ) + log(M b)− log(Xb

g)− log(γ̂bt )− log(Ma)√
(Ψg,a

t,t (1+Xa
g )+(γ̂at )2)

Xa
g (γ̂at )2

+
(Ψg,b

t,t (1+Xb
g)+(γ̂bt )2)

Xb
g(γ̂bt )

2

. (5.4)

5.2 Quantifying transcriptional and post-transcriptional overloading

There are two biologically meaningful groupings of transcripts whose relative

abundances are interesting to track in a time course. Transcripts that share a

TSS are likely to be regulated by the same promoter, and therefore tracking the

change in relative abundances of groups of transcripts sharing a TSS may reveal how

transcriptional regulation is affecting expression over time. Similarly, transcripts
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that share a TSS and exhibit changes in expression relative to each other are likely

to be affected by splicing or other post-transcriptional regulation. We therefore

grouped transcripts by TSS and compared relative abundance changes within and

between groups.

We define “overloading” to be a significant change in relative abundances

for a set of transcripts (as determined by the Jensen-Shannon metric, see below).

The term is intended to generalize the simple notion of “isoform switching” that

is well-defined in the case of two transcripts, to multiple transcripts. It is comple-

mentary to absolute differential changes in expression: the overall expression of a

gene may remain constant while individual transcripts change drastically in relative

abundances resulting in overloading. The term is borrowed from computer science,

where in some statically-typed programming languages, a function may be used in

multiple, specialized instances via “method overloading”.

In order to test for differential transcription of a group of transcripts, we

replace the numerator and denominator above by those from Equations (3.36) and

(3.38).

Given significantly differentially expressed isoforms, we defined the shape of a

transcript’s expression by the presence or absence of significant changes in expres-

sion between sequential time points. four shapes were considered: “non-decreasing”,

“non-increasing”, “flat” (no significant changes), or a “mixed” pattern (a shift down

followed by a shift up, or a shift up followed by a shift down). By shape classifi-

cation, 1,634 of 3,975 (41.1%) alternatively transcribed genes featured expression

overloading. A selection of overloaded genes are displayed in Figures 5.1 and 5.2.
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Figure 5.1: Selected genes with post-transcriptional overloading. Trajectories indicate the ex-

pression of individual isoforms in FPKM (y axis) over time in hours (x axis). Dashed isoforms

have not been previously annotated. Isoform trajectories are colored by TSS, so isoforms with

the same color presumably share a common promoter and are processed from the same primary

transcript.
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Figure 5.2: Selected genes with transcriptional overloading. Trajectories indicate the expression

of individual isoforms in FPKM (y axis) over time in hours (x axis). Dashed isoforms have not

been previously annotated. Isoform trajectories are colored by TSS, so isoforms with the same

color presumably share a common promoter and are processed from the same primary transcript.
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In order to infer the extent of differential promoter usage, we decided to mea-

sure changes in relative abundances of primary transcripts of single genes. Similarly,

we investigated changes in relative abundances of transcripts grouped by TSS in or-

der to infer differential splicing. These inferences required two ingredients:

1. A metric on probability distributions (derived from relative abundances).

2. A test statistic for assessing significant changes in differential promoter usage

and splicing as measured using the metric referred to above.

In order to address the first requirement, namely a metric on probability distri-

butions, we turned to an entropy-based metric. This was motivated by the methods

in Ritchie et al where tests for differences in relative isoform abundances were per-

formed to distinguish cancer cells from normal cells54. We extend this approach to

be able to test for relative isoform abundance changes among multiple experiments

in RNA-Seq.

Definition 6 (Entropy). The entropy of a discrete probability distribution p =

(p1, . . . , pn) (0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1) is

H(p) = −
n∑
i=1

pi log pi. (5.5)

If pi = 0 for some i the value of pi log pi is taken to be 0.

Definition 7 (The Jensen-Shannon divergence). The Jensen-Shannon divergence

of m discrete probability distributions p1, . . . , pm is defined to be:

JS(p1, . . . , pm) = H

(
p1 + · · ·+ pm

m

)
−
∑m

j=1 H(pj)

m
. (5.6)
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In other words, the Jensen-Shannon divergence of a set of probability distri-

butions is the entropy of their average minus the average of their entropies.

In the case where m = 2, we remark that the Jensen-Shannon divergence

can also be described in terms of the Kullback-Leibler divergence of two discrete

probability distributions. If we denote Kullback-Leibler divergence by

D(p1‖p2) =
∑
i

p1
i log

p1
i

p2
i

, (5.7)

then

JS(p1, p2) =
1

2
D(p1‖m) +

1

2
D(p2‖m) (5.8)

where m = 1
2
(p1 + p2). In other words the Jensen-Shannon divergence is a sym-

metrized variant of the Kullback-Leibler divergence.

The Jensen-Shannon divergence has a number of useful properties: for example

it is symmetric and non-negative. However it is not a metric. The following theorem

shows how to construct a metric from the Jensen-Shannon divergence:

Theorem 8 (Fuglede and Topsøe19). The square root of the Jensen-Shannon diver-

gence is a metric.

The proof of this result is based on a harmonic analysis argument. We there-

fore call the square root of the Jensen-Shannon divergence the Jensen-Shannon

metric. We employed this metric in order to quantify relative changes in expression

in (groups of) transcripts.

In order to test for significance, we introduce a bit of notation. Suppose that

S is a collection of transcripts (for example, they may share a common TSS). We
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define

κt =

γt
l̃(t)∑
u∈S

γu
l̃(u)

(5.9)

to be the proportion of transcript t among all the transcripts in a group S. We let

Z =
∑

u∈S γ̂u/l̃(u) so that κ̂t = γt
l̃(t)Z

. We therefore have that

V ar[κ̂t] =
V ar[γ̂t]

l̃(t)2Z2
, (5.10)

Cov[κ̂t, κ̂u] =
Cov[γ̂t, γ̂u]

l̃(t)l̃(u)Z2
. (5.11)

Our test statistic for divergent relative expression was the Jensen-Shannon

metric. The test could be applied to multiple time points simultaneously, but we

focused on pairwise tests (involving consecutive time points). Under the null hy-

pothesis of no change in relative expression, the Jensen-Shannon metric should be

zero. We tested for this using a one-sided t-test, based on an asymptotic deriva-

tion of the distribution of the Jensen-Shannon metric under the null hypothesis.

This asymptotic distribution is normal by applying the delta method approxima-

tion, which involves computing the linear component of the Taylor expansion of the

variance of
√
JS.

In order to simplify notation, we let f(p1, . . . , pm) be the Jensen-Shannon

metric for m probability distributions p1, . . . , pm.

Lemma 9. The partial derivatives of the Jensen-Shannon metric are given by

∂f

∂pkl
=

1

2m
√
f(p1, . . . , pm)

log

(
pkl

1
m

∑m
j=1 p

j
l

)
. (5.12)

Let κ̂1, . . . , κ̂m denote m probability distributions on the set of transcripts S,

for example the MLE for the transcript abundances in a time course. Then from the
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delta method we have that
√
JS(κ̂1, . . . , κ̂m) is approximately normally distributed

with variance given by

V ar[
√
JS(κ̂1, . . . , κ̂m)] ≈ (5f)TΣ(5f), (5.13)

where Σ is the variance-covariance matrix for the κ1, . . . , κm, i.e., it is a block

diagonal matrix where the ith block is the variance-covariance matrix for the κit

given by Equations (5.10,5.11).

We tested for overloaded genes by performing a one-sided t-test based on the

asymptotics of the Jensen-Shannon metric under the null hypothesis of no change

in relative abundnaces of isoforms (either grouped by shared TSS for for post-

transcriptional overloading, or by comparison of groups of isoforms with shared TSS

for transcriptional overloading). Type I errors were controlled with the Benjamini-

Hochberg4 correction for multiple testing. A selection of overloaded genes are dis-

played in Figures 5.1 and 5.2.

We can visualize overloading and expression dynamics with a plot that super-

imposes transcriptional and post-transcriptional overloading and gene-level expres-

sion over the time course. We refer to these as “Minard plots”, after Charles Joseph

Minard’s famous visualization of the progress of Napoleon’s campaign against Rus-

sia in 181266. An example for Myc is included in 3(c), and others are given in

Appendix B. The dotted line indicates gene-level FPKM, with measured FPKM

indicated by black circles. Grey circles indicate the arithmetic mean of gene-level

FPKM between consecutive measured time points, interpolating FPKM at interme-
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diate time points. The total gene expression overloading is visualized as a swatch

centered around the interpolated expression curve. The width of the swatch en-

codes the amount of expression overloading between successive time points. The

color of the swatch indicates the relative contributions of transcriptional and post-

transcriptional expression overloading.

5.3 Differential expression and regulation in the myogenic transcrip-

tome

For the purposes of estimating transcript abundances, we first selected a set of

17,416 high-confidence isoforms, 79% of which were previously known, from 11,079

loci. We identified the TSS for each transcript examined for transcriptional regu-

latory changes. This was complicated by the results of the simulation study that

revealed that Cufflinks’ estimates of the abundances of transcripts that have only

been partially sequenced is less accurate than for those that have been completely

covered and fully assembled. Thus, we restricted our analysis of expression dynam-

ics over the time-course to a set of transcripts we believe are fully sequenced and

correctly assembled, and we focused only on known and novel isoforms of anno-

tated genes. This set consisted of transcripts that either were present in the UCSC

genome browser, Ensembl, or Vega annotated transcriptomes, or were found in

multiple C2C12 timepoint assemblies. We ignored transfrags classified as intronic

pre-mRNA or polymerase run-on, as well as intergenic repeats to focus on coding

genes and long non-coding RNAs. This high-confidence set contained a total of
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17,416 transcripts, 13,691 of which are in UCSC known genes, Ensembl or VEGA an-

notation and 3,724 of which are novel. Running Cufflinks’ quantitation algorithm on

this high-confidence set of transcripts at each time point allowed us to scan for dif-

ferentially expressed transcripts, differentially spliced pre-mRNAs, and genes with

shifts in promoter preference.

Cuffdiff identified 7,770 genes and 10,480 isoforms undergoing significant abun-

dance changes between some successive pair of time points (FDR < 5%). Many

genes display substantial transcript-level dynamics that are not reflected in the

summed patterns of expression for these genes. For example, Myc, a proto-oncogene

which is known to be transcriptionally and post-transcriptionally regulated during

myogenesis15, is down-regulated overall during the time course, and while isoforms

A and B follow this pattern, isoform C has a more complex and non-decreasing

expression pattern. (Figure 3(b)) We noted that many genes displayed switches in

major-minor transcripts, some containing isoforms with muscle-specific functions,

such as tropomyosin I and II, which display a dramatic switch in isoform dominance

upon differentiation (Appendix B). However, many genes featured dynamics involv-

ing several isoforms with behavior too complex to be deemed switching (see Figures

5.1 and 5.2 for selected examples). In light of these observations, we classified the

types of expression dynamics for each transcript. Expression changes of a transcript

between consecutive pairs of time points were classified increasing, decreasing, or

flat based on the significance of changes in FPKM (FDR <5%). Transcripts were

then assigned one of four trajectories based on their expression curves being flat,

increasing, decreasing or mixed (presence of both increases and decreases expression

103



along the time course). In some statically-typed programming languages, a function

may be used in multiple, specialized instances via “method overloading”. Borrow-

ing this terminology, we refer to a genes expression as “overloaded” when it has

multiple isoforms that have different trajectories, possibly reflecting specialization

of those isoforms. Expression overloading within a group of transcripts implies that

the transcriptional and post-transcriptional machinery is regulating their output dif-

ferently in two time points. Based on trajectory classification, a total of 1,634 genes

were found to be overloaded in the time course, and we hypothesized that differ-

ential promoter preference and differential splicing were responsible for overloaded

expression.
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Figure 5.3: Distinction of transcriptional and post-transcriptional regulatory effects on over-

all transcript output. (a) When abundances of isoforms A, B, and C of Myc are grouped by

TSS, changes in the relative abundances of the TSS groups indicate transcriptional regulation,

where post-transcriptional effects are seen in changes in levels of isoforms of a single TSS group.

(b) Individual isoforms of Myc have distinct expression dynamics. (c) Myc isoforms are overall

downregulated as the timecourse proceeds. The width of the colored band is the measure of gene-

expression overloading and the color is the log ratio of transcriptional and post-transcriptional

overloading contributions (plot construction detailed in section 5.2).
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To explore the impact of regulation on mRNA output and to check whether

it could explain the variability of trajectories, we grouped transcripts by their start

site (TSS) instead of just by gene. Changes in the relative abundances of mRNAs

spliced from the same pre-mRNA transcript are by definition post-transcriptional, so

this grouping effectively discriminates changes in mRNA output associated with dif-

ferential transcription from changes associated with differential post-transcriptional

processing. Of the 3,486 genes in our high confidence set with isoforms that shared a

common TSS, 41% had TSS groups containing different isoform trajectories. Sum-

ming the expressions of isoforms sharing a TSS produces the trajectory for their

primary transcript, and we identified 401 (48%) genes with multiple distinct pri-

mary transcript trajectories. However, measuring overloading based on trajectory

classification was not precise enough to prioritize further investigation into indi-

vidual genes and could not form the basis for statistical significance testing. We

formalized and rigorously quantified overloading within and between TSS groups

with an information-theoretic metric derived from the Jensen-Shannon divergence.

With this metric, relative transcript abundances move in time along a logarithmic

spiral in a real Hilbert space19, and the distance moved measures the extent of ex-

pression overloading. Measuring overloading in this way revealed significant (FDR

< 5%) differential transcriptional regulation and splicing in 882 of 3,486 (25%) and

273 of 843 (32%) candidate genes respectively across the time course, with 70 genes

displayed both types of overloading. Myc (Figures 3(a) and 3(b)) undergoes a shift

in transcriptional regulation of transcript abundances to post-transcriptional con-

trol of abundances (Figure 3(a) and 3(b)) between 60 and 90 hours, as myocytes are
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beginning to fuse into myotubes.
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Figure 5.4: Four-and-a-half-LIM domains 3 (Fhl3) inhibits myogenesis by binding MyoD and

attenuating its transcriptional activity. (a))The C2C12 transcriptome contains a novel isoform

that is dominant during proliferation. (b) The known isoform (solid line) is preferred at time

points following differentiation. (c) Because FHL3 gives rise to two primary transcripts, but each

is processed into a single mRNA, overloading is exclusively transcriptional.
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Focusing on the significantly overloaded genes with promoter and isoform

changes, we noted that in many cases changes in relative abundance reflected switch-

like events in which there was an inversion of the dominant primary transcript. For

example, in FHL3, a transcriptional regulator recently reported to negatively regu-

late myogenesis11, Cufflinks assembled the known isoform and another with a novel

start site (Figure 4(a)). We validated the 5 exon of this isoform along with other

novel start sites and splicing events by form-specific RT-PCR (Figure 4.3). Limiting

analysis to known isoforms would have produced an incorrect abundance estimate

for the known isoform of FHL3. Moreover, the novel isoform is dominant prior

to differentiation, so this potentially important differentiation-associated promoter

switch would have been missed (Figure 4(a)). In total, we tested and validated

153 of 185 putative novel transcription start sites by comparison against TAF1 and

RNA polymerase II ChIP-Seq peaks (Appendix C). We also observed switches in

the major isoform of alternatively spliced genes. In total, 10% of multi-promoter

genes featured a switch in major primary transcript and 7% of alternatively spliced

primary transcripts switched major isoforms. We concluded that not only is the

impact of promoter-switching on mRNA output significant, many genes are also

post-transcriptionally overloaded supporting a role for dynamic splicing regulation

in myogenesis. A key question is whether genes that display expression overload-

ing are differentially regulated in a particular system because they have isoforms

that are functionally specialized for that system. Of the genes undergoing tran-

scriptional or post-transcriptional isoform switches, 26% and 24% code for multiple

distinct proteins according to annotation. Genes for which Cufflinks reported a
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novel isoform were excluded from a coding sequence analysis, so this fraction likely

underestimates the impact of differential regulation on coding potential. We thus

speculate that differential RNA level isoform regulation, whether transcriptional,

post-transcriptional, or mixed in underlying mechanism, suggests functional spe-

cialization of a substantial subset of isoforms.
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Appendix A

Lemmas

The following elementary/classical results are required for our methods and

we include them so that the thesis is self-contained.

Lemma 10. Let X1, . . . , Xn be random variables and a1, . . . , an real numbers with

Y =
∑n

i=1 aiXi. Then

V ar[Y ] =
n∑
i=1

a2
iV ar[Xi] + 2

∑
i<j

aiajCov[Xi, Xj]. (A.1)

Lemma 11 (Taylor Series). If X and Y are random variables then

V ar[f(X, Y )] ≈
(
∂f

∂X
(E[X], E[Y ])

)2

V ar[X]

+2
∂f

∂X
(E[X], E[Y ])

∂f

∂Y
(E[X], E[Y ])Cov[X, Y ]

+

(
∂f

∂Y
(E[X], E[Y ])

)2

V ar[Y ]. (A.2)

Corollary 12. If X and Y are independent then

V ar

[
log

(
X

Y

)]
≈ V [X]

E[X]2
+

V [Y ]

E[Y ]2
. (A.3)

Corollary 13. If X and Y are independent random variables then

V ar[XY ] = V ar[X]V ar[Y ] + E[X]2V ar[Y ] + E[Y ]2V ar[X]. (A.4)

The above result is exact using the 2nd order Taylor expansion (higher deriva-

tives vanish).
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Lemma 14 (Li et al35). Let a1, . . . , an, w1, . . . , wn be real numbers satisfying: wi 6= 0

and 0 ≤ ai ≤ 1 for all i,
∑n

i=1 ai = 1 and
∑n

i=1 aiwi 6= 0. Let bj =
ajwj∑n
i=1 aiwi

. Then

aj =
bj

1
wj∑n

i=1 bi
1
wi

.

Proof:

bj =
ajwj∑n
i=1 aiwi

(A.5)

⇒
n∑
k=1

bk
wk

=
n∑
k=1

ak∑n
i=1 aiwi

(A.6)

=
1∑n

i=1 aiwi
(A.7)

=
bj
ajwj

(A.8)

⇒ aj =
bj

1
wj∑n

i=1 bi
1
wi

. (A.9)

Proposition 15. Let fi(θ) =
∑d

j=1 aijθj+bi (1 ≤ i ≤ m) describe a linear statistical

model with aij ≥ for all i, j. That is,
∑m

i=1 fi(θ) = 1. If ui ≥ 0 for all i then the log

likelihood function

l(θ) =
m∑
i=1

ui log(fi(θ)) (A.10)

is concave.[Pachter and Sturmfels (eds.)51]

Proof: It is easy to see that(
∂2l

∂θj∂θk

)
= −ATdiag

(
u1

f1(θ)2
, . . . ,

um
fm(θ)2

)
A, (A.11)

where A is the m×d matrix whose entry in row i and column j equals aij. Therefore

the Hessian is a symmetric matrix with non-positive eigenvalues, and is therefore

negative semi-definite.
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Definition 16. A partially ordered set is a set S with a binary relation ≤ satisfying:

1. x ≤ x for all x ∈ S,

2. If x ≤ y and y ≤ z then x ≤ z,

3. If x ≤ y and y ≤ x then x = y.

A chain is a set of elements in C ⊆ S such that for every x, y ∈ C either x ≤ y or

y ≤ x. An antichain is a set of elements that are pairwise incompatible.

Partially ordered sets are equivalent to directed acyclic graphs (DAGs). The

following min-max theorems relate chain partitions to antichains and are special

cases of linear-programming duality. More details and complete proofs can be found

in 41.

Theorem 17 (Dilworth’s theorem). Let P be a finite partially ordered set. The

maximum number of elements in any antichain of P equals the minimum number

of chains in any partition of P into chains.

Theorem 18 (König’s theorem). In a bipartite graph, the number of edges in a

maximum matching equals the number of vertices in a minimum vertex cover.

Theorem 19. Dilworth’s theorem is equivalent to König’s theorem.

Proof: We first show that Dilworth’s theorem follows from König’s theorem.

Let P be a partially ordered set with n elements. We define a bipartite graph

G = (U, V,E) where U = V = P , i.e. each partition in the bipartite graph is

equally to P . Two nodes u, v form an edge (u, v) ∈ E in the graph G iff u < v in

112



P . By König’s theorem there exist both a matching M and a a vertex cover C in

G of the same cardinality. Let T ⊂ S be the set of elements not contained in C.

Note that T is an antichain in P . We now form a partition W of P into chains by

declaring u and v to be in the same chain whenever there is an edge (u, v) ∈ M .

Since C and M have the same size, it follows that T and W have the same size.

To deduce König’s theorem from Dilworth’s theorem, we begin with a bipartite

graph G = (U, V,E) and form a partial order P on the vertices of G by defining

u < v when u ∈ U, v ∈ V and (u, v) ∈ E. By Dilworth’s theorem, there exists

an antichain of P and a partition into chains of the same size. The non-trivial

chains in P form a matching in the graph. Similarly, the complement of the vertices

corresponding to the anti-chain in P is a vertex cover of G with the same cardinality

as the matching.
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Figure A.1: The equivalence of Dilworth’s and König’s theorems. The partially ordered set with

8 elements on the left is partitioned into 3 chains. This is the size of a minimum partition into

chains, and is equal to the maximum size of an antichain (Dilworth’s theorem). The antichain

is shown with double circles. On the right, the reachability graph constructed from the partially

ordered set on the left is shown. The maximum matching corresponding to the chain partition

consists of 5 edges and is equal in size to the number of vertices in a minimum vertex cover (König’s

theorem). The vertex cover is shown with double circles. Note that 8=3+5.
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Appendix B

Selected Minard plots
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Appendix C

Wet experimental methods

Note: Except where otherwise noted, the work described in Appendix C was

performed by Brian Williams, and is included for completeness

C.1 RNA isolation

Mouse skeletal muscle C2C12 cells were initially plated on 15 cm plates in

DMEM with 20% fetal bovine serum. At confluence, the cells were switched to low

serum medium to initiate myogenic differentiation. For extraction of total RNA,

cells were first rinsed in PBS and then lysed in Trizol reagent (Invitrogen catalog #

15596-026) either during exponential growth in high serum medium, or at 60 hrs,

5 days and 7 days after medium shift. Residual contaminating genomic DNA was

removed from the total RNA fraction using Turbo DNA-free (Ambion catalog #

AM1907M). mRNA was isolated from DNA-free total RNA using the Dynabeads

mRNA Purification Kit (Invitrogen catalog # 610-06).

C.2 Fragmentation and reverse transcription

Preparation of cDNA followed the procedure described in Mortazavi et al.2,

with minor modifications as described below. Prior to fragmentation, a 7 uL aliquot

( 500 pgs total mass) containing known concentrations of 7 “spiked in” control
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transcripts from A. thaliana and the lambda phage genome were added to a 100 ng

aliquot of mRNA from each time point. This mixture was then fragmented to an

average length of 200 nts by metal ion/heat catalyzed hydrolysis. The hydrolysis

was performed in a 25 uL volume at 94C for 90 seconds. The 5X hydrolyis buffer

components are: 200 mM Tris acetate, pH 8.2, 500 mM potassium acetate and 150

mM magnesium acetate. After removal of hydrolysis ions by G50 Sephadex filtration

(USA Scientific catalog # 1415-1602), the fragmented mRNA was random primed

with hexamers and reverse-transcribed using the Super Script II cDNA synthesis

kit (Invitrogen catalog # 11917010). After second strand synthesis, the cDNA

went through end-repair and ligation reactions according to the Illumina ChIP-Seq

genomic DNA preparation kit protocol (Illumina catalog # IP102-1001), using the

paired end adapters and amplification primers (Illumina Catalog # PE102-1004).

Ligation of the adapters adds 94 bases to the length of the cDNA molecules.

C.3 Size selection

The cDNA library was size-fractionated on a 2% TAE low melt agarose gel

(Lonza catalog # 50080), with a 100 bp ladder (Roche catalog # 14703220) run

in adjacent lanes. Prior to loading on the gel, the ligated cDNA library was taken

over a G50 Sephadex column to remove excess salts that interfere with loading the

sample in the wells. After post-staining the gel in ethidium bromide, a narrow slice

( 2mm) of the cDNA lane centered at the 300 bp marker was cut. The slice was

extracted using the QiaEx II kit (Qiagen catalog # 20021), and the extract was
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filtered over a Microcon YM-100 microconcentrator (Millipore catalog # 42409) to

remove DNA fragments shorter than 100 bps. Filtration was performed by pipeting

the extract into the upper chamber of a microconcentrator, and adding ultra pure

water (Gibco catalog # 10977) to a volume of 500 uLs. The filter was spun at 500 X

g until only 50 uLs remained in the upper chamber (about 20 minutes per spin) and

then the upper chamber volume was replenished to 500 uLs. This procedure was

repeated 6 times. The filtered sample was then recovered from the filter chamber

according to the manufacturers protocol. Fragment length distributions obtained

after size selection were estimated from the spike-in sequences and are shown in

Figure 2.10.

C.4 Amplification

One-sixth of the filtered sample volume was used as template for 15 cycles

of amplification using the paired-end primers and amplification reagents supplied

with the Illumina ChIP-Seq genomic DNA prep kit. The amplified product was

then cleaned up over a Qiaquick PCR column (Qiagen catalog # 28104), and then

the filtration procedure using the Microcon YM-100 microconcentrators described

above was repeated, to remove both amplification primers and amplification prod-

ucts shorter than 100 bps. A final pass over a G50 Sephadex column was performed,

and the library was quantified using the Qubit fluorometer and PicoGreen quantifi-

cation reagents (Invitrogen catalog # Q32853). The library was then used to build

clusters on the Illumina flow cell according to protocol.
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C.5 Endpoint PCR validation of novel isoforms

5 ugs of total RNA from each timepoint was primed with oligodT(20) (In-

vitrogen catalog # 18418020), and reverse-transcribed at 50C using SuperScript

III reverse transcriptase, (Invitrogen catalog # 18080044) according to the manu-

facturers protocol. One tenth of the cDNA reaction was used as template for 35

rounds of PCR amplification. Amplification primers that cross the Cufflinks pre-

dicted spliced-exon junctions were designed using Primer 3 software and purchased

from Integrated DNA Technologies, Inc. (San Diego, CA). (Steve Rozen and Helen

J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist pro-

grammers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols:

Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386. Source

code available at http://fokker.wi.mit.edu/primer3/.), One fourth of the PCR prod-

uct was then loaded on a 1.3% agarose gel, which was post-stained with Sybr Gold

(Invitrogen Catalog # S11494) before visualization on a UV transilluminator.

C.6 Validation of novel transcription start sites

Note: The wet work here was performed by Brian Williams, and the validation

analysis by Ali Mortazavi

Transcripts with 5 exons not in UCSC, Ensembl, or VEGA were selected for

validation. We excluded transcripts with estimated abundances less than 5.0 FPKM

at all time points, as well as transcripts with a 5 exon within 200bp of an annotated

exon. To validate our novel observed 5 exons, we conducted ChIP-Seq experiments
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as previously described28 at -24 and 60 hour time points using an antibody to the

unphosphorylated CTD-repeat of RNA polymerase II (8WG16, Covance) as well

as an antibody to TAF1 (SC-735, Santa Cruz) which marks promoters. For each

candidate 5end, we took the region +/- 200 bp and measured the normalized read

density (RPKM) of each ChIP-Seq, requiring at least 1.5 RPKM of ChIP-Seq signal

for both polymerase and TAF1 at either time point.
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