
MR-CUDASW – GPU accelerated Smith-Waterman

algorithm for medium-length (meta)genomic data

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Amir Muhammadzadeh

c©Amir Muhammadzadeh, July/2014. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

The idea of using a graphics processing unit (GPU) for more than simply graphic output purposes has been

around for quite some time in scientific communities. However, it is only recently that its benefits for a range

of bioinformatics and life sciences compute-intensive tasks has been recognized. This thesis investigates the

possibility of improving the performance of the overlap determination stage of an Overlap Layout Consensus

(OLC)-based assembler by using a GPU-based implementation of the Smith-Waterman algorithm.

In this thesis an existing GPU-accelerated sequence alignment algorithm is adapted and expanded to

reduce its completion time. A number of improvements and changes are made to the original software.

Workload distribution, query profile construction, and thread scheduling techniques implemented by the

original program are replaced by custom methods specifically designed to handle medium-length reads.

Accordingly, this algorithm is the first highly parallel solution that has been specifically optimized to

process medium-length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent).

Results show that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single-GPU

graphic card running on a commodity desktop hardware. As a result it is the fastest GPU-based implemen-

tation of the Smith-Waterman algorithm tailored for processing medium-length nucleotide reads. Despite

being designed for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, this

program also presents great potential for improving heterogeneous computing with CUDA-enabled GPUs

in general and is expected to make contributions to other research problems that require sensitive pairwise

alignment to be applied to a large number of reads. Our results show that it is possible to improve the

performance of bioinformatics algorithms by taking full advantage of the compute resources of the underly-

ing commodity hardware and further, these results are especially encouraging since GPU performance grows

faster than multi-core CPUs.

ii

Acknowledgements

Foremost, I would like to express my deepest thanks to my supervisor, Dr. Kusalik. His patience,

encouragement, and immense knowledge were key motivations throughout my study. His forensic scrutiny

of my technical writing has been invaluable. He has always found the time to propose consistently excellent

improvements. I am truly thankful for his dedication to both my personal and academic development.

Special thanks to my committee members: Dr. Ian McQuillan, Dr. Mark Keil and Dr. Luis Rueda for

their helpful comments and suggestions. Special thanks to my loving siblings Nazanin and Aria for their

unwavering support and encouragement throughout my education.

Some of the content of this thesis could not have been included without the help of my colleagues.

Specifically, Dr. Brett Trost was instrumental in gathering the results presented in Chapter 4. He also

generously provided suggestions and comments that are incorporated in this study.

Finally, I would be remiss if I did not thank my loving partner, Michelle. Nearly everything I have done

for the last couple of years is here. Pain and excitement are here, as well as feeling good and bad, the despair

and the indescribable joy of accomplishment. And on top of these are all the gratitude and love I have for

her.

iii

To the living memory of my mother ...

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Aim of the thesis . 3
1.2 Structure of this document . 5

2 Research goal 6
2.1 Research goals . 6
2.2 Limitations . 7

3 Background 8
3.1 Sequence assembly . 8

3.1.1 Brief overview of existing assembly strategies . 9
3.1.2 Overlap-layout-consensus strategy . 9
3.1.3 MIRA: an automated genome and EST assembler . 10

3.2 Sequence alignment . 11
3.2.1 Principles of sequence alignment . 11
3.2.2 Scoring alignments and substitution matrices . 13
3.2.3 Dynamic programming algorithms . 14
3.2.4 Types of alignment . 14
3.2.5 Algorithmic approximations . 19

3.3 Parallel computing . 20
3.3.1 CPU vs. GPU . 24

3.4 GPU computing . 26
3.4.1 Why CUDA? . 26
3.4.2 CUDA architecture . 28
3.4.3 Kepler vs. Fermi architecture . 31

4 Comparison of assembly software
for metagenomic data 33
4.1 Methods . 33

4.1.1 Artificial metagenomic communities . 33
4.1.2 Generation of artificial reads . 34

4.2 Results . 34
4.3 Conclusions . 42

5 Data and methodology 43
5.1 Structure of this chapter . 43

v

5.2 Selection of the fittest . 45
5.2.1 Related works . 45
5.2.2 GPU-accelerated sequence aligners . 47
5.2.3 Comparing GPU-accelerated sequence alignment tools 48
5.2.4 Is CUDASW++ 3.0 fast enough? . 49

5.3 Improving the fittest . 50
5.3.1 CUDASW++ 3.0 . 50

5.4 MR-CUDASW . 56
5.4.1 Sequence length deviation & thread scheduling . 56
5.4.2 Query profile . 61
5.4.3 Ensuring the fidelity of the result . 63

6 Results 64
6.1 Benchmarking GPU-accelerated Smith-Waterman tools . 64

6.1.1 Metric . 65
6.1.2 Benchmarking . 65

6.2 Improving CUDASW++ 3.0 . 67
6.2.1 Sequence length deviation and thread scheduling . 68
6.2.2 Query profile . 69

6.3 Evaluating MR-CUDASW . 74

7 Conclusion and discussion 77
7.1 Conclusion and remarks . 77
7.2 Discussion . 80
7.3 Future work . 81

References 82

A Comparison of assembly software 87
A.1 Evaluating various assembly software using low complexity simulated dataset 87
A.2 Evaluating various assembly software using medium complexity simulated dataset 88
A.3 Evaluating various assembly software using high complexity simulated dataset 89
A.4 Evaluating various assembly software using real WGS dataset 90

B Core PTX SIMD assemblies 91

C Performance details of GPU-accelerated alignment tools 92

vi

List of Tables

3.1 GPU Computing Applications . 27
3.2 Major differences between Kepler and Fermi architectures . 32

4.1 List of evaluated sequence assemblers . 35
4.2 Characteristics of input data . 35
4.3 CPU details of various assembly software (simLC) . 37
4.4 CPU details of various assembly software (simMC) . 39
4.5 CPU details of various assembly software (simHC) . 40
4.6 CPU details of various assembly software, assembling real WGS data. 42

5.1 Characteristics of input data . 49

6.1 Performance details of CUDASW++ 3.0 and MIRA (simulated datasets) 70
6.2 Performance details of CUDASW++ 3.0 and MIRA (real WGS datasets) 71

A.1 Size statistics of various assembly programs (simLC) . 87
A.2 Percentage of contigs produced by various assembly software (simLC) 87
A.3 Size statistics of various assembly programs (simMC) . 88
A.4 Percentage of contigs produced by various assembly software (simMC) 88
A.5 Size statistics of various assembly programs (simHC) . 89
A.6 Percentage of contigs produced by various assembly software (simHC) 89
A.7 Size statistics of various assembly programs with real WGS data 90

C.1 Performance details of GPU-accelerated alignment software tools (SYN 1000.fna) 92
C.2 Performance details of GPU-accelerated alignment software tools (SYN 10K.fna) 92
C.3 Performance details of GPU-accelerated alignment software tools (SYN 100K.fna) 92
C.4 Performance details of GPU-accelerated alignment software tools (ENV 1000.fna) 93
C.5 Performance details of GPU-accelerated alignment software tools (ENV 10K.fna) 93
C.6 Performance details of GPU-accelerated alignment software tools (ENV 100K.fna) 93
C.7 Performance details of CUDASW++ 3.0, MR-CUDASW ,MIRA, and water (simulated data) 94
C.8 Performance details of CUDASW++ 3.0, MR-CUDASW ,MIRA, and water (real WGS) . . . 94

vii

List of Figures

1.1 Phases of a MIRA assembly cycle . 4

3.1 The general principle of sequence alignment . 12
3.2 Gapping preserves the maximum similarity between two sequences 12
3.3 There is never just one possible sequence alignment between any two sequences 13
3.4 A global alignment may be viewed as a path through a directed path graph 15
3.5 An optimal alignment for two sequences using local alignment technique 17
3.6 Serial computation . 20
3.7 Parallel computation . 21
3.8 Single Instruction, Single Data (SISD) organization . 22
3.9 Single Instruction, Multiple Data (SIMD) organization . 22
3.10 Multiple Instruction, Single Data (MISD) organization . 23
3.11 Multiple Instruction, Multiple Data (MIMD) organization . 24
3.12 Differences between CPU and GPU architectures . 25
3.13 Automatic scalability of CUDA architecture . 29
3.14 Grid of thread blocks . 30
3.15 Memory hierarchy of CUDA . 32

4.1 Size statistics of various assembly programs (simLC) . 37
4.2 Percentage of contigs produced by various assembly software (simLC) 38
4.3 Size statistics of various assembly programs (simMC) . 38
4.4 Percentage of contigs produced by various assembly software (simMC) 39
4.5 Size statistics of various assembly programs (simHC) . 40
4.6 Percentage of contigs produced by various assembly software (simHC) 41
4.7 Size statistics of various assembly programs with real data . 41

5.1 Methodology flow chart . 44
5.2 Program workflow of CUDASW++ 3.0 . 51
5.3 Data independences in the alignment matrix . 54
5.4 Vector arrangement techniques . 55
5.5 Program workflow of MR-CUDASW . 57
5.6 CUDA thread synchronization rules . 58
5.7 Arrangement of subject sequences in the database for the inter-task parallelization 59
5.8 The workload distribution technique employed in the improved version of CUDASW++ 3.0 . 60
5.9 Approaches to vectorization of Smith-Waterman alignments 62
5.10 Data dependencies between SIMD registers holding the H values with the Rognes and Wozniak

implementations. 63

6.1 Performance details of GPU-accelerated alignment software tools (simulated datasets) (GT 640) 66
6.2 Performance details of GPU-accelerated alignment software tools (real WGS datasets) (GT 640) 67
6.3 Performance details of GPU-accelerated alignment software tools (simulated datasets) (GTX

680) . 68
6.4 Performance details of GPU-accelerated alignment software tools (real WGS datasets) (GTX

680) . 69
6.5 Effects of modifications on improving the performance of CUDASW++ 3.0 (simulated data) 71
6.6 Effects of modifications on improving the performance of CUDASW++ 3.0 (real WGS data) 72
6.7 Effects of modifications on improving the performance of CUDASW++ 3.0 (simulated data) 72
6.8 Effects of modifications on improving the performance of CUDASW++ 3.0 (real WGS data) 73
6.9 Effects of modifications on improving the performance of CUDASW++ 3.0 (simulated data) 74
6.10 Effects of modifications on improving the performance of CUDASW++ 3.0 (real WGS data) 75

viii

6.11 Performances of GPU-accelerated alignment software tools and MIRA (simulated data) . . . 76
6.12 Performances of GPU-accelerated alignment software tools and MIRA (real WGS data) . . . 76

ix

List of Abbreviations

API Application Programming Interface
BCUPS Billion Cell Updates per Second
BLOSUM BLOck SUbtitution Matrix
bp base pair
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
Cell/BE Cell Broadband Engine Architecture
DNA DeoxyriboNucleic Acid
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
FPGA Field-Programmable Gate Array
FSB Front Side Bus
GCUPS Giga Cell Updates per Second
GPL General Public License
GPU Graphics Processing Unit
GPGPU General-Purpose Computing on Graphics Processing Units
HGT Horizontal Gene Transfer
ISA Instruction Set Architecture
MIMD Single-instruction, Multiple-thread
MISD Multiple-instruction, Single-thread
MPI Message Passing Interface
NGS Next-Generation Sequencing
OLC Overlap-layout-consensus
OpenGL Open Graphics Library
OS Operating System
PAM Percent Accepted Mutations
PBSM Per-block Shared Memory
PHAT Predicted Hydrophobic A Transmembrane matrix
PGM Personal Genome Machine
PS3 PlayStation 3
PTX Parallel Thread Execution
PTLM Per Thread Local Memory
RAM Random Access Memory
RNA RiboNucleic Acid
SIMD Single-Instruction, Multiple-Data
SIMT Single-instruction, Multiple-thread
SISD Single-instruction, Single-thread
SLIM ScoreMatrix Leading to Intra-Membrance
SM Streaming Multiprocessor
SP Scalar Processor
SSE Streaming SIMD Extensions
SW Smith-Waterman
WGS Whole Genome Sequencing

x

Chapter 1

Introduction

Since Frederick Sanger and colleagues sequenced the first genome in 1977 [1], genetic sequencing technolo-

gies have significantly improved. The advent of faster and cheaper sequencing technologies has accelerated

biological and biomedical research dramatically and has led to such fields as metagenomics.

Metagenomics provides an unbiased and broad insight into the microbial world. A vast amount of micro-

bial sequencing data is being generated through large-scale projects in ecology (e.g. environmental genome

shotgun sequencing of the Sargasso Sea [2]), agriculture (e.g. promoting healthier humans through healthier

livestock using metagenomics [3]), and human health (e.g. human microbiome project [4]). The analyses of

community samples have provided a new way of examining the microbial world that not only has changed

the landscape of environmental microbiology but also has paved the road to a better understanding of the

entire living world [5]. For these reasons, this new field of study has been compared to the reinvention of the

microscope [6].

The recent developments in post-Sanger sequencing technologies, commonly referred to as next-generation

sequencing (NGS), have substantially shaped the way metagenomics studies are performed. Today, the

sequencing of a metagenome (the combined genome of all organisms in an ecological community) with billions

of base pairs in length is done routinely regardless of the organisms’ ability to be cultured in the laboratory.

Accordingly, the massive majority of organisms (∼99% of microbes) that classic microbiology fails to culture

can be analyzed in metagenomics studies in an inexpensive and high-throughput manner [7]. However, unlike

Sanger sequencing that results in read lengths of ∼800 bp, the currently available NGS technologies generate

much shorter reads: ∼50-75 bp (Applied Biosciences/Life Technologies SOLiD), ∼75-150 bp (Solexa/Illumina

Sequencing by Synthesis), 100-200 bp (IonTorrent/Life Technologies Semiconductor Chip Sequencing) and

400-600 bp (454/Roche Pyrosequencing)[8]. The downstream analysis of such short read data is a major

obstacle; one of the biggest challenges is whole genome assembly, a problem that is still far from being solved.

DNA sequencing data from NGS platforms typically present shorter read lengths compared with Sanger

sequencing data. Higher coverage, and different error profiles are also two other differences that can be

found in the data generated by these platforms. Since 2005, several assembly software packages have been

developed specifically for assembly of next-generation sequencing data. However not all assemblers can be

utilized for assembly of metagenomics projects. Unlike a genome project that ultimately aims to determine

the complete genome sequence of a single organism, in studying metagenomic data thousands of genomes from

1

an entire microbial community are studied simultaneously. Genomes for most of these organisms do not exist

in public bioinformatics databases, so it is not possible to assemble the reads by mapping them to a reference

genome. As a result, reference-free de novo assembly must be applied. The most serious problem for de novo

assembly of metagenomics are genomic diversity and variable abundance within populations. Additionally,

inadequate and partial sampling of different species’ genomes along with presence of repetitive fragments

from innumerable complicated genomes are other factors that burden reconstructing the full metagenome [9].

The information content of a sequence has been found to be highly dependent on the sequence length.

Accordingly, although a full assembly of a metagenome might not be attainable, aligning and merging reads

in order to construct progressively longer contiguous sequences (contigs) is still beneficial. Longer fractions of

genomes let us find open reading frames, operons, operational transcriptional units, their associated promoter

elements, and transcription factor binding sites. Furthermore, longer elements such as pathogenicity islands,

and other mobile genetic elements, are evident only when large fractions of the genome are assembled [9].

Whether genetic materials are recovered from environmental samples or from cultivated clonal cultures,

the choice of assembly strategy highly depends on the sequencing technology that is being used, which in

return essentially correlates to accessibility and budget constraints. As outlined by Dear et al. [10], a sequence

assembly is essentially a set of contigs, each contig being the consensus of a multiple alignment of reads.

Unfortunately, the underlying problem of string assembly as a variant of the shortest common superstring

problem has been shown to be NP-hard [11]. Nevertheless, many tools have already been developed to address

this question such as MIRA [12] and Newbler [13] assembly software tools. These software share a common

paradigm, sometimes referred to as overlap-consensus-layout [14]. This approach is quite similar to the one

generally used when solving a jigsaw puzzle [15]. The first step consists of aligning the fragments two-by-two

in an exhaustive fashion and establishing which pairs of reads present a consistent overlap with one another.

This is analogous to searching for pieces of the puzzle which fit each other and have matching colours. The

main difficulty at this stage is to distinguish erroneous overlaps due to sequencing errors and those due to

similarities within the genome, such as highly conserved repeats [16].

The assembler then detects clusters of reads which consistently align with each other, thus forming

contiguous sequences (or contigs). This is equivalent to having parts of the image put together in a puzzle.

In both genome and puzzle assembly, the process is interrupted at either ambiguous areas, where several

continuations are possible, or at gaps, where no connecting piece has been found. Finally, the assembler

attempts to order and orient the contigs with respect to one another. Returning to the puzzle simile, this

corresponds to placing the corners and identifiable parts of the image relative to each other. Using for example

paired-end information, the assembler can estimate the distance that separates contigs. Sets of contigs which

can all be plausibly placed together in the same region are sometimes called scaffolds or supercontigs [15].

All the currently existing assemblers can broadly be classified, based on the data structures they are

using, into three categories, all based on graphs. The Overlap/Layout/Consensus (OLC) methods rely on

an overlap graph. The de Bruijn Graph (DBG) methods use some form of K-mer graph. The greedy graph

2

algorithms may use OLC or DBG [17].

Although traditional assemblers have been, and will be, used in metagenomic projects, the assembly of

a metagenome is different from the assembly of a single genome. Unlike genomic assemblers, in which the

fundamental problem is handling repetitive genomic fragments that often lead to misassembly, metagenomic

assemblers are expected to surmount the additional challenges posed by inhomogeneous organism abundances

within a sampled community, horizontal gene transfer (HGT) events between co-existence species, different

complexities in terms of the overall number of organisms contained and the presence of multiple closely

related organisms.

As the preliminary stage of this thesis, an evaluation of six popular de novo assembly software tools was

conducted (the results of this evaluation is presented in Chapter 4). The accuracy, performance, and com-

putational requirements of these assemblers were evaluated using three datasets of simulated sequence reads,

as well as real reads obtained from the sequencing of environmental samples using Ion Torrent technology.

Unfortunately no single assembler performed best on all our criteria, leaving the question of what is the best

assembler for medium-length metagenomic reads unsolved. However, our comparison of assembly software

tools showed that OLC-based assemblers are still the best choice for assembling medium-length metagenomic

reads. According to these results MIRA, although slow, slightly outperformed the other participating assem-

bly software tools. It scored very well in size statistics and correctness analysis while producing a very large

aggregated contig size.

1.1 Aim of the thesis

Considering the computational time, maximum random access memory (RAM) occupancy, assembly accu-

racy and integrity, and the presence of programs’ source and its maintainability and modularity, our study

identified MIRA as the best potential assembly software that could meet our performance expectations while

having grounds for improvement and modifications. To this end, several independent sequential modules

implemented in MIRA (Figure 1.1) could be replaced with scalable replacements. Specifically, the most

compute-intensive portion of the algorithm (i.e. the alignment step) can be modified to exploit the dis-

tributed computing capacity of the available hardware and take advantages of GPU and/or additional CPUs.

Although dynamic programming techniques are commonly used for computing optimal pairwise sequence

alignments, their corresponding complexities are quadratic with respect to the lengths of alignment targets

[18], which makes them time consuming for applications involving large datasets. Therefore heuristic methods

have been introduced in literatures to accelerate sequence alignment. The drawback is that the more com-

putationally efficient the heuristics, the worse the quality of the result. Another approach to get high-quality

results in a short time is to use high-performance computing.

In the course of this thesis work we will discuss how the emergence of accelerator technologies and

many-core architectures, such as FPGAs, Cell/BEs and GPUs, has provided the opportunity to significantly

3

reduce the runtime for many bioinformatics programs including the Smith-Waterman algorithm on commonly

available and inexpensive hardware. This study seeks a GPU-accelerated computing solution which uses a

graphics processing unit (GPU) together with a CPU, as an alternative computing solution to massively

distributed solutions, to accelerate the alignment step of the assembly process. It is expected that such an

updated assembler can highlight the potential and effectiveness of multi/many-core computing as a viable

option to achieve significant speedup with high efficiency in assembling large and complex metagenomic

datasets.

Figure 1.1: Phases of a MIRA assembly cycle. Plain arrows show imperative pathways, dashed
arrows denote optional pathways. This figure is taken from Chevreux [12].

Fast read comparison
Graph showing potential overlaps

Data Processing
Sequence vector clipping etc.

Automatic editing
Correction of errors in contigs

Partial path finder
Searching best partial path to align

read−pairs

Finished project

Repeat locator
Search for misassemblies due to repeats

Tag repeat marker bases, disassemble faulty contigs

Read Extension
Extension of high confidence regions (HCRs) in readsSmith-Waterman algorithm

Confirmation of overlaps / Alignment of read−pairs
Building graph containing all possible assemblies

Contig assembly
Assembling read−pairs from partial path into contigs Accepting/

Rejecting based on error rate of unexplainable errors

4

1.2 Structure of this document

As stated above, this work seeks an alternative computing solution to massively distributed solutions, often

employed by other assemblers (e.g. RayMèta [19]), that require sophisticated parallel tools which are not

accessible to every ordinary genomic laboratory. This study offers a GPU-accelerated computing solution to

accelerate the alignment step of the assembly process. It is expected that this approach can provide a large

level of parallelism using a fraction of the budget required by massively distributed computing solutions.

The rest of this thesis is organized as follows. Chapter 2 summarizes the goals of this research and

describes the limitations this thesis work is subjected to. Background to the concepts presented in this thesis

is given in Chapter 3. Chapter 4 presents the results of the evaluation of de novo assemblers for metagenomic

data that was done as part of this thesis. Chapter 5 describes the design and the implementation, as well

as the data and methods used to evaluate it against the sequential implementation of the SW algorithm,

the technique used by MIRA assembler. Chapter 6 presents and evaluates the results. Finally, Chapter 7

gives some concluding remarks, discuss some issues relating to the results, as well as few topics that could

be further investigated in order to improve on or extend this work.

5

Chapter 2

Research goal

The major objective of this thesis is to determine whether or not the performance of the overlap determi-

nation stage of an OLC-based assembler (e.g. MIRA) can be improved by using a GPU-based implementation

of the Smith-Waterman algorithm, given the current state of GPU technology (“performance” refers to in-

creased alignment sensitivity and reduced completion time). By taking advantage of the highly parallel

many-core1 architecture of GPUs, this thesis aims to incorporate the most sensitive method of identifying

overlaps between two sequences into an assembly software (MIRA) while significantly reducing its runtime

on commonly available and inexpensive hardware.

2.1 Research goals

In order to resolve the question of whether or not it is possible to improve the performance of OLC-based

assemblers by using GPU-based acceleration techniques, the following research goals must be achieved:

1. Determining a set of GPU-accelerated alignment software that can be used to accurately find

potential overlaps between each pair of sequences from a given list in a timely manner.

2. Exploring the techniques used in the chosen GPU-accelerated alignment software (step 1).

3. Determine methods to reduce the computing time of the chosen software. Adapt and improve the

techniques used in the chosen GPU-accelerated alignment software and evaluate the accuracy of the

result.

4. Compare the performance of the resultant software with the standard implementation of the

sequential Smith-Waterman algorithm and the technique used by MIRA assembler (i.e. adapted

k-band Smith-Waterman). Incorporate the new technique into MIRA, should it provide better

performance (i.e. reduced completion time and increased sensitivity) guarantees for nucleotide

sequence reads alignment compared to the existing approach.

This study involves enhancement and alteration of an existing GPU-accelerated pakcage in order to align

medium-length reads sampled from highly complex environments with very small sequence length deviation.

1Many-core typically refers to devices with dozens or hundreds of cores. Core is considered to be a single computing component
responsible for reading and executing program instructions.

6

2.2 Limitations

This thesis work is subject to the following limitations:

1. The work presented within this thesis focuses on the alignment step of the assembly process.

Although a brief overview of existing assembly strategies is given, detailed exploration or comparison

of assembly algorithms are not subject of this work.

2. This thesis does not include an in-depth examination of MIRA assembly software. Instead, the focus

of the thesis work is to obtain an adequate understating of the overlap determination stage of this

software tool in order to determine methods to improve the performance of this stage.

3. This thesis does not include a thorough comparison of GPU-accelerated sequence alignment software.

As part of this work, the published descriptions of several software are compared to determine their

suitability for the purpose of this study. Although this work includes a brief explanation of all the

software that contributed to this research, it does not contain a comparative evaluation of software

and techniques which were examined and rejected.

7

Chapter 3

Background

This chapter describes material necessary to understand the content of the remainder of this thesis.

Section 3.1 defines sequence assembly and briefly summarizes the most important assembly strategies

existing as of this writing. It then argues for a choice of a most suitable approach for assembling medium-

length metagenomic reads considering the results of our preliminary study (described in detail in Chapter

4). It addresses the weak points in the existing strategies and at the end gives an introduction to MIRA’s

overlap screening and sequence alignment process.

A basic introduction to sequence alignment is given in Section 3.2. Section 3.2.1 discusses the principles of

sequence alignment. Section 3.2.2 contains a brief discussion about the ways of quantifying the quality of an

alignment and the similarity between two sequences. Section 3.2.3 gives an introduction to the different types

of dynamic programming algorithms. Different types of alignment for different circumstances are reviewed

in Section 3.2.4. A short survey of heuristic alignment algorithms can be found in Section 3.2.5.

Throughout Section 3.3, the increasingly important role of parallel computing will be discussed. A brief

history of graphic processing units, as well as a discussion of the usefulness and the limitations of CPU- and

GPU-based computing techniques will be given in this section.

Section 3.4 contains a more detailed discussion about the CUDA parallel computing platform and pro-

gramming model. Section 3.4.1 gives a brief introduction of the CUDA architecture. This architecture is

discussed in more detail in Section 3.4.2 and the differences between CUDA’s Fermi and Kepler architectures

are reviewed in Section 3.4.3.

It must be noted that this chapter cannot be an exhaustive treatment of the topics covered. Instead

brief summaries of the most important aspects of the topics are provided. Ideas have been simplified for the

context of this study. For more advanced information about sequence alignment please refer to Chapters 4,

5, and 6 of the text by Zvelebil and Baum [20]. For more information about the CUDA architecture and its

programming model please see the text by Kandrot and Sanders [21].

3.1 Sequence assembly

Once sequencing reads have been produced, it is often necessary to merge the fragments in order to reconstruct

the original sequence. This process is known as sequence assembly. A sequence assemblage can be defined as

8

a hierarchical data structure that maps the sequence data to a putative reconstruction of the target sequence.

It combines reads into contiguous sequences (or contigs) and contigs into scaffolds. Contigs provide a multiple

sequence alignment of reads plus the consensus sequence.

3.1.1 Brief overview of existing assembly strategies

Software tools that are currently used for de novo assembly can be classified into two broad categories:

string-based assemblers and graph-based assemblers. String-based assemblers, which are implemented with a

greedy-extension algorithm1, are mainly employed for the assembly of small genomes, while the graph-based

assemblers, whether using overlap-layout-consensus or de Bruijn graph methods, are designed to handle

complex genomes [17]. Assemblers that use the Eulerian path approach are commonly utilized for short

sequences (∼ 75− ∼ 150bps) whereas those based on the classical overlap-layout consensus paradigm usually

handle longer reads (∼ 150bps and longer).

Over the years assemblers that use the de Bruijn graph approach have proven to resolve the “repeat

problem”2 in assembly and produce relatively accurate solutions for large-scale sequencing problems in a

timely manner [14]. Because of the prevalence of the new generation of short-read sequencing technologies

(i.e. Illumina) this approach has become the dominant solution. However the future of this technique is not

clear considering the progress of new sequencing technologies with longer and more inaccurate sequences as

de Bruijn graph assemblers have not been widely used for assembly of longer sequences [22].

Concerns about the complexity of overlap computation have limited the application of the overlap-layout-

consensus (OLC) approach and decreased the popularity of it. Despite this the OLC concept remains a

point of interest. As our preliminary results show (Chapter 4), OLC-based assemblers are still the best

choice for assembling medium-length metagenomic reads. According to our results MIRA, although slow,

slightly outperformed the other assembly software tools. It scored very well in size statistics and correctness

analysis while producing a very large aggregated contig size. The second-best assembler was Newbler, also

an OLC-based assembler, producing the longest contigs and the largest N50 and N80 values as well as very

good correctness scores (see Section 4.2).

3.1.2 Overlap-layout-consensus strategy

Assembly software using the OLC approach relies on the basic premise that two sequence reads originating

from the same place in the genome share a common subsequence (overlap). Using such overlaps between the

sequences, an assembler can represent the relationships between the reads as a graph, where nodes represent

the reads and an edge connects two nodes if the corresponding reads overlap. The assembly problem thus

1This thesis assumes that the readers are familiar with the basic principals of sequence assembly as well as general compu-
tational assembly techniques (e.g. greedy-extension, de Bruijn, and Eulerian path algorithms). Readers not familiar with these
are referred to the text by Scheibye-Alsing et al. [22].

2Identical and nearly identical sequences (known as repeats) can increase the time and space complexity of assembly algorithms
exponentially.

9

becomes the problem of identifying a Hamiltonian path (i.e. a path in an undirected or directed graph that

visits each node exactly once) which is NP-complete [12].

As established above, the fundamental phase of assembly software using the overlap-layout-consensus ap-

proach is, as the name suggests, computing the overlaps. The most accurate methods for detecting overlaps

between sequences, even partial ones, are the dynamic programming algorithms for global alignments intro-

duced by Needleman and Wunsch in 1970 [23] and later refined for local alignments by Smith and Waterman

in 1981 [24]. The run-time complexity of these algorithms is O(n ×m), with n and m being the lengths of

the two sequences. Considering the number of comparisons which have to be completed to detect overlaps

between all the sequences in a dataset (in this situation, n and m are each the total combined length of all

the reads residing in a dataset), these algorithms are unacceptable for most screening procedures. These

inefficient methods represent the most important bottleneck in the process of assembly using the OLC ap-

proach. This is the reason why almost all OLC-based assembly software available today employs some faster,

heuristic, string searching method often originated from the word-based method introduced by Wilbur and

Lipman [25].

Being heuristics, the word-based methods only offer an approximate solution that does not always find

all the potential overlaps between two sequences. A key point in this requirement is the ability to find –

besides long overlaps with low error rates expected to be recognized by any algorithm – even weak overlaps

and overlaps in regions with high error rates. Weak overlaps are characterized either by only a small number

of bases from each sequence overlapping each other or by overlapping bases having a high error rate, or both.

Of all the assembly software tools proposed up to now, MIRA is the only one that uses a modified

version the of Smith-Waterman dynamic programming algorithm for examining potential overlaps between

two sequences. This could very well explain MIRA’s good size statistics and correctness scores as well as its

poor performance.

3.1.3 MIRA: an automated genome and EST assembler

Taking into account the relatively good results of the MIRA assembly program as well as its unsatisfactory

speed, modifying this software in order to achieve a faster and more scalable assembler is desirable. The new

version of the program should be able to more efficiently tackle the sequence alignment step of the assembly

process in order to facilitate the processing of large and complex metagenomic data.

A closer look at MIRA’s overlap screening and sequence alignment step reveals that after performing

different refinement steps to the original read data (e.g. sequencing vector clipping, standard repeat tagging,

quality clipping3, etc.), MIRA finds the high confidence region (HCR) for each read and compares it to the

HCR of every other read to see if they could match and have overlapping parts. Performing this process in

a timely manner is only possible by taking advantage of very quick heuristic filters employed by MIRA (i.e.

3This thesis assumes that the readers are familiar with the concepts of sequencing-vector clipping, standard repeat tagging,
and quality clipping. Readers not familiar with these are referred to the text by Chervaux [12].

10

ZEBRA and DNASAND [12].). All the possible overlaps then form an initial building graph.

DNASAND and ZEBRA not only provide information on whether two sequences are similar enough to

warrant a sequence alignment, but they also provide the approximate offset for the sequence alignment (more

discussion on this topic is presented in Section 3.2). Using this prior knowledge and assumptions about the

alignment of the sequences, the reads in the initial building graph (as mentioned before, an assembler can

represent the relationships between the reads as a graph) which could have overlaps are reviewed with an

adapted version of the Smith-Waterman algorithm. Obvious mismatches are rejected and removed from the

initial building graph. The accepted read-pairs are inserted into one or several alignment graphs. These

alignment graphs define all the assemblies that are possible with the given reads [12].

3.2 Sequence alignment

Sequence alignment is the most common task performed by bioinformaticians. Procedures relying on se-

quence comparison are diverse and range from database searches [26] to secondary structure prediction [27].

Sequences can be compared pairwise when screening databases for similar sequences, or they can be multiply

aligned to visualize the effect of evolution across a whole protein family. In this section the theory underlying

sequence alignment will be discussed, as well as different methods of quantifying sequence similarity, different

types of alignments and various computational approaches to the sequence alignment problem.

3.2.1 Principles of sequence alignment

The way of arranging the sequences of DNA, RNA, or protein in order to identify regions of similarity that

may be a consequence of functional, structural, or evolutionary relationships between the sequences is called

sequence alignment. Ideally what is expected to be achieved when comparing sequences is that they can be

lined up in such a way that identical or similar bases or amino acids are matched with each other to the

maximum possible extent.

To represent a protein or nucleotide sequence, a symbolic sequence can be used. In a symbolic sequence

each base or residue in each sequence is represented by a letter (i.e. Adenine (A), Cytosine (C), Guanine (G)

and Thymine (T) are used for textual representation of DNA). The convention is to print the single-letter

codes for the constituent monomers in order (from 5’ to 3’ of a sequence). This is based on the assumption that

the combined monomers are evenly spaced along the single dimension of the molecule’s primary structure.

Figure 3.1 illustrates the general principle.

As illustrated in Figure 3.1, with short and similar sequences, an alignment can clearly identify the

similarities between sequences. However, when sequences become more different from each other, it becomes

more difficult to compare them. How should two sequences in which mutation has led to insertion or deletion

of one or more residues be aligned? To get around this problem, gaps are introduced into one or both of

the sequences so that maximum similarity is preserved. When a residue in one sequence seems to have been

11

Figure 3.1: The general principle of sequence alignment. The characters in black are identical.

deleted, the residue’s “absence” is labelled by a dash (or “gap”) in the other sequence. When a residue

appears to have been inserted to produce a longer sequence, a dash appears opposite in the un-augmented

sequence. The action of inserting such spaces is known as gapping. Although completely separate biological

events, when it comes to aligning two seqeunces, a deletion in one sequence is symmetric with an insertion

in the other. That is when sequences a and b are gapped relative to another, a deletion in sequence a can be

seen as an insertion in sequence b (Figure 3.2). Indeed, the two types of mutation are referred to together as

indels. It must be borne in mind that although use of gaps to achieve a similar match is necessary in many

cases, they must be used carefully (i.e. using a large number of gaps can lead to meaningless alignment).

Figure 3.2: Gapping preserves the maximum similarity between two sequences. In this figure gapping
is used to preserve the similarity between the sequences used in Figure 3.1. A mutation has led to
insertion of 3 residues (i.e. I, S and A) on one of the original sequences.

There is never just one possible sequence alignment between any two sequences (Figure 3.3) and the most

similar alignment is often not obvious. Hence, at the heart of all the sequence-alignment techniques, an

algorithm exists to test the similarity of many of the generated alignments, giving it a score and filtering out

the unsatisfactory results [20].

12

Figure 3.3: There is never just one possible sequence alignment between any two sequences. Cases
(A) and (B) use gapping in different ways to preserve the similarity between the sequences. As apparent
below, alignment (A) is the “most similar alignment”.

3.2.2 Scoring alignments and substitution matrices

Because it is possible for two sequences to be aligned in a variety of different ways (Figure 3.3), a ranking

technique is needed to objectively determine the best possible alignment for any given pair of sequences,

given some set of scores associated with aligning the various letters. To this end, a numerical value or a

score for overall similarity of each possible alignment is needed. Given that there are many algorithmic ways

to solve optimization problems, many alignment methods are able to find the best alignment between two

strings under some scoring scheme. These scoring schemes can be as simple as percentage identity between

two sequences or a ‘reward for a match, penalty for a mismatch’ technique. Indeed, many early sequence

alignment algorithms were described in these terms.

Nucleotide similarity matrices are used to align nucleic acid sequences and they tend to be much simpler

than protein similarity matrices. For example, a simple matrix will assign identical bases a score of +1 and

non-identical bases a score of -1. A more complicated matrix would give a higher score to transitions (changes

from a pyrimidine such as C or T to another pyrimidine, or from a purine such as A or G to another purine)

than to transversions (from a pyrimidine to a purine or vice versa).

However to find a scoring scheme capable of identifying the most similar alignment, it is important to take

into account the following:

13

• Biological molecules have evolutionary histories, three-dimensional folded structures, and other

features which constrain their primary sequence evolution [28].

• Due to indels (i.e. insertions and deletions) that have occurred during the course of evolution,

homologous sequences are often of different lengths. Use of gaps to achieve as similar a match as

possible is then necessary.

In addition to the mechanics of alignment and comparison, the scoring system itself requires careful

thought and can be very complex. One of the first steps towards developing a sensitive scoring scheme

was the introduction of probabilistic matrices for scoring pairwise amino acid alignments first developed by

Margaret Dayhoff and her co-workers in the 1960s and 1970s [29]. These serve to quantify evolutionary

preferences for certain substitutions over others. More probabilistic modelling approaches (e.g. BLOSUM,

STR, SLIM, PHAT, etc.) have been brought gradually into computational biology by many routes [28]. As

of the date of this study, there are 94 diffierent scoring matrices collected in a list called AAINDEX [30],

each designed to work well in special situations. With many scoring matrices available today the choice of

substitution matrix essentially depends on the problem to be solved. As a general rule, one must always take

into account the degree of evolutionary distance and the length of the sequences when choosing a suitable

scoring matrix [20].

3.2.3 Dynamic programming algorithms

Having discussed scoring schemes, we want to incorporate these techniques to find optimal alignments. The

most obvious way to find the best (most similar) alignment with gaps would be to generate all possible gapped

alignments, find the score for each and select the highest-scoring alignment (i.e. brute force enumeration).

This is impractical because the number of possible alignments becomes tremendously large even for short

sequences. Therefore dynamic programming approach must be utilized. Dynamic programming is a method

by which a larger problem may be solved by first solving smaller, partial versions of the same problem. The

dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of

computations: once the solution to a given subproblem has been computed, it is stored and the next time

the same solution is needed, it is simply looked up. This approach is especially useful when the number of

repeating subproblems grows exponentially as a function of the size of the input which is the case of gapped

alignments.

3.2.4 Types of alignment

There are two main types of alignments: global and local.

global alignment: find the best alignment of one entire sequence with another entire sequence [31].

14

local alignment: find the best alignment of any segment of one sequence against any segment of another

sequence [31].

The key concept in all these algorithms is to calculate a matrix S of optimal scores of sub-sequence

alignments. The matrix has (m+ 1) rows and (n+ 1) columns. The rows correspond to the residues of one

of the sequences and the columns to those of the other sequence (x and y in Figure 3.4).

A widely used global alignment algorithm is Needleman-Wunsch algorithm. A global alignment such as

one produced by this algorithm covers the full range of each sequence and produces the optimal alignment.

This algorithm, as the name suggests, was first described by Needleman and Wunsch [23] and later modified

by Sellers [32], Gotoh [33], and others [34].

Figure 3.4: A global alignment may be viewed as a path through a directed path graph. Figure is
taken from Altschul et al. [35].

A global alignment may be viewed as a path through a directed graph which begins at the upper left

corner of the scoring matrix (matrix S) and ends at the lower right (Figure 3.4). Diagonal steps correspond

to matches or substitutions, while horizontal or vertical steps correspond to indels. The increments or

decrements of scores are associated with each edge, and scores for alignments are associated with the nodes.

The score at a node is the score of the best alignment “ending” at that node. For instance, the score at

the node xn and yn is the score of the best alignment starting from x0 and y0, and ending at node xn and

yn. Hence, each alignment corresponds to a unique path, and vice versa. Traceback information can be

calculated, starting with the score at the bottom, right node. Traceback then starts at the final node. In this

algorithm it is efficient to record traceback information to identify which edge or edges led to the optimal

score at each node [26].

Note that there may be more than one optimal alignment if at some point along the path during traceback

an element is encountered that was derived from more than one of the three possible alternatives coming

into each node. This algorithm does not distinguish between these possible alignments, although there may

15

be reasons for preferring one to another. Such preference would normally be justified with further knowledge

about the problem at hand.

This approach to global sequence alignment can briefly be explained in three steps:

1. Setting up a matrix: First the values of the top row and leftmost column are initialized. In the

initialization phase, the score of each cell is set to the gap score multiplied by the distance from the

origin. Gaps may be present at the beginning of either sequence, and their cost is the same as

anywhere else.

2. Scoring the Matrix: After setting up the matrix, at each step a choice is forced among

match/mismatch, insertion or deletion, even if none of these choices are favorable (i.e. if the choice

will degrade the score along a path containing a well-fitting local region) [31]. Any matrix element

Si,j , can be filled using the following steps:

Si,j = max

Si−1,j−1 + s(xi, yj) xi and yj aligned

Si−1,j + g xi aligned with a gap

Si,j−1 + g yj aligned with a gap

1 < i ≤ m, 1 < j ≤ n (3.1)

where Wi is the gap-scoring scheme and s(xi, yj) is a similarity function (substitution matrix).

3. Identifying the optimal alignment: For global alignment, traceback starting at the lower-right

cell to determine the actual alignment (see Figure 3.4).

To analyze the time complexity of the Needleman-Wunsch algorithm, we can essentially analyze each

individual part of the algorithm. To initialize the matrix, we need to input the scores of the row 0 and

column 0. This has a time complexity of O(m + n) (m and n are the length of the sequences x and y

respectively). The next step is filling in the matrix with all the scores, F (i, j). As discussed before, for each

cell of the matrix, three neighboring cells must be compared, which is a constant time operation. Thus, to fill

the entire matrix the time complexity is the number of entries, or O(mn). Finally the traceback requires a

number of steps. The first step is marking the cells according to the rules above, the complexity of O(m+n).

The second step is finding the final path which involves jumping from cells of matching residues. Since this

step can include a maximum of n cells (where n ≥ m), this step is O(n). Thus, the overall time complexity

of this algorithm is

O(m+ n) +O(mn) +O(m+ n) +O(n) = O(mn) = O(n2).

There are many cases where only parts of sequences are similar. In this case, the local alignment approach

can produce more useful results. A local alignment such as the method of Smith and Waterman [24] focuses

on the regions with the most similarity between two sequences. Smith-Waterman, which is a modification

of Needleman-Wunsch algorithm, is the most rigorous method by which substrings of two sequences can be

16

Figure 3.5: An optimal alignment for two sequences using local alignment (i.e. Smith-Waterman)
technique with +4, -1, and -2 for match, mismatch, and gap, respectively. Black arrows indicate
possible choices between match/mismatch, insertion or deletion. Red arrows illustrate the traceback
that is used to determine the actual alignment. Figure is taken form Altschul et al. [35].

aligned. This method of aligning is most useful when searching through a sequence dataset with a query

sequence from an unknown source [20, 34, 31].

The basic steps of the Smith-Waterman algorithm are similar to those of the Needleman-Wunsch algo-

rithm. The key difference in the local alignment algorithm from the global algorithm is that whenever the

score of the optimal sub-sequence alignment would be less than zero, it is dismissed and the sub-alignment

of null string aligned with null string is chosen instead. Another algorithmic difference is that the Smith-

Waterman algorithm starts the traceback from the highest-scoring element wherever it occurs (see Figure

3.5).

The basic steps for the Smith-Waterman algorithm are as follow:

1. Initialization of a matrix: In the first step of this algorithm, the two sequences are arranged in a

matrix form. The values in the first row and the first column are set to zero.

Si,0 = 0 0 ≤ i ≤ m (3.2)

S0,j = 0 0 ≤ i ≤ n (3.3)

2. Filling the matrix with appropriate scores: The second and crucial step of the algorithm is

filling the entire matrix. Therefore it is important to know the neighbor values (diagonal, upper and

17

left) of the current cell to fill each and every cell. It is worth noting that there is no chance to see any

negative values in the matrix, since zero is acceptable as the lowest value. Any matrix element Si,j

can be filled using the following methodology:

Si,j = max

Si−1,j−1 + s(xi, yj) xi and yj aligned

Si−1,j + g xi aligned with a gap

Si,j−1 + g yj aligned with a gap

0

1 < i ≤ m, 1 < j ≤ n (3.4)

where Wi is the gap-scoring scheme and s(xi, yj) is a similarity function (substitution matrix).

3. Tracing back the paths for the optimal alignment: The final step is back tracing. Prior to this

step, the highest-scoring element in the entire matrix must be obtained. The traceback begins from

the position of the highest-scoring element (wherever it occurs, e.g. (p, q)) and continues to one of

positions (i− 1, j), (i, j − 1), and (i− 1, j − 1) depending on the direction of movement used to

construct the matrix. The traceback continues until a matrix cell with a zero value is reached. Once

finished, the alignment is reconstructed as follows: Starting with the last value (i.e. the cell at which

the back trace ended), reach (p,q), the cell with the highest value, using the previously calculated

path. A diagonal jump implies there is an alignment (either a match or a mismatch).

It would at first appear that the problem of finding an optimal local alignment should be significantly

more complex than the problem of finding an optimal global alignment, because the start and stop position

of the alignment must be located as well. However, the additional calculation just adds a constant factor to

the complexity of the algorithm. The factor affecting the complexity is that Equation 3.4 has to consider

four possibilities, instead of 3 (Equation 3.1). Although this means that a constant of 3 (in the complexity

formula) might be increased to 4. The complexity formula itself remains O(n2).

Pairwise sequence alignment is used to identify regions of similarity that may indicate functional, struc-

tural and/or evolutionary relationships between two biological sequences. By contrast, multiple sequence

alignment is generally the alignment of three or more biological sequences (protein or nucleic acid) that

assists researchers to better infer homology and study the evolutionary relationships between the sequences.

Multiple sequence alignment is an extension of pairwise alignment to incorporate more than two sequences

at a time. Multiple alignment methods try to align all of the sequences in a given set. Multiple sequence

alignments are computationally difficult to produce and most formulations of the problem lead to NP-complete

combinatorial optimization problems [36].

While the transition from pairwise to multiple sequence alignment is conceptually straightforward, the

obvious algorithm to compute the exact solution takes an amount of time exponential in k (i.e. number

of sequences to be aligned). It is therefore almost impractical to use this method in real world problems.

18

Nevertheless, the utility of these alignments in bioinformatics has led to the development of a variety of

methods suitable for aligning three or more sequences. For more information on this topic please refer to

Simossis et al. [37].

3.2.5 Algorithmic approximations

Despite the development of new computing technologies which has led to more powerful computers, the ever-

growing size of sequence databases and their daily updating makes the above-described full-matrix dynamic

programming techniques far too demanding for general use in database searches (where m and n are very

big). Alternative approaches, hence, were created.

A number of alternative approaches have been developed (e.g. BLAST [26], and FASTA [38], etc) that

are considerably faster. The key to the success of these methods is the use of indexing techniques to locate

possible high-scoring short local alignments. These initial local alignments are then extended, subject to

certain constraints, to provide scores that are used to rank high-scoring pairs based on their similarity.

In most implementations, a modified dynamic programming algorithm is used to examine the best-scoring

alignments and produce final scores and alignment [20]. The speedup, however, comes at a price: the heuristic

methods cannot guarantee to find the highest-scoring alignment.

The work presented within this thesis focuses on the dynamic programming approach to the sequence

alignment problem. Thus, detailed descriptions of heuristic alternatives of these techniques are not subject

of this work. For more information about these methods employed for sequence alignment please refer to

Hirosawa et al. [39].

19

3.3 Parallel computing

Traditionally, most software has been written for serial computation to be run on a single computer having

a single Central Processing Unit (CPU). With this approach, a problem is broken into a discrete series of

instructions that are executed one after another. One and only one instruction may execute at any moment

in time (Figure 3.6).

Fast runtime has always been a necessity and a competitive advantage in software development. Accord-

ingly, there has always been the pressure to make applications run faster. Historically, as processors have

increased their speed, the needed speedups could often be achieved by tuning the single CPU performance

of the program and by utilizing the latest and fastest hardware. However, since the power consumed by the

fastest possible processors generates too much heat when in use, we will no longer see significant increases in

the clock speed of processors. So what should be done when the problem is too costly to be solved with a

classical approach?

Figure 3.6: Serial computation. In this appraoch the problem is broken into a discrete series of
instructions. These instrution are executed one after another by the processor. Taken from the text
by Barney [40].

Problem

Processor

t3 t2 t1tn instructions

. . .

One way to solve the problem is to break the problem into pieces, and arrange for all the pieces to be

solved simultaneously. This approach is referred to as parallel computing (Figure 3.7). In the simplest sense,

parallel computing is the simultaneous use of multiple compute resources (whether CPU or GPU) to solve a

computational problem. The more pieces, the faster the job reaches a point where the pieces become so small

that the process of breaking-up and distributing the computation, and consequently combining the result

dominates the execution time and there is no more gain in efficiency. [41].

Parallel computing is not applicable to all problems. The computational problem should be able to be

broken apart into discrete pieces of work that can be solved simultaneously. The pieces that cannot be

parallelized will limit the overall speedup available from parallelization. This puts an upper limit on the

20

Figure 3.7: Parallel computing. In this approach, each part is further broken down to a series of
instructions which execute simultaneously on different processors by employing a suitable control/co-
ordination mechanism. Taken from the text by Barney [40].

Processor

t3 t2 t1tn instructions

Processor

Processor

Processor

Problem

. . .

. . .

. . .

. . .

usefulness of parallel execution.

Parallel computing can take many forms sharing the same concept. Compute resources can be CPUs

being inter-connected using any of a large number of schemes or Graphics Processing Units (GPUs), or a

combination of both. The number of processors can range from a few to thousands. These processors on

which a parallel program executes may all be packed into one box (yielding a “multiprocessor” or “parallel

compute”) or they may be separate, autonomous machines connected by a network. The network might be

local or wide-area; the computers in the network might be any architecture [41].

There are different ways to classify parallel computers. One of the most widely used classifications is

known as Flynn’s Taxonomy [42]. Flynn’s taxonomy distinguishes multi-processor computer architectures

according two independent dimensions of instruction stream and data stream. Each of these dimensions can

have only one of two possible states: single or multiple [40]. Four possible classifications according to Flynn

are:

Single Instruction, Single Data (SISD): In this organization, sequential execution of instructions is

performed by one processor containing a single processing element (PE), (e.g. ALU4 under one

control unit as shown in Figure 3.8). SISD machines are conventional serial computers that process

only one stream of instructions and one stream of data [40]. This corresponds to the Von Neumann

4An arithmetic logic unit (ALU) is a digital circuit that performs integer arithmetic and logical operations. The processors
found inside modern CPUs and GPUs accommodate very powerful and very complex ALUs.

21

architecture5. For more information, please refer to the text by Von Neumann [43].

Figure 3.8: Single Instruction, Single Data (SISD) organization. IS and DS represent the single
instruction stream and single data stream, respectively. Taken from the text by Barney [40].

Control Unit ALU Main
Memory

IS

IS DS

Single Instruction, Multiple Data (SIMD): In this organization, multiple processing elements work

under the control of a single control unit (CU). It has one instruction stream and multiple data

streams. All the processing elements of this organization receive the same instruction from the CU.

Main memory can also (but not necessarily) be divided into modules for generating multiple data

streams acting as a distributed memory 6 as shown in Figure 3.9. It’s notable that most modern

computers, particularly those with graphics processor units (GPUs), are designed based on the SIMD

method [40]. This architecture corresponds to the Modified Harvard architecture [44].

Figure 3.9: Single Instruction, Multiple Data (SIMD) organization. IS and DS represent a single
instruction stream and various data streams, respectively. Taken from the text by Barney [40].

Control
Unit

PEn

PE2

PE1

MM2

MMn

MM1
DS1

DSn

DS2

IS

.

.

.

.

.

.

IS

Multiple Instruction, Single Data (MISD): In this organization, multiple processing elements are

organized under the control of multiple control units. Each control unit (CU) is handling one

5A design architecture for an electronic digital computer with subdivisions of a processing unit, a control unit, a memory to
store both data and instructions, external mass storage, and input and output mechanisms.

6Distributed memory refers to a multiple-processor computer system in which each processor has its own private memory

22

instruction stream (IS) through its corresponding PE. But each PE is processing only a single,

common data stream (DS) at a time. Therefore, for handling multiple instruction streams and a

single data stream, multiple control units and multiple processing elements are required. In this

approach all processing elements are interacting with the common shared memory for the

organization of a single data stream as shown in Figure 3.10 [40].

Figure 3.10: Multiple Instruction, Single Data (MISD) organization. IS and DS represent number
of instructions stream and single data stream, respectively. Taken from the text by Barney [40].

Main	 Memory

PEn

PE2

PE1

DS

DS

DS

ISn

CUn

CU2

CU1
IS1

ISn

IS2

DS

IS1

IS2

.

.

.

.

.

.

Multiple Instruction, Multiple Data (MIMD): In this organization, multiple processing elements

(PE) and multiple control units (CU) are organized as in MISD. However, in this organization

multiple instruction streams operate on multiple data streams (DS). Therefore, for handling multiple

instruction streams, multiple control units and multiple processing elements are organized such that

multiple processing elements are each handling a separate data stream from the main memory, as

shown in Figure 3.11 [40].

Historically, parallel computing has been considered to be“the high end of computing”, and programs using

this approach have been used to model difficult problems in many areas of science and engineering, including

bioscience, biotechnology, and genetics. This study mainly focuses on the SIMD parallel computing model

for current-generation parallel machines utilizing GPUs as an alternative to the sophisticated parallel tools

commonly used for speeding-up the dynamic programming approaches to the sequence alignment problem.

23

Figure 3.11: Multiple Instruction, Multiple Data (MIMD) organization. IS and DS represent
multiple instructions and data streas, respectively. Taken from the text by Barney [40].

PEn

PE2

PE1

MM2

MMn

MM1

DS

DS

ISn

CUn

CU2

CU1
IS1

ISn

IS2

IS1

IS2

DS1

DSn

DS2

IP

.

.

.

.

.

.

.

.

.

3.3.1 CPU vs. GPU

As discussed earlier, the complexity of dynamic programing techniques commonly used for computing optimal

pairwise sequence alignments is quadratic with respect to the lengths of alignment targets, which makes these

techniques time consuming for applications involving large datasets. Therefore heuristic methods have been

introduced as an alternative approach. The drawback is that the more efficient the heuristics, the worse the

quality of the result. Hence, use of high-performance computing techniques is considered a good alternative

for getting high-quality results in a timely manner.

Two major computing platforms are deemed suitable for this purpose. The first one is the multi-core and

multi-threaded CPUs that are capable of running many types of applications. As discussed above, because

of various fundamental limitations in the fabrication of integrated circuits, it is no longer feasible to rely on

ever-increasing processor clock speeds as a means for extracting additional power from existing architectures.

Because of power and heat restrictions as well as a rapidly approaching physical limits to transistor size, in

2005 leading CPU manufacturers began offering processors with two computing cores instead of one. This

development has been followed with the release of three-, four-, six-, eight-, and twelve-core central processor

units over the last few years [21].

24

The second one is the GPU that is designed for graphics processing with many small processing elements.

The massive processing capability of GPUs gave rise to the general purpose-GPU field [45] [46]. Fundamen-

tally, CPUs and GPUs are built based on very different philosophies. CPUs are designed for a wide variety of

applications and to provide fast response times to a single task. Architectural advances such as branch pre-

diction, out-of-order execution, and frequency scaling7 have been responsible for performance improvement.

However, these advances come at the price of increasing complexity/area ratio and power consumption. As

a result, mainstream CPUs today can pack only a small number of processing cores on the same board in

order to stay within the power and thermal constrains. GPUs, on the other hand, are built specifically for

rendering and other graphics applications that have a large degree of data parallelism (each pixel on the

screen can be processed independently). Graphics applications are also latency tolerant. As a result, GPUs

can trade off single thread performance for increased parallel processing.

There is little doubt that today’s CPUs would provide the best single thread performance for high-

throughput computing workloads. However, the limited number of cores in today’s CPUs limits how many

pieces of data can be processed simultaneously. On the other hand, GPUs provide many parallel processing

units which are ideal for high performance computing. However, the design for graphics pipeline lacks some

critical processing capabilities (e.g., large caches) for general purpose work loads, which may result in lower

architecture efficiency [47]. With that being said, for the right kind of problem, by developing an appropriate

algorithm for process streaming and data dependency handling of the modern GPUs, significant speedups

can be achieved [48, 49, 50, 51, 52, 53, 54].

Figure 3.12: Differences between CPU and GPU architectures. Taken from CUDA programming
guide [55].

DRAM DRAM

Cache

Control
ALU

ALUALU

ALU

CPU GPU

In a nutshell, the GPU is specialized for compute-intensive, highly data-parallel computation (owing

to its graphics rendering origin), and therefore designed such that more transistors are devoted to data

processing rather than data caching and control flow as illustrated in Figure 3.12. More specifically, the GPU

is especially well-suited to address problems that can be expressed as data-parallel computations (the same

7Frequency scaling is the technique of ramping a processor’s frequency so as to achieve performance gains.

25

program is executed on many data elements in parallel) with high arithmetic intensity (the ratio of arithmetic

operations to memory operations). Because the same program is executed for each data element, there is a

lower requirement for sophisticated flow control [55]. For further discussion about the differences between

the performance and computing characteristics of architectural features on today’s CPUs and GPUs, please

refer to Lee et al. [47].

3.4 GPU computing

In comparison to the central processor’s traditional data processing pipeline, performing general-purpose

computations on a graphics processing unit is a new, yet effective approach. In fact, the GPU itself is

relatively new compared to the computing field at large. The following gives a brief history of GPUs.

With the growth in popularity of graphically driven operating systems such as Microsoft Windows in the

late 1980s and early 1990s, a new market appeared for a new type of processor. Around the same time,

Silicon Graphics, a company popularizing the use of three-dimensional graphics as well as providing the tools

to create cinematic effects, released the OpenGL library to be used as a standardized, platform-independent

method for writing 3D graphics applications. The mid-1990s saw the release of a new generation of games

(i.e. “first-person shooter” genre games such as Doom and Quake) and the growth in their popularity

led to competition to create progressively more realistic 3D environments for PC gaming. At this time

companies such as NVIDIA, ATI Technologies, and 3dfx Interactive began releasing graphics accelerators

that were affordable enough to attract widespread attention [21]. The release of NVIDIA’s GeForce 256

further pushed the capabilities of consumer graphics hardware and enhanced the potential for even more

applications. NVIDIA’s release of the GeForce 3 series in 2001 was an important breakthrough in GPU

technology. The GeForce 3 series was the computing industry’s first chip to implement Microsoft’s then-new

DirectX 8.0 standard, which for the first time gave developers some control over the computations that would

be performed on their GPUs. However, because standard graphics APIs8 such as OpenGL and DirectX were

still the only way to interact with a GPU, any attempt to perform arbitrary computations on a GPU were

still subject to severe programming and hardware constraints [21, 55].

3.4.1 Why CUDA?

The high arithmetic throughput of GPUs attracted many researchers to the possibility of using graphics

hardware for more than graphic-processing purposes. However, the general approach in the early days of GPU

computing was extremely complex and difficult to follow and, as mentioned above, any attempt to perform

generic computations on a GPU were subject to hardware limitations and constraints of programming within

a graphics API. In essence, developers had to trick the GPU into performing non-rendering tasks by making

those tasks appear as if they were OpenGL or DirectX standard renderings. The resultant programming

8An application programming interface specifies how some software components should interact with each other.

26

model was far too restrictive (i.e. there were tight resource constraints on type of input data and memory

usage). Also, there existed no good method of debugging for any code that was being executed on the GPU,

nor was there any way to terminate a faulty program. Furthermore, programmers who wanted to use a GPU

to perform general-purpose computations would need to learn OpenGL or DirectX which were convoluted

[21, 55].

In 2006, NVIDIA unveiled the GeForce 8800 GTX, which was the first GPU to be built with NVIDIA’s

CUDA (Compute Unified Device Architecture) [21]. This architecture included several components specif-

ically designed for generic GPU computing. CUDA was released along with a software environment that

allowed developers to use C as a high-level programming language to develop application software that trans-

parently scales its parallelism to leverage the large number of processor cores aviablable on the GPU while

maintaining a low learning curve for programmers familiar with standard C. Table 3.1 illustrate languages,

application programming interfaces, or directives-based approaches which are supported by the latest version

of CUDA as of writing this thesis (i.e. CUDA 5.5).

Table 3.1: GPU computing applications. CUDA supports various languages and application pro-
gramming interfaces. Taken from CUDA programming guide [55].

GPU computing application

Libraries and Middleware

CUFFT

CULBAS

CURAND

CUSPARSE

CULA

MAGMA

Thrust

NPP

VSIPL

SVM

OpenCurrent

PhysX

OptX
Iray

MATLAB

Mathematica

Programming Languages

C C++ Fortran

Java

Python

Wrappers

DirectCompute
Directives

(e.g. OpenACC)

CUDA-enabled NVIDIA GPUs

Kepler Architecture GeForce 600 Series Quadro Kepler Series
Tesla K20

Tesla K10

Fermi Architecture
GeForce 500 Series

GeForce 400 Series
Quadro Fermi Series Tesla 20 Series

Tesla Architecture

GeForce 200 Series

GeForce 9 Series

GeForce 8 Series

Quadro FX Series

Quadro Plex Series

Quadro NVS Series

Tesla 10 Series

27

3.4.2 CUDA architecture

Since NVIDIA intended its new family of graphics processors to be used for general-purpose computing, their

ALUs are built to be in accordance with IEEE requirements for single-precision floating-point arithmetic.

They are also designed to use an instruction set particularly developed for general computation rather than

specifically for graphics. In this new framework, a unified pipeline allows each and every ALU on the chip

to be marshalled by a program intending to perform general-purpose computations [21]. Furthermore, the

execution units on the GPU are allowed arbitrary read and write access to memory as well as access to a

software-managed cache known as shared memory.

All of these features of the CUDA Architecture were added in order to create a GPU that would be

programable for general-purpose computations as well as graphics tasks. The most exciting feature of CUDA,

however, was the new language (known with the same name as CUDA) specifically designed to enable users to

write scalable multi-threaded programs for CUDA-enabled GPUs [56]. CUDA (the language) was, in essence,

an extension of C which provided a fine-grained data parallelism and thread parallelism by offering three

key abstractions: (1) a hierarchy of thread groups9, (2) shared memories, and (3) barrier10 synchronization.

These were simply exposed to the programmer as a minimal set of language extensions. They allowed the

programmer to partition the problem into coarse sub-problems that could be solved independently in parallel

by blocks of threads. This decomposition maintained language expressivity by allowing threads to cooperate

when solving each sub-problem, and at the same time enabled automatic scalability [55] (see Figure 3.13).

Simply put, CUDA brings together several things:

• A massively parallel hardware specifically designed to be able to compile and run generic code, with

appropriate drivers11 for doing so.

• A programming language based on C as the programming tool with only minimal set of language

extensions.

• A software development kit that includes libraries, various debugging, profiling and compiling tools,

and bindings that let CPU-side programming languages invoke GPU-side code.

The point of CUDA is to write code that can run on compatible massively parallel SIMD architectures.

Massively parallel hardware can run a significantly larger number of operations per second than the CPU, at

a relatively lower financial cost, yielding performance improvements of 50% or more in situations that allow

it.

9In programming languages, thread groups provide a mechanism for collecting multiple threads into a single object and
manipulating those threads all at once, rather than individually.

10In programming languages, a barrier for a group of threads or processes in the source code means any thread/process must
stop at this point and cannot proceed until all other threads/processes reach this barrier.

11A driver is software that allows a computer to communicate with hardware or devices. Without drivers, the hardware
connected the computer does not work properly.

28

Figure 3.13: Automatic scalability of CUDA architecture. A streaming multiprocessor (SM) contains
multiple cores that can be run simultaneously. A thread block is a set of concurrent threads. Taken
from CUDA programming guide [55].

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Multi-thread CUDA program

Block 0 Block 1 Block 2 Block 3

SM 0 SM 1 SM 2 SM 3
GPU with 4 SMs

Block 4 Block 5 Block 6 Block 7Block 0 Block 1

Block 0 Block 1

Block 0 Block 1

Block 0 Block 1

Block 0 Block 1
GPU with 2 SMs

One of the benefits of CUDA over the earlier methods is that a general-purpose language is available.

So instead of having to use complex techniques to emulate general-purpose computers, the developers can

use CUDA programming language, which is based on C with a few additional keywords and concepts, which

makes it fairly easy for non-GPU programmers to pick up.

The simplicity of CUDA stems from its architecture. CUDA programs contain a sequential part, called the

kernel program. The kernel is written in conventional C-code. It represents the operations to be performed

by a single thread on the GPU (hereon for the rest of this document GPU and its memory will be referred to

as the device) instead of the CPU (from this point until the end of this document the CPU and its memory

will be referred to as the host). The kernel is invoked as a set of concurrently executing threads. These

threads are organized in a hierarchy consisting of thread blocks and grids (see Figure 3.14). All threads run

the same code and each has an ID that it uses to compute memory addresses and make control decisions.

The kernel launches a grid of thread blocks. A thread block is a set of concurrent threads (with associated

unique IDs) and a grid is a set of independent thread blocks. Many problems are naturally described in a flat,

linear style mimicking the model of C’s memory layout. However, other tasks, especially those encountered

in the computational sciences, are naturally embedded in two or three dimensions. Hence threads and block

IDs are used to simplify memory addressing when processing multidimensional data. See Figure 3.14.

The main reason for this hierarchical organization is the advantages it offers for thread communication

and synchronization. Threads within a thread block can communicate through a per-block shared memory

(PBSM) and may synchronize using barriers. However, threads located in different blocks cannot commu-

29

nicate or synchronize directly [57]. As it illustrated in Figure 3.13, the CUDA applications use a scalable

processor array. The array consists of a number of streaming multiprocessors (SMs). Each SM contains

a number scalar processors (SPs) that share a per block shared memory (PBSM). All threads of a thread

block are executed concurrently on a single SM. The SM executes threads in small groups, called warps,

in single-instruction multiple-thread (SIMD) fashion. Thus, parallel performance is generally penalized by

data-dependent conditional branches and improves if all threads in a warp follow the same execution path.

Figure 3.14: Grid of thread blocks. A thread block is a set of concurrent threads (with associated
unique IDs) and a grid is a set of independent thread blocks. Taken from CUDA programming guide
[55].

Block (0,0)

Block (0,1) Block (1,1)

Block (1,0) Block (2,0)

Block (2,1)

Grid

Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Block (1,1)

One of the most important abstractions that CUDA offers is allowing developers to use different types of

shared memories. Therefore, in order to write an efficient CUDA application, it is important to understand

the different types of memory spaces. Besides the PBSM, there are six other types of memory (see Figure

3.15):

Readable and writable global memory: This memory is relatively large, but has high latency, low

bandwidth, and is not cached. The effective bandwidth of global memory depends heavily on the

30

memory access pattern, e.g. coalesced access generally improves bandwidth. This memory can also be

accessed by the CPU.

Readable and writable per-thread local memory: This memory is of limited size and is not cached.

Access to local memory is as expensive as access to global memory and is always coalesced.

Read-only constant memory: This memory is of limited size and cached. The reading cost scales with

the number of different addresses read by all threads. Reading from constant memory can be as fast

as reading from a register (e.g. if all threads of a half-warp read the same address).

Read-only texture memory: This memory is large (depending on the size of global memory) and is

cached. Texture memory can be read from kernels using texture fetching device functions. Reading

from texture memory is generally (not absolutely) faster than reading from global or local memory.

Readable and writable per-block shared memory: This memory is fast on-chip memory of limited

size. Shared memory can be accessed by all threads in a thread block. Shared memory is divided into

equally-sized banks that can be accessed simultaneously by each thread. Accessing the shared

memory can be as fast as accessing a register.

Readable and writable per-thread registers: These registers are the fastest memory to access but is

of very limited size. The total number of registers and registers per thread depend on the model and

the architecture of the hardware in use.

It’s noteworthy that the sizes of the above-mentioned memories depend on the type of architecture (e.g.

sizes vary between Fermi and Kepler architectures). Further, these memory sizes vary between models within

a particular architecture.

3.4.3 Kepler vs. Fermi architecture

Kepler is the codename for the latest GPU architecture developed by NVIDIA as the successor to the Fermi

architecture. NVIDIA’s Kepler architecture is built on the foundation of NVIDIA’s Fermi GPU architecture.

A major difference in the architectures is in the number of CUDA cores per SM, which has been increased

to 192. The Kepler-based GPUs have a total of 8 streaming multiprocessors, making a total of 1536 CUDA

cores in contrast to 512 cores of Fermi-based GPUs. Despite tripling the number of cores, the physical die

size is about two thirds smaller than Fermi, and has just 500 million more transistors (3.5 billion compared

to 3 billion) [58]. Table 3.2 highlights some the more important differences between these two architectures.

31

Figure 3.15: Memory hierarchy of CUDA. PTLM represents per thread local memory. Taken from
CUDA programming guide [55].

Block (0,0)

Block (0,1) Block (1,1)

Block (1,0) Block (2,0)

Block (2,1)

Grid 0

Block (0,0)

Block (0,1) Block (1,1)

Block (1,0) Block (2,0)

Block (2,1)

Grid 1

Thread Block

Thread PTLM
&

Register

Per-block
shared memory

Global
memory

Texture
 memory

Constant
memory

Table 3.2: Major differences between Kepler and Fermi architectures. Most popular models of these
two architecture (GTX 580 representing Fermi and GTX 680 representing Kepler.

Feature Fermi (GTX 580) Kepler (GTX 680)

Power consumption 244 Watts 195 Watts

CUDA cores 512 1536

Compute Capability 2.1 3.1

Streaming Multiprocessors (SMs) 16 8

Cores per SM 32 192

Wrap scheduler per SM 2 4

Chache per SM 64 KB 512 KB

Memory bandwidth 192.2 GB/s 192.2 GB/s

Core speed 772 MHz 1002 MHz

32

Chapter 4

Comparison of assembly software

for metagenomic data

The emergence of next-generation sequencing platforms has led to resurgence of research in whole-genome

shotgun assembly algorithms and software. DNA sequencing data from these platforms typically present

shorter read lengths, higher coverage, and different error profiles compared with Sanger sequencing data.

Over the last years, several assembly software packages have been created or revised specifically for de novo

assembly of next-generation sequencing data. This chapter provides an evaluation of six popular de novo

assembly software tools, three of which (IDBA-UD [59], RayMéta [19], and MetaVelvet [60]) were specifically

designed for metagenomics data, and three of which (Newbler [13], SSAKE [61], and MIRA [12]) were not.

The accuracy, performance, and computational requirements of these assemblers are evaluated using three

datasets of simulated sequence reads, each having a different community complexity (low, medium, or high),

as well as real reads obtained from the sequencing of environmental samples using Ion Torrent technology.

4.1 Methods

4.1.1 Artificial metagenomic communities

The artificial communities generated for this study were roughly based on the work of Pignatelli et al. [62].

In their study, communities were composed of organisms whose full genome sequences have been determined.

Four synthetic datasets were created representing different community complexities and sequencing depths:

low complexity (LC), a set where most reads were drawn from a pool of small number of dominant organisms;

medium complexity (MC), having a greater number of dominant organisms; high complexity (HC), having no

dominant organisms. In this study, we focused on sequencing data from the Ion Torrent sequencing platform,

which typically generates approximately 9 million reads in a single run, making this an appropriate value

for the number of reads from each community. Given this, here we use LC, MC, and HC communities, each

having approximately eight million corresponding reads.

The study by Pignatelli et al. used only approximately 113 organisms, far fewer than would likely be

found in a real metagenomics sample. Here we use all viral (n = 1396), algal (n = 2), fungal (n = 34),

and bacterial/archaeal (n = 2155) genomes sequenced as of July 2,14 and publicly available at the NCBI

33

Reference Sequence database (RefSeq) [63], giving a total of 3591 organisms. We sought to create artificial

communities with this larger set of organisms but with similar abundance distributions to those used by

Pignatelli and co-authors. This was performed as follows. For a given community (say, LC), the organism

frequencies as given by Pignatelli were sorted from largest to smallest frequency. A scatterplot was created

with the x axis indicating the rank of the organism’s frequency (with 1 being the most frequent), and the

y axis indicating the frequency of the organism with that rank. This curve was best approximated using a

power function (y = axb). Values of a and b were determined that resulted in a curve closely approximating

the distribution of that community given by Pignatelli et al. Each organism from our larger set was then

arbitrarily assigned a unique rank x between 1 and 3591, and the relative frequency of that organism was

calculated as y = axb/
∑3587

x=1 ax
b. The denominator was introduced so that the frequencies sum to 1.

4.1.2 Generation of artificial reads

In a real metagenomics study, DNA would be extracted from a sample and sequenced, with the resultant

reads subjected to quality control before being used as input to a sequence assembly program. In this

study, artificial reads were generated in a manner designed to match as closely as possible to real pre-quality

control reads in terms of quantity, length distribution, and quality distribution, with this set of reads being

subsequently filtered based on quality and length. To achieve this, DNA was extracted from a sediment

sample from an in-progress metagenomics study (manuscripts in preparation), which was then sequenced

using the 316 chip on an Ion Torrent Personal Genome Machine (Life Technologies). These reads were used

as input to Better Emulation of Artificial Reads (BEAR) [64], a custom program for generating artificial

reads. BEAR determines the error rate, error type, length and the quality distributions of the reads it is

given as input, and then generates artificial reads drawn from already-sequenced genomes with matching

length and quality distributions.

4.2 Results

As discussed in Section 3.1, at present, mainly three distinct strategies are applied in short reads assembly.

Among them, greedy-extension is the implementation of a string-based method, while de Bruijn graph and

overlap-layout-consensus are two different graph-based approaches. We tested three metagenomics-specific

assemblers (IDBA-UD, RayMéta, and MetaVelvet), as well as three assemblers designed for the de novo

assembly of single genomes (Newbler, SSAKE, and MIRA). Details of these assemblers are given in Table

4.1. To simplify comparisons, default parameters were used for all programs. Also, after the assembly process,

all contigs that were shorter than the average read length were discarded.

Three simulated datasets of varying species complexity were generated by the sequence simulator program

BEAR [64]. Ion Torrent data (377,630 reads in total) were used to train the read length and quality score

models. Each dataset consisted of ∼8 million reads sampled from 3591 genomes (2 algae, 2155 bacteria,

34

Table 4.1: List of evaluated sequence assemblers. Desired read length represents the average read
length assembler can process

Metagenomic-specific? Assembler name Assembly Strategy Desired read length Reference

Yes IDBA-UD de Bruijn graph ∼(25-125) bp [59]

RayMéta de Bruijn graph ∼(25-125) bp [19]

MetaVelvet de Bruijn graph ∼(25-125) bp [60]

No Newbler OLC ∼(450-1000) bp [13]

MIRA OLC ∼(25-1000) bp [12]

SSAKE Greedy Extension ∼(25-125) bp [61]

34 fungi, and 1396 viruses). Three datasets were created representing different community complexities and

sequencing depths: low complexity (LC), a set where most reads were drawn from a small number of dominant

organisms; medium complexity (MC), having a greater number of dominant organisms; and high complexity

(HC), having no dominant organisms. Real data was obtained from sediment samples using whole genome

shotgun sequencing via an Ion Torrent Personal Genome Machine. Table 4.2 shows the characteristics of

the data provided as input for the assemblers evaluated in this paper. It must be mentioned that the issue

of filtering sequence real WGS data, based on the FastQ [65] quality scores provided by the Ion Torrent

sequencer was investigated. Because Ion Torrent has been shown to underestimate quality scores [66], several

quality thresholds were chosen (e.g., Q17, Q20, and Q25). Because the reported quality of Ion Torrent PGM

(Personal Genome Machine) data is typically much lower than 454 data [66], using the standard quality

threshold of Q25 leads to most of the data being discarded. As such, the following quality filtering steps were

performed in several combinations and Q17 quality threshold provided the best results:

• Remove Torrent adapter and discard any reads shorter than 100 bp after adapter trimming.

• Remove any reads with an average quality less than the given threshold.

• Trim reads to the length where the average quality of all reads falls below the given threshold.

Table 4.2: Characteristics of input data

Simulated Data Real Data

Low Complexity Medium Complexity High Complexity Env. Samples

Reads Total Size (Bp) 1,228,297,506 1,228,033,188 1,228,189,696 1,654,227,752

Average read size 159 159 159 193

Size of the longest read 176 176 176 220

Number of the reads 7,724,359 7,721,976 7,722,812 8,567,699

Several metrics were used to evaluate the assemblers with respect to the number of contigs generated

and the lengths of those contigs. These were number of contigs, average contig length, aggregate contig size,

35

number of contigs longer than ten times the average read size, size of the largest contig, N50 (the size N such

that 50% of the bases in the contigs are of size N or greater), and N80 (analogous to N50).

After assembling the three artificial datasets, the accuracy of each of the resultant contigs was evaluated

by mapping it back to the reference genomes. This was done using a combination of Bowtie 2 [67] and

BLAST [26]. Preliminary testing revealed that Bowtie 2 was extremely fast; however, it occasionally lacked

of sensitivity (i.e. it would not report a match for some contigs, especially shorter ones, even though BLAST

would report a very close match). As such, Bowtie 2 was first used to search for each contig in the reference

genomes. Any contigs having no match were then searched used as BLAST queries. The quality of all

matches was based on the “normalized edit distance”, (L− E)/L× 100%, where E is the edit distance and

L is the length of the contig. For Bowtie 2, E was taken directly from the Bowtie 2 output. For BLAST, E

was calculated by multiplying the percent identity according to BLAST by the proportion of the full-length

contig that was involved in the BLAST local alignment.

Each assembler was evaluated according to three main criteria: computational resources used, the number

and lengths of contigs generated, and the accuracy of generated contigs (only for simulated data). All assembly

runs were performed on a machine with Ubuntu Linux as the operating system, with two 2.4 GHz 8-core

processors and 384 GB of memory. To ensure comparability between assembler outputs, singletons1 and

contigs less than the average read size were discarded before subsequent analyses. This is because not all

assemblers keep singletons and/or contigs shorter than 100 bp. Figures 4.1, 4.3, 4.5, and 4.7 illustrate the

size statistics of all evaluated algorithms for datasets with varying complexities. Tables 4.3 - 4.6 show the

CPU details of different assembly software assembling various datasets. Finally, Figures 4.2, 4.4, and 4.6

present the percentage of contigs produced by various assembly software mapping to the reference genome.

The results presented in the aforementioned figures and tables are discussed in Section 4.3. For more detailed

information about the results, please refer to Comparison of assembly software (Appendix A).

1A singleton read is a read that did not show any significant overlap with any other reads

36

Figure 4.1: Size statistics of various assembly programs with low complexity simulated data. “•”
represents N50, “×” represents average config size and “◦” represents the N80.

IDBA-UD MetaVelvet RayMèta0

4000

0

500

1000

1500

2000

2500

3000

3500

MIRA Newbler SSAKE

Various assemblers

Si
ze

 o
f

th
e

co
nt

ig
s

(B
p)

Table 4.3: CPU details of various assembly software, assembling low complexity simulated data.

Software Elapsed real time User time a System time b Max. RAM Occupancy

IDBA-UD 35 m 30 s 231 m 47 s 1 m 12 s 8,426,048 KB

MIRA 1963 m 51 s 2392 m 0 s 157 m 17 s 45,230,832 KB

Newbler 79 m 40 s 70 m 38 s 1 m 4 s 10,187,564 KB

SSAKE 161 m 37 s 159 m 44 s 0 m 54 s 12,597,256 KB

MetaVelvet 16 m 7 s 15 m 22 s 0 m 13 s 8,232,240 KB

RayMéta 121 m 12 s 723 m 13 s 244 m 38 s 1,322,376 KB

aTotal amount of CPU-time that the process spent in user mode.
bTotal amount of CPU-time that the process spent in kernel mode

37

Figure 4.2: Percentage of contigs produced by various assembly software, assembling low complexity
simulated data.

IDBA-UD MIRA Newbler SSAKE MetaVelvet RayMèta

100

75

78

80

82

84

86

88

90

92

94

96

98

Various assemblers

Pe
rc

en
ta

ge
 o

f
co

nt
ig

s
m

ap
pi

ng
 t

o
th

e
re

fe
re

nc
e

ge
no

m
es

Figure 4.3: Size statistics of various assembly programs with medium complexity simulated data.
“•” represents N50, “×” represents average config size and “◦” represents the N80.

IDBA-UD MetaVelvet RayMèta0

4000

0

500

1000

1500

2000

2500

3000

3500

MIRA Newbler SSAKE

Various assemblers

Si
ze

 o
f

th
e

co
nt

ig
s

(B
p)

38

Table 4.4: CPU details of various assembly software, assembling medium complexity simulated data.

Software Elapsed real time User time a System time b Max. RAM Occupancy

IDBA-UD 42 m 0 s 271 m 24 s 1 m 47 s 11,260,668 KB

MIRA 954 m 36 s 1251 m 2 s 60 m 40 s 45,226,744 KB

Newbler 104 m 36 s 92 m 38 s 1 m 51 s 10,187,564 KB

SSAKE 265 m 34 s 263 m 38 s 0 m 46 s 13,160,892 KB

MetaVelvet 17 m 38 s 16 m 43 s 0 m 16 s 10,380,080 KB

RayMéta 153 m 33 s 897 m 52 s 328 m 27 s 3,008,824 KB

aTotal amount of CPU-time that the process spent in user mode.
bTotal amount of CPU-time that the process spent in kernel mode

Figure 4.4: Percentage of contigs produced by various assembly software, assembling medium com-
plexity simulated data.

IDBA-UD MIRA Newbler SSAKE MetaVelvet RayMèta

100

75

78

80

82

84

86

88

90

92

94

96

98

Various assemblers

Pe
rc

en
ta

ge
 o

f
co

nt
ig

s
m

ap
pi

ng
 t

o
th

e
re

fe
re

nc
e

ge
no

m
es

ZZZZZZZZ

39

Figure 4.5: Size statistics of various assembly programs with high complexity simulated data. “•”
represents N50, “×” represents average config size and “◦” represents the N80.

 IDBA-UD MIRA Newbler SSAKE MetaVelvet RayMèta

4000

0

500

1000

1500

2000

2500

3000

3500

Various assembly software

Le
ng

th
 (B

p)

Table 4.5: CPU details of various assembly software, assembling high complexity simulated data.

Software Elapsed real time User time a System time b Max. RAM Occupancy

IDBA-UD 64 m 31 s 413 m 17 s 3 m 27 s 12,527,536 KB

MIRA 700 m 22 s 784 m 2 s 25 m 43 s 42,873,644 KB

Newbler 95 m 34 s 84 m 5 s 1 m 52 s 10,187,564 KB

SSAKE 536 m 59 s 534 m 12 s 0 m 58 s 14,817,732 KB

MetaVelvet 24 m 59 s 23 m 50 s 0 m 25 s 20,754,788 KB

RayMéta 292 m 53 s 1760 m 29 s 579 m 11 s 45,227,760 KB

aTotal amount of CPU-time that the process spent in user mode.
bTotal amount of CPU-time that the process spent in kernel mode

40

Figure 4.6: Percentage of contigs produced by various assembly software, assembling high complexity
simulated data.

IDBA-UD MIRA Newbler SSAKE MetaVelvet RayMèta

100

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

Various assemblers

Pe
rc

en
ta

ge
 o

f
co

nt
ig

s
m

ap
pi

ng
 t

o
th

e
re

fe
re

nc
e

ge
no

m
es

Figure 4.7: Size statistics of various assembly programs with real data. “•” represents N50, “×”
represents average config size and “◦” represents the N80.

 IDBA-UD MIRA Newbler SSAKE MetaVelvet RayMèta

4000

0

500

1000

1500

2000

2500

3000

3500

Various assembly software

Le
ng

th
 (B

p)

41

Table 4.6: CPU details of various assembly software, assembling real WGS data.

Software Elapsed real time User time a System time b Max. RAM Occupancy

IDBA-UD 110 m 22s 682 m 34 s 4 m 54 s 31,676,264 KB

MIRA 427 m 46 s 448 m 50 s 15 m 16 s 57,129,692 KB

Newbler 141 m 58 s 137 m 43 s 2 m 9 s 7,808,088 KB

SSAKE 1092 m 16 s 1088 m 6 s 1 m 10 s 17,762,700 KB

MetaVelvet 59 m 42 s 58 m 26 s 0 m 41 s 48,910,948 KB

RayMéta 907 m 48 s 568 m 49 s 1573 m 40 s 14,806,740 KB

aTotal amount of CPU-time that the process spent in user mode.
bTotal amount of CPU-time that the process spent in kernel mode

4.3 Conclusions

Although no single assembler performed best on all our criteria, Newbler gave the longest contigs and the

largest N50 and N80 values as well as a very good correctness score (percentage of contigs mapping to the

reference genomes). Meanwhile Newbler’s aggregated assembly sizes were small. On the other hand, although

slow, MIRA scored very well in size statistics and correctness analysis, and produced very large aggregate

contig sizes. Although the IDBA-UD assemblages had large sizes, they had the worst correctness scores.

The remaining assemblers all performed almost equally well, with the exception of RayMéta, which had the

worst size statistics. The performance of the assemblers was especially poor when assembling environmental

samples. All in all, our evaluation of assemblers suggested that although no single assembler performed best

on all of our criteria, MIRA slightly outperformed the other programs.

42

Chapter 5

Data and methodology

This section describes the methodology used to perform the two main analyses completed in this thesis:

selection of an existing GPU-accelerated implementation of the Smith-Waterman algorithm that meets a

number of criteria such that modification and improvement of the program is possible (Section 5.2 and Section

5.3), and optimization of the selected program and its adaptation for aligning medium-length metagenomic

reads (Section 5.4). Since some of the steps in this chapter are dependent on results generated in the

previous chapters, a brief background on the subject is provided before each section to maximize readers’

comprehension of the methodology used. Some results fully reported in Chapter 6 are also previewed in this

chapter as the discussion is dependent on them.

5.1 Structure of this chapter

This chapter briefly reviews the most important principles of sequence alignment, common dynamic pro-

gramming techniques that are used in this domain, the alternatives for these algorithms and their relative

advantages and disadvantages. Based on the comparison results presented in Chapter 4 and the background

provided in Chapter 3, a detailed discussion is provided about the efforts made to reduce the runtime of se-

quence alignment algorithms running on commodity PC hardware (Sections 5.2.1 and 5.2.2). This discussion

will set the stage for identifying a set of GPU-accelerated alignment software that can be used to accurately

find potential overlaps between each pair of sequences from a given list in a timely manner. The suitability

of these software tools is determined based on the review of their published description and the evaluation

of their performance presented in Section 5.2.3.

After identifying the fastest sequence aligner, the performance of this program is benchmarked against

the performance of MIRA’s overlap determination stage (Section 5.2.4). The results of this comparison

prompts a close analysis of the chosen sequence aligner in order to identify its technical features. Section 5.3

describes these techniques. Some of these techniques will be further extended to improve the performance of

this software tool and some will be replaced. Full discussion on this topic can be found in Section 5.4. The

methodology followed in this research is presented in Figure 5.1.

43

Figure 5.1: Methodology flow chart

Find the fastest GPU-accelerated implementations of the Smith-

Waterman algorithm in the literatures (Section 5.2)

Review the software based on their published descriptions

(Section 5.2.1 & 5.2.2)

Evaluate the performance of these software (Section 5.2.3)

Compare the performance of the fastest software to the performance

of MIRA’s overlap determination technique (Section 5.2.4)

Is the fastest GPU-accelerated

implementation of the Smith-

Waterman algorithm faster than

MIRA’s overlap determination

technique?

Analyze the techniques used by the fastest software (Section 5.3)

Replace MIRA’s overlap determination technique with the fastest GPU-

accelerated implementation of the Smith-Waterman algorithm

Improve the thread scheduling method (Section 5.4.1)

Is there a technique that can

improve the performance of the

software?

The research concludes

Yes

Yes

No

No

Replace the query construction method (Section 5.4.2)

44

5.2 Selection of the fittest

5.2.1 Related works

As presented in Chapter 4, a group of assemblers that are currently used for assembly of medium-length

nucleotide data were evaluated. The applicability and performance of these assemblers were compared uti-

lizing simulated data of different microbial community complexities (low, medium and high complexities,

abbreviated as LC, MC and HC, respectively) as well as real DNA sequence fragments obtained from ran-

domly selected whole-community DNA using Ion Torrent technology. Considering the computational time,

maximum random access memory (RAM) occupancy, assembly accuracy and integrity, the presence of a

program’s source and its maintainability and modularity, our study identified MIRA as the best potential

assembly software that could meet our performance expectations while having the potential for improvement

and modifications. For this purpose, several independent sequential modules implemented in MIRA (Figure

1.1) were considered for change with scalable replacements. Eventually, the most compute-intensive portion

of the application (i.e. the alignment step using the Smith-Waterman algorithm) was selected for replacement

by an alternative approach.

Aknowledging the above consideration, it’s fitting to briefly review the Smith-Waterman algorithm and

some of the efforts made to increase the performance of this algorithm by exploiting hardware acceleration

techniques.

As discussed in Chapter 3, the Smith-Waterman algorithm is commonly used for computing optimal

pairwise sequence alignments. Algorithm 1 presents the first portion of a basic Smith-Waterman algorithm,

which determines the score of the best alignment, expressed in pseudocode. As illustrated, two sequences,

seqA and seqB, of lengths respectively m and n, are compared using the scoring matrix W and a gap

parameter, g. It is apparent that this algorithm calculates the values in a matrix of size m+ 1×n+ 1, where

one letter of the sequence seqB (outer loop) is compared against all letters of the sequence seqA (inner loop).

For each comparison, three intermediary results are produced in each iteration. The final value of score is

computed as the maximum of all the values found in each iteration. To obtain the alignment with that score,

one then performs a traceback step. As discussed in Chapter 3, overall complexity of the SW algorithm is

O(m× n).

It is noteworthy that the Smith-Waterman algorithm typically implemented using an affine gap penalty

scheme, rather than a simple gap penalty scheme illustrated in Algorithm 1. This implementation of the

Smith-Waterman algorithm requires the maintenance of 3 matrices instead of 1 (i.e. H), but the main idea

of the algorithm stays the same [33].

The complexity of the Smith-Waterman algorithm is quadratic with respect to the lengths of alignment

targets [18], which makes it time consuming for applications involving large datasets. Therefore, heuristic

methods have been introduced to accelerate sequence alignment. The drawback is that the more efficient the

45

Input : Sequences seqA of length m and n of length lenb

Assumptions: g is a gap-scoring scheme and W (seqA[i], seqB[j]) is a similarity function

(substitution matrix).

Initialize matrix S properly.

Build the matrix S row by row.

for (i = 1 to i = m+ 1) do

for (j = 1 to j = n+ 1) do

H[i, j] = max(

H[i− 1, j − 1] +W (seqA[i], seqB[j]),

H[i− 1, j] + g,

H[i, j − 1] + g,

0)

end

end

Return H[m,n]

Algorithm 1: Pseudocode of the first portion of the basic Smith-Waterman algorithm that calculates
the score of the best alignment (Focuse of this study). The alignment with that score is determined by a
subsequent traceback stage.

heuristics, the worse the quality of the result. Another approach to get high-quality results in a short time is to

use high-performance computing. Chapter 3.3 briefly discussed how the emergence of accelerator technologies

and many-core architectures, such as GPUs, has provided the opportunity to significantly reduce the runtime

for many bioinformatics programs, including the Smith-Waterman algorithm, on commonly available and

inexpensive hardware.

For instance, Oliver et al. [49, 48] constructed a linear systolic array1 to perform the Smith-Waterman

algorithm on a standard Virtex II FPGA board, achieving a peak performance of about 5 GCUPS (Giga Cell

Updates Per Second) using affine gap penalties. Li et al. [68] exploited custom instructions to accelerate the

SW algorithm on an Altera Stratix EP1S40 FPGA by dividing the SW matrix into grids of 8 × 8 cells and

achieved an estimated peak performance of about 23.8 GCUPS for DNA sequences. Farrar [50] exploited the

special instruction set introduced by the Intel Pentium 4 to compute the SW algorithm in a striped pattern,

outperforming the previous SIMD based SW implementations by Wozniak [52] and Rognes et al. [53]. This

striped SW approach was then optimized for Cell/BE [69]. SWPS3 [54] extends Farrar’s work for Cell/BE

and also improves it to support multi-core processors. CBESW [70] was designed for the Cell/BE-based

PlayStation 3 (PS3) and achieves a peak performance of about 3.6 GCUPS.

1Systolic arrays are arrays of processors which are connected to a small number of nearest neighbours in a network.

46

5.2.2 GPU-accelerated sequence aligners

The rapidly increasing power of graphics processing units provides the opportunity to significantly reduce

runtime for the sequence alignment operation using commodity PC hardware. Modern implementations of

the SW algorithm are mainly focused on this new technology. In this section, we briefly review some of the

more popular GPU-accelerated implementations of the Smith-Waterman algorithm based on their published

descriptions to determine their suitability for the purposes of this study.

The first implementation of the SW algorithm on GPUs was developed by Liu et al. [18] using OpenGL.

This work introduced two separate streaming algorithms for dynamic programming (DP)-based biological

sequence alignment. Both algorithms took advantage of the particular data dependency relationship in the

DP matrix (i.e. matrix H in Algorithm 1). They were implemented using C++ and OpenGL Shading

Language. The implementations of these algorithms achieved speedups of more than an order of magnitude

on cheap, readily available graphics hardware.

Although these results were encouraging, the introduction of CUDA and CUDA-enabled GPUs resulted

in a simpler and more efficient methodology for performing scientific computing on GPUs. The first imple-

mentation of the SW algorithm on NVIDIA CUDA-enabled GPUs was developed by Manavski et al. [51].

By taking advantage of the CUDA architecture which allows direct access to the hardware primitives of the

GPU, this method achieved a speedup of more than 3.5 GCUPS running on a workstation with two GeForce

GTX 280 cards. The implementation of this method performed 16 times faster than the previous method

proposed by Liu et al. [18].

Liu et. al [57] further explored the compute power of CUDA-enabled GPUs. CUDASW++, capable

of running on a single-GPU graphics card as well as multi-GPU graphics card, was proposed. An evalua-

tion of the CUDASW++ implementation on a single-GPU NVIDIA GeForce GTX 280 graphics card and a

dual-GPU GeForce GTX 295 graphics card illustrated the significant performance improvement of this al-

gorithm compared to other publicly available implementations, such as SWPS3 and CBESW. CUDASW++

supported query sequences of length up to 59K. For protein query sequences ranging in length from 144 to

5,478, the single-GPU version achieved performance between 9.039 and 9.660 GCUPS (average 9.509), and

the dual-GPU version achieved performance between 10.660 and 16.087 GCUPS (average 14.484 GCUPS).

CUDASW++ 2.0 further optimized the performance of its predecessor. It achieved performance improvement

over CUDASW++ 1.0 by as much as 1.77 times with a performance of up to 17 GCUPS on a single-GPU

GeForce GTX 280 and 30 GCUPS on an NVIDIA GeForce GTX 295 graphics card [75].

CUDASW++ 3.0 was introduced in 2013 [71] in order to maximize the performance of its predecessors

by fully taking advantage of NVIDIA’s latest CUDA architecture (i.e. Kepler). CUDASW++ 3.0, written

in CUDA C++ and PTX assembly languages, employs the new Streaming Multiprocessor Architecture

(SMX) exclusive to GPUs designed based on the Kepler architecture. This software tool attains significant

speedups over its predecessor, CUDASW++ 2.0, by taking advantage of CPU and GPU SIMD instructions

as well as the concurrent execution on CPUs and GPUs. Evaluation on the Swiss-Prot database shows that

47

CUDASW++ 3.0 has a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2 times, with a

maximum performance of 119.0 and 185.6 GCUPS for single- and dual-GPU versions, respectively [71].

All of the aforementioned software tools were specifically designed to perform protein database search

where one amino acid sequence is aligned with all the other sequences residing in a protein database. None of

these software has ever been utilized in a de novo assembler nor can any of these tools be readily incorporated

into an existing assembler. G-PAS was presented by Frohmberg et al. [72] as a software tool well-tailored

for the outlined problem. It therefore can be a viable candidate to be used in the DNA assembly problem.

According to the authors, G-PAS performs best for Roche/454 data (177 GCUPS), and even for relatively

short sequences from Illumina the algorithm achieves very good performance (112 GCUPS). Tests were

performed on a NVIDIA GeForce GTX 580 with 1.5GB of RAM.

The performance results for each software tool presented above are difficult to compare as they depend

heavily on the length of sequences, the length deviation of datasets, and the hardware used. Hence, fur-

ther comparison is needed in order to choose the best GPU-based implementation of the Smith-Waterman

algorithm for this work.

5.2.3 Comparing GPU-accelerated sequence alignment tools

As evident in the above review, search speed is often reported in GCUPS, which indicates the billions

(giga) of cells in the alignment matrix (see Section 3.4.2) processed per second. This metric was hence

used to measure the performance of the following algorithms: CUDASW++ 3.0 (v3.0.14) CUDASW++ 2.0

(v2.0.10), G-PAS(v2.0) and SW-CUDA (v1.92).

Considering that all the participating software tools were originally designed to accelerate protein database

searches, a different scoring scheme was required for working on nucleotide sequences. After modifying the

above mentioned software tools, the performance of these algorithms was benchm de novoarked using simu-

lated datasets as well as real WGS data. Figure 5.1 depicts this step as one of the steps in the methodology

followed in this thesis.

To this end, three simulated datasets of varying sizes were generated by the sequence simulator program

BEAR [64]. Ion Torrent data (377,630 reads in total) were used to train the read length and quality score

models of this simulator. Each dataset consisted of reads sampled from 3591 genomes (2 algae, 2155 bacteria,

34 fungi, and 1396 viruses). Real data was obtained from sediment samples using whole genome shotgun

sequencing via an Ion Torrent Personal Genome Machine. These data (i.e. real data) were filtered using

the FASTQ quality trimmer program [65]. For more information about the quality filtering of the real WGS

data and the process of generating the simulated data, please refer to Section 4.2. Table 5.1 shows the

characteristics of the data provided as input to the GPU-accelerated sequence aligners evaluated in this

section.

CUDASW++ 2.0 (v2.0.10), G-PAS(v2.0), and SW-CUDA (v1.92) are specifically designed to take ad-

vantage of the many-core computing power of NVIDIA’s Fermi architecture. The comparison between these

48

Table 5.1: Characteristics of input data

Simulated Data Real Data

Dataset Name SYN 1000.fna SYN 10K.fna SYN 100K.fna ENV 1000.fna ENV 10K.fna ENV 100K.fna

Reads Total Size (Bp) 197,919 1,978,585 19,710,973 181,980 1,897,797 19,388,890

Average read size 197 197 197 181 189 193

Size of the longest read 258 258 258 220 220 220

Number of the reads 1000 10,000 100,000 1000 10,000 100,000

Standard deviation

of read lengths
46 45 45 43 38 36

software tools and EMBOSS water was hence needed to be carried out on a machine with a Fermi architecture-

based GPUs card. A Lenovo M91p Tower with an Intel Core i7-2600 Quad Core (3.40/3.80GHz, 8MB Intel

Smart Cache, 1333MHz FSB) CPU, 4GB RAM and a NVIDIA GeForce GT 640 GPU (797MHz engine clock,

891 MHz memory clock, 2GB DDR3 memory with 128-bit bandwidth) with 384 CUDA cores was then chosen

for this purpose. Section 6.1.2 describes the results of the evaluation of the performance of these algorithms.

The fastest algorithm among CUDASW++ 2.0, G-PAS and SW-CUDA was then modified to run on a

machine equipped with a GPU with Kepler architecture. The performance of this algorithm was compared to

CUDASW++ 3.0 and EMBOSS water on a single NVIDIA GeForce GTX 680 graphics card (1006MHz engine

clock, 1502 MHz memory clock, and 2GB DDR5 RAM with 256-bit bandwidth) with 30 SMs (Streaming

Multiprocessors) comprising 1536 CUDA cores sharing a configurable 64 KB on-chip memory installed in a

Mac Pro with a 2.66 Quad core Intel Xeon CPU (L2 Cache (per Core): 256 KB, and L3 Cache: 8 MB) and

16 GB RAM. Section 6.1.2 reports the results of this comparison.

The EMBOSS sequential implementation of the Smith-Waterman (i.e. water [73]) algorithm is considered

to be the de facto standard implementation of this algorithm by many researchers. The performance of this

program aligning datasets of various sizes is reported in all the evaluations as the base line. The resultant

alignment scores of all the benchmarked algorithms were also compared against the alignment scores produced

by water and all reported the same score.

As it is fully presented in Section 6.1.2, CUDASW++ 3.0 considerably outperforms the other algorithms.

It is worth mentioning that the reported execution times used to calculate the GCUPS include the transfer

time of the query sequences from host to GPU, the calculation time of the SW algorithm, and the time taken

to transfer back the scores.

5.2.4 Is CUDASW++ 3.0 fast enough?

To answer the question of whether or not it is possible to improve the performance of an OLC-based assem-

bler by using a GPU-based acceleration technique, the performance of MIRA’s overlap determination stage

was compared against the performance of the fastest GPU-based implementation of the Smith-Waterman

49

algorithm. Tables 6.1 and 6.2 illustrate the results of this comparison.

It is important to note that due to lack of documentation and inadequate modularity in the software

design, MIRA’s overlap determination stage could not be extracted from MIRA package. The results of

the comparison clearly show the inadequate performance of CUDASW++ 3.0 in comparison to MIRA. The

performance of CUDASW++ 3.0 hence needed to be improved. Figure 5.1 illustrates the process of this

improvement step by step.

5.3 Improving the fittest

Considering the results of the evaluations outlined in Sections 5.2.3 and 5.2.4, this section describes in detail

the structure of CUDASW++ 3.0, exploring the technical features of this algorithm that make it far faster

compared to the other benchmarked software. Some of these techniques are further enhanced or completely

replaced to improve the performance of this software tool. Considering the specific characteristics of this

study’s target data (i.e medium-length (meta)genomic data), a goal of this thesis work is set to improve the

performance of CUDASW++ 3.0, while maintaining its accuracy, when aligning medium-length sequences.

The correctness of the resultant software is confirmed by comparing against the EMBOSS water program.

5.3.1 CUDASW++ 3.0

In the abstract, CUDASW++ 3.0 gains higher speed by benefiting from the faster, more efficient Kepler

architecture, its optimized GPU SIMD instructions and the concurrent CPU and GPU computations. This

algorithm works in four stages (see Figure 5.2):

1. Distribution of workloads over CPUs and GPUs according to their computing power.

2. Concurrent CPU and GPU computations.

3. Re-computation of all alignments that have exceeded the accuracy threshold using CPU SIMD

instructions.

4. Sorting of all alignment scores in descending order and the output of results.

Workload distribution

To balance the runtimes between the CPU and GPU SIMD computation, CUDASW++ 3.0 distributes the

workload according to the compute power of CPUs and GPUs as follows:

R =
NGfG

NGfG +NCfC/C
(5.1)

where fC and fG are the core frequencies of CPUs and GPUs, NC and NG are the number of CPU cores

and the number of GPU SMs, and C is a constant derived from empirical evaluations. This value of C is set

50

to set to 3.2 and hardcoded in the original program. The portion equal to R times of the total number of

residues in the dataset is assigned to GPUs. All other sequences are distributed to CPUs.

Figure 5.2: Program workflow of CUDASW++ 3.0. This figure is taken from Liu et al. paper [71].

Workload
distribution

Wait for the
completion of

CPU and
GPU

computations

Re-compute
all alignments
with indicative

overflow

Sort all
alignment
scores and
output the

results

Massively threaded
quad-lane SIMD
computation on

GPUs

Multi-threaded 16-
lane / 8-lane SIMD

computation on
CPUs

CPU computation

Following the method introduced in the SWIPE program [74], in the second step of the algorithm the CPU

computes the Smith-Waterman algorithm by splitting an SSE vector2 to 16 lanes with 8-bit lane width using

only a 7-bit score range (the 7-bit score range from -128 to -1 (signed numbers) or 128 to 255 (unsigned

numbers) is used). An 8-bit range, which would allow the same number (16) of parallel computations as

a 7-bit range, and at the same time allow a wider score range, is not used because it is slower. For more

information please refer to the paper by Rognes [74]. This allows residues from 16 different database sequences

to be processed in parallel. These 16 residues are all simultaneously compared to the same query residue.

The operations are carried out using vectors consisting of 16 independent bytes. The 16 residues are fed into

sixteen independent channels. When the first of these sixteen database sequences ends, the first residue of

the next database sequence is loaded into the channel [74].

All alignments, whose scores have overflow potential, are re-computed using 8-lane SSE vectors with

16-bit lane width. An alignment overflow potential is determined by comparing the alignment score with a

score limit calculated by subtracting from 128 the maximum substitution score in the scoring matrix. If the

score is greater than a score limit, the alignment is deemed to have an overflow potential and thus requires

re-computation. More details about the specific implementation of the SSE-based SW algorithm can be

obtained from the paper by Rognes [74].

2Streaming SIMD Extensions (SSE) is an SIMD instruction set.

51

SWIPE uses multiple threads that work on different parts of the sequence database. The number of

threads is specified when starting the program and should in general be equal to the number of cores of the

computer. For the latest generations of Intel processors with hyper-threading, a number of threads equal to

the number of logical cores is usually most effective. Since the workload (i.e. subject sequences assigned to

CPUs) is known beforehand, CUDASW++ 3.0 calculates the total number of residues in all assigned subject

sequences and equally distributes all residues over all threads using a sequence as a unit. This distribution

aims to make each thread hold the same number of residues, but not necessarily receiving the same number

of subject sequences [71].

GPU computation

Arguably the most important source of speedup in CUDASW++ 3.0 is the program’s ability to take advantage

of the new NVIDIA Kepler architecture. As discussed in Section 3.4.3, the Kepler architecture offers a new

streaming multiprocessor architecture (SMX) which leads to increases in the GPU power efficiency (e.g. two

Kepler CUDA cores consume 90% power of one Fermi CUDA core). Consequently the SMX can afford

additional processing units to execute a whole warp-per-cycle. As a result, it doubles the CUDA cores from

16 to 32 per CUDA array which in turn leads to significant speed up.

Another source of the performance speedup with the new architecture is the expansion of the per-thread

local memory size. During the execution of the Smith-Waterman algorithm intermediate alignment data

needs to be recorded. Previous versions of CUDASW++ (i.e version 1.0 and 2.0) used the global memory to

support long sequences and store the intermediate results. However, since the Kepler architecture has 512

KB per-thread local memory (as opposed to Fermi architecture’s 56 KB per-thread local memory), sequences

as long as 65,536 bp can be supported on GPUs. Hence use of global memory is not required anymore

for storing intermediate alignments. This expansion in the size of local memory also resolves the need for

specific memory access patterns and coalescing techniques (e.g. cell block division technique3) implemented

in previous versions of CUDASW++ (i.e versions 1.0 and 2.0).

The basis for the computations of the values in each cell in the alignment matrices are the recurrence

relations described in Section 3.2 and illustrated in Appendix B. Rognes [74] showed that this recurrence can

be written in as little as ten assembly instructions. This new technique of implementation reduced the need

for sophisticated flow control and hid the memory access latency which in turn led to more speedup. NVIDIA

Kepler architecture supports inline PTX assembly instructions as a low-level parallel thread execution virtual

machine and instruction set architecture. To gain more speedup, CUDASW++ 3.0 employs this new feature

and implements the recurrence the recurrence shown in Figure B.1. Appendix B provides more information

on this subject.

3To maximize performance and to reduce the bandwidth demand of global memory, CUDASW++ 1.0 and CUDASW++ 2.0
used the cell block division method for the inter-task parallelization, where the alignment matrix is divided into cell blocks of
equal size.

52

Virtualized SIMD abstraction

The Smith-Waterman algorithm can be parallelized in a variety of methods and scales using GPUs. Different

computation approaches have been introduced in order to parallelize the implementation of Smith-Waterman

algorithm. However, all these methods are based on the virtualized single instruction, multiple data (SIMD)

abstraction.

A brief review of GPU architecture can assist readers to better understand how virtualizing a warp as an

SIMD vector could lead to more speedup.

The GPU architecture is built around a fully programmable scalable processor array, organized into a

number of streaming multiprocessors (SMs). Depending on the architecture of the GPU, each SM contains a

number of scalar processors (SPs) sharing a PBSM (i.e. Per Block Shared Memory). All threads of a thread

block are executed concurrently on a single SM. The SM executes threads in small groups, called warps, in

an SIMT (i.e. Single Instruction Multiple Threads) fashion [75]. When one thread block is scheduled to

execute on an SM, threads in the thread block are split into warps that get scheduled by the SIMT unit. A

warp executes one common instruction at a time, but allows for instruction divergence. When divergence

occurs, the warp serially executes each branch path. Thus, parallel performance is generally penalized by

data-dependent conditional branches and improved if all threads in a warp follow the same execution path.

Branch divergence occurs only in a warp, and different warps run independently regardless of common or

disjointed code paths being executed [75]. A warp executes one common instruction at a time, therefore

all threads in a warp are implicitly synchronized after executing any instruction. Therefore, it is viable to

virtualize a warp as an SIMD vector with each thread as a vector element. For the convenience of discussion,

hereafter “SIMD vector” will be referred to as “vector”. It must be borne in mind that this is merely a

virtualization based on the SIMT model, and hence shares all the features of the SIMT model with an

additional ability to conduct vector computations. Simply put, each warp is virtualized as a vector and each

thread as an element in that vector.

Figure 5.3 shows the data independences in the alignment matrix. The final value of any cell in the

matrix cannot be computed before the values of all cells to the left and above it have been computed. But

the calculation of the values of diagonally arranged cells parallel to the minor diagonal are independent and

can be done simultaneously in parallel implementation (Figure 5.4 A). This fact has been utilized in Wozniak’s

work in 1997 [52]. Rognes and Seeberg [76] later found that using cells along the query sequence was faster

despite some data dependences, because loading values along the minor diagonal was too complicated [74].

The advantage of this method was the much-simplified and faster loading of the vector of substitution scores

from memory and the disadvantage was that the dependencies within the vector needed to be handled (See

Figure 5.4 part B).

Considering the optimal local alignment of a query sequence and a subject sequence as a task, CUD-

ASW++ 3.0 implements two approaches for parallel GPU computation: inter-task and intra-task. In the

inter-task approach each task is assigned to exactly one thread. Tasks are performed in parallel by differ-

53

Figure 5.3: Data independences in the alignment matrix. The result in the (i, j)th iteration depend
on (i− 1, j), (i− 1, j − 1) and (i, j − 1) values.

ent threads in a thread block. Inter-task parallelization occupies more device memory but achieves better

performance compared to the other approach. In the intra-task parallelization each task is assigned to one

thread block and all the threads in the thread block cooperate to perform the task in parallel, exploiting the

parallel characteristics of cells in the minor diagonals of an alignment matrix (the value of the cells along

the minor diagonal in the alignment matrix can be computed in parallel because these calculations are inde-

pendent). Although slower, intra-task parallelization occupies significantly less device memory and therefore

can support longer query/subject sequences.

CUDASW++ 3.0 employs both of the above mentioned stages. A subject sequence length threshold is

introduced to separate these two stages (i.e. inter- and intra-task). For subject sequences of length less

than or equal to the threshold, the alignments with a query sequence are performed in the first stage (i.e.

inter-task) in order to maximize the performance. The alignments of subject sequences of length greater

than threshold are carried out in the second stage (i.e. intra-task). Section 5.4.1 further discusses about the

subject sequence length threshold and its role in the algorithm.

Query-sequence profile

Due to the huge number of iterations in the Smith-Waterman algorithm, reducing the number of instructions

needed to perform one cell calculation has a significant impact on the execution time. Hence, a simple speed

improvement can be achieved by creating a variation of score profile for the query sequence. This profile

which can be considered as a query-specific substitution score matrix, is computed only once for the entire

search, and will save one memory lookup in the inner loop of the algorithm. The new matrix is indexed by

the query sequence position and the database sequence symbol (See Figure 5.9 part A).

54

Figure 5.4: Vector arrangement techniques. (A) Traditional approach with vectors parallel to the
minor diagonal. (B) CUDASW++ 3.0 approach with vectors parallel to the query sequence. The first
four vectors processed indicated in different shades of gray. For simplicity, vectors of only 4 elements
are shown.

Q
ue

ry
 S

eq
ue

nc
es

Q
ue

ry
 S

eq
ue

nc
es

Subject Sequences Subject Sequences
A) B)

In this regard and to follow the Rognes and Seeberg’s virtualized SIMD technique, CUDASW++ 3.0

constructs query profiles, parallel to the query sequence for each possible residue (Figure 5.9 part B). This

profile is small enough to be kept in the texture memory.

Given a query S defined over an alphabet A, a query profile is defined as a numerical string set:

P = {Pr | r ∈ A} (5.2)

where, for each r ∈ A, Pr is a numeric string comprised of substitution scores required for aligning the whole

query to the residue r. CUDASW++ 3.0 constructs the query profile in a way that the ith value of Pr is

defined as:

Pr[i] = sbt(r,S[i]) where 1 ≤ i ≤ |S| (5.3)

Inspired by the fact that texture instructions output filtered samples, typically a four-component (RGBA)

colour [77], the implemented query profile is re-organized using a packed data format, where each numerical

string, Pr, is packed and represented using the char4 vector datatype. In this way, four substitution scores

55

are realized using only one texture fetch, thus significantly improving texture memory throughput. Like the

query profile, each subject sequence is also re-organized using a packed data format, where four successive

residues of each subject sequence are packed together and represented using the uchar4 vector data type.

5.4 MR-CUDASW

As apparent by the results from the evaluation outlined in Section 6.1.2, CUDASW++ 3.0 shows the best

performance among the benchmarked GPU-based sequences aligners. However, considering that the elapsed

real time of the whole MIRA assembly process is significantly smaller than the elapsed real time of CUD-

ASW++ 3.0 (Tables 6.1 and 6.2), the performance of this software needs to be improved further in order to

replace MIRA’s overlap determination technique.

It is important to remember that unlike most of the currently existing GPU-based implementations of

the Smith-Waterman algorithm that are designed to perform protein database searches, this study is an

application where nucleotide sequences are aligned. As mentioned before, this study assumes that its target

set of sequences has the characteristics of reads from a medium-length next generation sequencing technology

(e.g. Ion Torrent). It also assumes that these reads are already quality-filtered and are ready for downstream

analysis (e.g. assembly). Considering the above assumptions, it is expected that the lengths of these sequences

vary from ∼ 100bp to ∼ 300bp. This range of sequence lengths leads to a far smaller sequence length deviation

compared to the case where a query sequence is aligned with all the others sequences residing in a database.

In this regard, highlighted stages in Figure 5.5, which shows the program workflow of CUDASW++ 3.0,

were replaced by custom methods specifically designed to handle medium-length reads. Eventually, all these

modifications were combined together to create MR-CUDASW: the final improved version of CUDASW++

3.0, specifically designed to handle medium-length sequences. The following sections describe why these

stages were selected for further modifications and what improvements have been made.

5.4.1 Sequence length deviation & thread scheduling

As discussed above, CUDASW++ 3.0 and its predecessors (i.e. CUDASW++ 1.0 and 2.0) use two stages to

complete the database searches: the first stage uses inter-task parallelization employing thread-level paral-

lelism, and the second stage utilizes intra-task parallelization using data parallelism. As described in Section

5.3.1, CUDASW++ 3.0 makes use of a subject sequence length threshold to separate the two stages. For

subject sequences of length less than or equal to the threshold, the alignments with a query sequence are

performed in the first stage in order to maximize the performance. Although this threshold is highly depen-

dent on the memory size of the graphics hardware in use, CUDASW++ 3.0 has the threshold hardcoded

and set to 3,072. Considering the relatively short lengths of our target reads and the expanded per-thread

local memory size of the Kepler architecture, our improved version of CUDASW++ 3.0 only implements

the inter-task parallelization approach. It has already been proven by Liu et al. [75] that the inter-task

56

Figure 5.5: Program workflow of CUDASW++ 3.0. The highlighted boxes were subject to modifi-
cations.

Workload
distribution

Wait for the
completion of

CPU and
GPU

computations

Re-compute
all alignments
with indicative

overflow

Sort all
alignment

scores and
output the

results

Massively threaded
quad-lane SIMD
computation on

GPUs

Multi-threaded 16-
lane / 8-lane SIMD

computation on
CPUs

parallelization dominates the total runtime. Considering that each task (i.e. finding the optimal alignment

between two sequences) is assigned to exactly one thread, improving the existing thread scheduling technique

was a viable option.

The length of biological sequences residing in a dataset varies. Since the size of the required memory and

the computation time of a thread is determined by the longest sequences, the length distribution of sequences

influences the application’s performance. As a result, long lags are introduced for the alignment of the shorter

sequences. In order to achieve high efficiency for inter-task parallelization, the runtime of all threads in a

thread block should be roughly identical (i.e. threads must be synchronized). Thread synchronization in

CUDA follows strict synchronization rules: All threads in a block must hit the synchronization point or

none of them must hit synchronization point [78] (Figure 5.6). Hence, it is important that for two adjacent

threads in a thread block, the difference between the products of the lengths of the associated sequences

be minimized. An easy, yet effective, solution is to sort the sequences in the database and then partition

them into number of groups each containing sequences with roughly identical size. This technique has been

implemented in CUDASW++ algorithm since the earliest version of this program [18] and it has been shown

that a lot of superfluous computations can be omitted as the result of this technique. See Figure 5.7.

Sorting the sequences in an order of sequence length simplifies thread scheduling and reduces the size

of buffers, which in turn leads to decreasing the number of superfluous computations. However, it can

be beneficial to distribute the workload in a more intuitive manner. As stated above, the sequence length

deviation generally causes runtime imbalance between threads and consequently wastes GPU compute power.

In this regard, instead of distributing the workload only according to the compute power of CPUs and GPUs,

the technique employed in CUDASW++ 3.0, MR-CUDASW also uses the length of the query sequence, the

57

Figure 5.6: CUDA thread synchronization rules. All threads in a block must hit the synchronization
point (red line in the figure) or none of them must hit synchronization point.

Waiting

Time

Active

T1 T2 T3 T4 T(n-2)T(n-1)

length of the subject sequence, and the average sequence length deviation calculated for all the sequences

residing in a dataset. In this technique, if the difference between the query and subject sequences is larger

than the average sequence length deviation of the dataset, the subject sequence will be assigned to the CPU.

Referring back to Equation 5.1, the number of sequences distributed to the CPU will not be larger than

(1−R) times the total number of residues in the dataset. Therefore, the workload is distributed based on the

length of the query sequence, the length of the subject sequence, and the average sequence length deviation

calculated for the dataset, as well as the compute power of the CPUs and GPUs. See Figure 5.8.

To evaluate the effects of the above mentioned modification, the modified software was evaluated against

the original algorithm. The performance of EMBOSS water was also provided as a point of comparison. To

ensure the fidelity of the alignment scores in each step, a method analogous to the procedure outlined in

Section 5.3.1 was employed. All the comparisons were carried out using simulated and real WGS data (Table

5.1 describes the characteristics of the data). The results of these evaluation are presented in Section 6.2.1.

58

Figure 5.7: Arrangement of subject sequences in the database for the inter-task parallelization. To
achieve high efficiency for inter-task parallelization, all the sequences in the database are sorted and
then partitioned into number of groups each containing sequences with roughly identical size.

Subject sequences Sorted subject sequences

59

Figure 5.8: The workload distribution technique employed in MR-CUDASW. This figure demon-
strates the arrangement of the subject sequences in the database. All the sequences in the database
are sorted and partitioned into a number of groups each containing sequences with roughly identical
size. A query sequence will be selected from each batch. If the difference between the query and sub-
ject sequences is larger than the average sequence length deviation of the dataset, the subject sequence
will be assigned to CPU.

CPU

GPU

CPU GPU

CPU Score

GPU Score

QuerySubjects

60

5.4.2 Query profile

The new workload distribution technique leads to a significant improvement in the performance of the software

(Section 6.2.1). However, referring to Tables 6.1 and 6.2, the elapsed real time of the entire MIRA process is

still notably smaller than the time that MR-CUDASW takes to determine overlaps between pairs of medium-

length sequences. More improvements are needed.

As already indicated, CUDASW++ 3.0 employed the sequential layout query profile [76] in which the

SIMD registers contained values parallel to the query sequence (Figure 5.4, part B). A disadvantage introduced

by processing the values vertically is that conditional branches are placed in the inner loop to compute H

(See Algorithm 1). With conditional code the execution time is dependent on the length of the query string

and the database, the scoring matrix and gap penalties [50].

In order to address these shortcomings, another implementation of the Smith-Waterman algorithm where

the SIMD registers are parallel to the query sequence, but are accessed in a striped pattern, was introduced

by Farrar et al. [50]. The striped Smith-Waterman implementation takes a similar approach to the Rognes

and Seeberg’s technique [76] by pre-calculating the query profile, but with a different layout than used in

that method (Figure. 5.9).

When calculating H[i, j] the value from the scoring matrix W (seqA[i], seqB[j]) is added to H[i1], [j1].

To avoid the lookup of W (seqA[i], seqB[j]) for each cell, Rognes and Seeberg [76] calculated a query profile

parallel to the query for each possible residue. The query profile is calculated just once for each database

search. Then the calculation of H[i, j] requires just an addition of the pre-calculated score to the previous

H[i, j]. The striped Smith-Waterman implementation takes a similar approach by pre-calculating the query

profile, but with a different layout than Rognes.

The layout used by the query profile is a striped access parallel to the query sequence, S. The query is

divided into equal length segments, s. The number of segments, p, is equal to the number of elements being

processed in the SIMD register. The length of each segment, t, is (|S| + p − 1)/p. If the query is not long

enough to fill all the segments, t > |S| , the segments are padded with null entries. The query residues are

represented by q. The query segments are defined as follows. In the following formula, n index represents

the segment number

sn = qt(n−1)+1, qt(n−1)+2, . . . , qt(n−1)+t where 1 ≤ n ≤ |s|.

The length of each segment is defined as:

|sn| = t = (|S|+ p− 1)/p. (5.4)

As mentioned earlier, if |S| is not a multiple of p, S is first padded with dummy residues. For the sake of

simplicity, herein it is assumed that |S| is a multiple of p. Given a query S defined over an alphabet A, a

query profile is defined as a numerical string set:

P = {Pr | r ∈ A}.

61

Accordingly, each numerical string Pr of a query profile can be considered as a set of non-overlapping,

consecutive p-length vector segments of |sn| elements. Hence Pr in the new approach is defined as:

P = {Pr | r ∈ A}Pr[i] = sbt(r,S[((i− 1)%p)× |sx|+ (i− 1)/p+ 1]) where 1 ≤ i ≤ |S| (5.5)

Figure 5.9: Approaches to vectorization of Smith-Waterman alignments. (A) Vectors along the query,
described by Rognes and Seeberg [74] (used in CUDASW++ 3.0). (B) Striped approach, described by
Farrar [69] where p = 4 and |s| = t = 4. The row encircled by the dash line illustrates a query profile
(Pr).

-1

-2

-1

-1

-3

...

4

5

-1

-1

1

-1

0

0

-3

-2

-1

-3

1

-1

-2

-2

1

-1

...

0

-2

-2

-3

-1

-3

4

0

-1

-3

1

-1

0

0

-1

-1

-1

-3

...

4

-1

-2

0

-1

-3

4

A

C

...

N

-2 4 -1 5 -2 1 -2 5 -3 -2 -3 0 -1 4 -2 4G

R
esidues in A

Query Sequences S
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16

-1

-2

-1

0

-3

...

-2

-2

-2

-3

0

-1

-1

-1

-3

4

-1

-3

1

-1

-3

-3

-1

-3

...

4

5

-1

-1

-1

-2

-2

0

-1

-3

-1

-2

0

1

-1

0

1

-1

...

0

1

-1

0

-1

-3

4

A

C

N

-2 -2 -3 -1 4 1 -2 4 -1 -2 -3 -2 5 5 0 4G
R

esidues in A

q1 q2t+1 q3t+1 q4t+1 q2 q2t+2 q3t+2 q4t+2 q3 q2t+3 q3t+3 q4t+3 q4 q2t+4 q3t+4 q4t+4

s1

Query Sequences S
s2 s3

(A)

(B)

a1

...

s4 = sp

Each element of the SIMD registers maps to one segment. The first element in the vector maps to s1,

the second element in the vector maps to s2, till the last element in the vector maps to sp. The vectors

move uniformly across the segments, so SIMD registers process the ith element of all the segments. Both the

Wozniak [52] and Rognes and Seeberg [76] implementations have data dependencies between the previous

H vector and the current H vector (Figure 5.10). Before H is calculated, the last element in the previous

vector is moved to the first element in the current vector. By using the striped query access, these data

62

dependencies are moved out of the inner loop and processed just once in the outer loop when processing the

next database residue. This technique, already implemented by Liu et al. [75] in CUDASW++ 2.0 (replaced

in CUDASW++ 3.0 with Rognes and Seeberg’s [76] technique), is cited to achieve the best performance [74].

The performance of this technique is highly dependent on query length though [54].

Figure 5.10: Data dependencies between SIMD registers holding the H values with the Rognes and
Wozniak implementations. The last element in the previous vector is inserted in the current vector
when calculating the next H vectors. Taken from a study by Micheal Farrar [69].

Considering the length of this study’s target sequences and the sequence length deviation of the dataset,

Farrar’s approach [69] was selected as the alternative method of constructing sequence query profiles. The

CUDASW++ 2.0 implementation of Farrar’s method of query profile construction employs global memory for

storing intermediate elements. Our technique, in contrast, stores the striped query profile in texture memory

to exploit the texture cache. Subject sequences and the query profile are also stored using the scalar data

type in an unpacked fashion because the inner loop is a for loop without manual unrolling4. Considering

that the Kepler architecture has 512 KB per-thread local memory, the intermediate element values of H(i, j)

are stored in local memory.

5.4.3 Ensuring the fidelity of the result

As presented above, a number of improvements and changes have been made to the original implementation

of CUDASW++ 3.0 (v3.0.14). Workload distribution, query profile construction, and thread scheduling

techniques implemented in CUDASW++ 3.0 were replaced by custom methods specifically designed to handle

medium-length reads. To ensure the correctness of the resultant tool, its results are evaluated against

the EMBOSS sequential implementation of Smith-Waterman algorithm. All the resultant scores from two

programs are then compared using a custom shell script and in all the cases scores were identical (data not

shown).

4A loop transformation technique that attempts to optimize a program’s execution speed at the expense of its binary size
(space-time tradeoff). The transformation can be undertaken manually by the programmer or by an optimizing compiler.

63

Chapter 6

Results

This chapter of the thesis presents results concerning the comparison of some of the popular GPU-

accelerated sequence alignment software based on their performance. The goal of this study was to determine

their suitability for the purpose of this study (Section 6.1). Section 6.1.1 describes the metrics used for this

evaluation and finally Section 6.1.2 presents the results of the comparison. Results of the attempts to improve

the fastest existing GPU-based implementation of the Smith-Waterman algorithm is presented in Section 6.2.

By comparing the modified version of the software to the original algorithm, this section, step by step, presents

the effects of our modifications on the performance of the original software. Finally, Section 6.3 evaluates

the efficacy of the resultant algorithm (i.e MR-CUDASW) when compared to an OLC-based assembler.

6.1 Benchmarking GPU-accelerated Smith-Waterman tools

As stated before, the goal of this thesis is to determine the possibility of improving the performance of

the overlap determination stage of an OLC-based assembler by using a GPU-based implementation of the

Smith-Waterman algorithm. In this regard, identifying a set of GPU-accelerated aligners performing the

Smith-Waterman algorithm was needed. Referring back to section 5.2.1, there are number of sequence

alignment software tools that focus on implementing the Smith-Waterman algorithms on GPUs. Our brief

review of some of the more popular software, based on their published description, assisted us to determine

their suitability for the purpose of this study and narrow down the list of the algorithms that could potentially

be useful. However, the published results presenting the performance of these software tools can be confusing.

These results depend heavily on the length of sequences and the hardware used to perform the comparison.

Hence more in-depth examination of each software tool is required. To this end, three simulated nucleotide

datasets as well as three real nucleotide datasets containing 1000, 10,000, and 100,000 reads were used to

benchmark these algorithms.

64

6.1.1 Metric

To measure the performance of the various implementations of Smith-Waterman algorithms, the Giga Cell

Updates per Second (GCUPS) metric is commonly used. GCUPS represents the number of updates of the

similarity matrix per unit time. Equation 6.1 formulates the relation, where R denotes the total number of

residues in the dataset, and T denotes the time it takes to perform the computation in seconds.

GCUPS =
R2

T × 109
(6.1)

6.1.2 Benchmarking

This section describes the result of the evaluation of the performance of the following algorithms: CUD-

ASW++ 3.0 (v3.0.14), CUDASW++ 2.0 (v2.0.10), G-PAS(v2.0), SW-CUDA (v1.92) and EMBOSS water

(v6.4.0.0). Except for CUDASW++ 3.0 which is explicitly designed to run on the Kepler architecture and

water, all the above mentioned software tools are designed to take advantage of many-core parallelism on

GPUs with Fermi architecture and cannot be readily transformed onto a machine with Kepler architecture

GPU. Hence our comparison was carried out in two steps. First, all the software tools designed based on the

Fermi architecture were compared against each other and water on a Lenovo M91p Tower with Intel Core i7-

2600 Quad Core (3.40/3.80GHz, 8MB Intel Smart Cache, 1333MHz FSB), 4GB RAM and NVIDIA GeForce

GT 640 GPU (901MHz Engine Clock, 1782MHz, GDDR3 2GB, 128-bit). All the participating software in

this evaluation exploited an opening gap penalty of 10 and extending gap penalty of 2.

To ensure the correctness of the results, all the alignments scores were evaluated against the EMBOSS

sequential implementation of Smith-Waterman algorithm. All the scores from two programs were compared

using a custom shell script. All the participating algorithms reported identical alignment scores to the scores

reported by water (data not shown).

After confirming the fidelity of the outcome alignment scores, all data was copied to a fast local disk to

reduce the influence of the computer networks and minimize file reading time. The output from all programs

was discarded to minimize performance differences due to the amount of output. To simplify the comparison,

all the sequences aligners were run one at a time (without any other program running using the machine)

using their default parameters. All programs were run 10 times and the median total elapsed execution time

was recorded. Figures 6.1 and 6.2 illustrate the results of this evaluation. As it is evident in the following

figures, water achieved nearly constant, very poor performance (< 0.01GCUPS) for all the database sizes in

our evaluations. Performance details of the algorithms participating in this evaluation, including the recorded

elapsed real time, user time, and system time, can be found in Appendix C.

The fastest sequence aligner running on a Fermi architecture GPU was then modified to run on a Kepler

architecture. Considering that our Kepler architecture GPU is installed in a Mac Pro machine, additional

modifications were required for CUDASW++ 2.0 to participate in this evaluation (some data types and

65

Figure 6.1: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in simulated datasets of varying sizes on GT 640 Fermi architecture GPU. G-PSA and
SW-CUDA failed to finish the alignment process within a reasonable time and hence, there is no
information to report their performances.

4

0

 3

0.5

1

1.5

2

2.5

3.5

10K

G
CU

PS

1000 100K
WATER
SW-CUDA

G-PSA

CUDASW++ 2.0

WATER
SW-CUDA

G-PSA

CUDASW++ 2.0

WATER

CUDASW++ 2.0

Database Size

libraries were the subject of modifications). This algorithm was compared to CUDASW++ 3.0 (v3.0.14)

and EMBOSS water (v6.4.0.0). All the comparisons were carried out on a single NVIDIA GeForce GTX 680

graphic card with 30 SMs (Streaming Multiprocessors) comprises 192 CUDA SP (Scalar Processor) cores

sharing a configurable 64 KB on-chip memory and 2.048 GB RAM installed in a Mac Pro with a 2.66 Quad

core Intel Xeon CPU (256 KB L2 Cache, and 8 MB L3 Cache) and 16 GB RAM. Again, all the resultant

alignment scores were compared against EMBOSS water alignment scores and in all the cases scores were

identical (data not shown). Like the first phase, all the outputs from programs were redirected to /dev/null to

minimize performance differences. Except for the same open and gap penalties and the same scoring matrix,

all the programs utilized their default parameters. All the programs were run 10 times and the median total

elapsed execution time was recorded. Figures 6.3 and 6.4 show the performance details of GPU-accelerated

alignment software aligning datasets of various size on a Kepler architecture GPU.

To answer the question of whether or not it is possible to improve the performance of an OLC-based

assembly software by using a GPU-based acceleration techniques, we need to compare the performance of

the overlap determination stage of an OLC-based assembler (e.g. MIRA) with the the fastest GPU-based

implementation of Smith-Waterman algorithm. Tables 6.1 and 6.2 illustrate the performance of CUDASW++

3.0 and MIRA for simulated and real WGS datasets with varying number of queries. It should be noted that

the numbers reported in order to present the performance of the MIRA overlap determination technique, in

fact show the performance of the whole assembly process. The MIRA’s overlap determination stage could not

66

Figure 6.2: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in real WGS datasets of varying sizes on GT 640 Fermi architecture GPU. G-PSA
and SW-CUDA failed to finish the alignment process within a reasonable time and hence, there is no
information to report their performances.

4

0

0.5

1

1.5

2

2.5

3

3.5

10K

G
CU

PS

1000 100K

WATER
SW-CUDA

G-PSA

CUDASW++ 2.0

WATER
SW-CUDA

G-PSA

CUDASW++ 2.0

WATER

CUDASW++ 2.0

Database Size

be extracted from MIRA package or individually implemented due to lack of documentation and inadequate

modularity in the software design. Nevertheless, our evaluation results resolved the need for reimplementation

of this stage by illustrating the poor performance of CUDASW++ 3.0. This evaluation provides insights

into the relative importance of improving the performance of CUDASW++ 3.0 as the fastest existing SW

implementation for general-purpose GPUs (GPGPUs).

6.2 Improving CUDASW++ 3.0

As the result of the evaluation outlined in Section 6.1.2, CUDASW++ 3.0 shows the best performance

among the other benchmarked GPU-based implementations of the Smith-Waterman algorithm. However,

considering that, for the datasets of considerable sizes (> 10,000 queries), the elapsed real time of the entire

MIRA’s assembly process is significantly smaller that the elapsed real time of CUDASW++ 3.0 (Tables 6.1

and 6.2), the performance of this software still needs to be improved in order to replace MIRA’s overlap

determination technique.

To this end, CUDASW++ 3.0 was closely analyzed and the technical features that make this software

far faster than the other benchmarked software were identified. Some of these techniques were further

expanded to improve the performance of this software tool and some were replaced. Over the course of this

phase, workload distribution, query profile construction, and thread scheduling techniques implemented in

67

Figure 6.3: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in simulated datasets of varying sizes on GTX 680 Kepler architecture GPU.

0 1000 100K

70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

10K

G
CU

PS

CUDASW++ 3.0

CUDASW++ 2.0

WATERWATERWATER

CUDASW++ 2.0

CUDASW++ 2.0

CUDASW++ 3.0

CUDASW++ 3.0

Database Size

CUDASW++ 3.0 were replaced by techniques specifically customized to handle medium-length reads (See

Section 5.3).

As discussed in Section 5.3, the modifications were implemented step by step, leading to a final improved

version of the original programs. To better illustrate the effects of each step, the modified version of the

software was compared to the original algorithm after each modification. The performance of EMBOSS water

is also provided as point of comparison. To ensure the fidelity of the alignment scores in each step, a method

analogous to the procedure outlined in Section 5.3.1 was employed; the resultant software was evaluated

against the EMBOSS sequential implementation of Smith-Waterman algorithm. All the resultant alignment

scores from the modified version of the software were compared against EMBOSS water alignment scores

using a custom shell script. The following section briefly reviews the process of replacing and customizing

the thread scheduling and workload distribution techniques used by CUDASW++ 3.0 and presents the

performance data.

6.2.1 Sequence length deviation and thread scheduling

As outlined in detail in Section 5.4, various modifications were made to the first and second stages of

the CUDASW++ 3.0 algorithm in order to customize the original algorithm to be more compatible with

medium-length nucleotide sequences. Considering the specific characteristics of this study’s target sequences

(i.e. medium-length of the query sequences and the small overall sequence length deviation), CUDASW++

68

Figure 6.4: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in real WGS datasets of varying sizes on GTX 680 Kepler architecture GPU.

0 1000 100K

70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

10K

G
CU

PS

CUDASW++ 2.0

WATERWATERWATER

CUDASW++ 2.0

CUDASW++ 2.0

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

Database Size

3.0’s thread scheduling and workload distribution techniques were subject to modifications (Section 5.4.1).

By focusing on a distinct range of sequence lengths and taking advantage of the expanded per-thread local

memory size of the Kepler architecture, MR-CUDASW resolved the need of implementing the intra-task

parallelization method. In addition, instead of distributing the workload only according to the compute

power of CPU and GPUs (technique employed in CUDASW++ 3.0), the workload distribution is distributed

based on the length of the query sequence, the length of the subject sequence, and the total sequence length

deviation calculated for the dataset as well as the compute power of the CPU and the GPUs.

Using the mentioned thread scheduling and workload distribution techniques, the waste of CPU and GPU

SIMD instructions are avoided as all alignments in all lanes are completed at the same time. It can also

avoid the computational imbalance between threads within a warp and a thread block. Figures 6.5 and 6.6

illustrate the significant effects of these modifications on improving the performance of the modified software.

6.2.2 Query profile

As illustrated in Figures 6.5 and 6.6, modifying CUDASW++ 3.0’s thread scheduling and workload distri-

bution techniques led to a significant speedup. However, as shown in Tables 6.1 and 6.2, and Figures 6.5 and

6.6, the performance of the whole MIRA’s assembly process is still far better than the performance of the

modified version of the algorithm. More improvements were needed.

Referring back to Section 5.4.2, during the computations of the matrix cells the values in the two arrays

69

Table 6.1: Performance details of CUDASW++ 3.0 and MIRA. Datasets of various number of
simulated data were used for this experiment.

Software Elapsed real time a User time b System time c GCUPS

SYN 1000.fna

CUDASW++ 3.0 0 m 7 s 0 m 9 s 0 m 1 s 5.95

MIRA 4.0 0 m 26 s 0 m 3 s 0 m 4 s 1.50

SYN 10K.fna

CUDASW++ 3.0 1 m 53 s 6 m 20 s 0 m 11 s 34.64

MIRA 4.0 0 m 58 s 0 m 12 s 0 m 11 s 67.49

SYN 100K.fna

CUDASW++ 3.0 102 m 32 s 408 m 18 s 2 m 16 s 63.15

MIRA 4.0 37 m 6 s 7 m 11 s 2 m 33 s 174.53

aThe time or difference between a beginning time and an ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.

with the H and E values usually have to be read and written once for each matrix cell. These arrays are

usually small enough to be cached at a close cache level, so the memory access time should not be a major

concern. However these data still need to be written and read back for each cell. Since there is ample

space for keeping the H, E and F values of a few cells in the registers, it is possible to reduce running time

somewhat by computing a few consecutive cells along the database sequences before moving on to the next

query residue. To this end, CUDASW++ 3.0 makes use of the Rognes and Seeberg’s technique to construct

query profiles, parallel to the query sequence for each possible residue (Figure 5.4 part B). In this way, four

substitution scores are realized using only one texture fetch, thus significantly improve the texture memory

throughput. Although effective, the execution time of this method is heavily dependent on the length of

the query string and the database, the scoring matrix and gap penalties. As discussed in Section 5.4.2, the

striped implementation of the Smith-Waterman algorithm introduced by Farrar et al. [50] was an alternative

to address the shortcomings of Rognes and Seeberg’s technique. This approach is believed to be the fastest

implementation of this algorithm, though highly dependent on query length [74]. The effects of this technique

were also explored in the earlier version of CUDASW++ 3.0 [75].

Once again, a distinct range of the target sequences provides this study with the opportunity for exploring

the effects of the striped implementation of the Smith-Waterman algorithm on a Kepler architecture GPU,

without being concerned about this technique’s high dependency on query length. Herein, by improving and

customizing the already-implemented striped query profile technique for the Kepler architecture and taking

advantage of this architecture’s expanded texture memory, the new modified program illustrated superior

speedup comparing to the original version of the software. Figures 6.7 and 6.8 show the effects of this

modification on improving the performance of CUDASW++ 3.0.

70

Table 6.2: Performance details of CUDASW++ 3.0 and MIRA. Datasets of various number of real
WGS data were used for this experiment.

Software Elapsed real time a User time b System time c GCUPS

ENV 1000.fna

CUDASW++ 3.0 0 m 6 s 0 m 8 s 0 m 1 s 5.51

MIRA 4.0 0 m 12 s 0 m 0 s 0 m 1 s 2.75

ENV 10K.fna

CUDASW++ 3.0 1 m 33 s 5 m 17 s 0 m 10 s 38.72

MIRA 4.0 0 m 19 s 0 m 3 s 0 m 4 s 189.55

ENV 100K.fna

CUDASW++ 3.0 104 m 49 s 405 m 54 s 2 m 8 s 59.77

MIRA 4.0 2 m 49 s 0 m 36 s 0 m 35 s 2224.43

aThe time or difference between a beginning time and an ending time of the program
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode

Figure 6.5: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning
simulated datasets of varying sizes. “ths” represents the modified software implementing the new
thread scheduling and workload distribution techniques.

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

WATERWATERWATER

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

Dataset size

71

Figure 6.6: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning real
WGS datasets of varying sizes. “ths” represents the modified software implementing the new thread
scheduling and workload distribution techniques.

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

WATERWATERWATER

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

Dataset size

Figure 6.7: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning
simulated datasets of varying sizes. “qprf” represents the modified software implementing striped
query profile technique

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

WATERWATERWATER

MR-CUDASW++ (qprf)

MR-CUDASW++ (qprf)

MR-CUDASW++ (qprf)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

Dataset size

72

Figure 6.8: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning real
WGS datasets of varying sizes. “qprf” represents the modified software implementing striped query
profile technique.

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

WATERWATERWATER

MR-CUDASW++ (qprf)

MR-CUDASW++ (qprf)

MR-CUDASW++ (qprf)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

Dataset size

73

6.3 Evaluating MR-CUDASW

As discussed above, various modifications were made to improve the performance of CUDASW++ 3.0 (in or-

der to replace this algorithm with the overlap determination technique used in MIRA assembly program). In

this regard, workload distribution, query profile construction, and thread scheduling techniques implemented

in CUDASW++ 3.0 were replaced by custom methods specifically designed to handle medium-length se-

quences. Effects of each of these modifications were measured in the previous sections. Eventually, all these

modifications were combined together to create MR-CUDASW: the final improved version of CUDASW++

3.0, specifically designed to handle medium-length sequences. Figures 6.9 and 6.10 illustrate the improvement

in the performance of MR-CUDASW after each step. The performance of the final software is also presented.

Figure 6.9: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning
simulated datasets of varying sizes. “qprf” represents the version of MR-CUDASW implementing
the striped query profile technique. “ths” represents the version of MR-CUDASW with the modified
thread scheduling and workload distribution techniques.

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

MR-CUDASW (qprf)
MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

MR-CUDASW (qprf)

MR-CUDASW (qprf)

MR-CUDASW++

MR-CUDASW++

MR-CUDASW++

WATERWATERWATER

Dataset size

After confirming the correctness of the alignment scores produced by this software using the technique

introduced in Section 5.2.3, the performance of the resultant software was compared with MIRA’s overlap

detection phase. As mentioned before, however, due to lack of documentation and inadequate modularity in

the software design, MIRA’s overlap determination stage could not be extracted from MIRA package. The

performance of the whole MIRA’s assembly process, hence, was reported.

To this end, performances of all algorithms were compared by using simulated and real WGS datasets of

varying sizes. Figures 6.11 and 6.12 illustrate the performance of all the evaluated algorithms for varying

74

Figure 6.10: Effects of modifications on improving the performance of CUDASW++ 3.0 aligning
real WGS datasets of varying sizes. “qprf” represents the version of MR-CUDASW implementing
the striped query profile technique. “ths” represents the version of MR-CUDASW with the modified
thread scheduling and workload distribution techniques.

0 1000 100K

90

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

10K

G
CU

PS

MR-CUDASW (qprf)

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

MR-CUDASW++ (ths)

CUDASW++ 3.0

CUDASW++ 3.0

CUDASW++ 3.0

MR-CUDASW (qprf)

MR-CUDASW (qprf)

MR-CUDASW++

MR-CUDASW++

MR-CUDASW++

WATERWATERWATER

Dataset size

dataset sizes. On GTX680 graphic card (with the Kepler architecture), MR-CUDASW yields an average

performance of 46.09 GCUPS, with a maximum of 81.53 GCUPS. EMBOSS water achieve nearly constant

performance for all dataset sizes. CUDASW++ 3.0 has an average performance of 34.95 GCUPS on GTX680,

while MIRA yields an average performance of 443.37 GCUPS, with a maximum of 2224.43 GCUPS using a

2.66 Quad core Intel Xeon CPU (256 KB L2 Cache, and 8 MB L3 Cache) and 16 GB RAM. MR-CUDASW is

superior to both CUDASW++ 3.0 and EMBOSS water for every dataset size. MR-CUDADSW++ on GTX

680 runs on average 1.40 times faster than CUDASW++ 3.0 and 65,854 times faster than EMBOSS water,

while running 9.61 times slower than MIRA 4.0 on average. Full results of this comparison are presented in

Appendix C.

75

Figure 6.11: Performances of GPU-accelerated alignment software tools and MIRA when determining
overlaps between reads in simulated datasets of varying sizes on a GTX 680 Kepler architecture GPU.

1M0 1000 10K 100K

175

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Number of Queries

G
CU

PS

MIRA 4.0

MR-CUDASW++

CUDASW++ 3.0

WATERWATERWATER

CUDASW++ 3.0

CUDASW++ 3.0

MR-CUDASW++

MR-CUDASW++

MIRA 4.0

MIRA 4.0

Figure 6.12: Performances of GPU-accelerated alignment software tools and MIRA when determining
overlaps between reads in real WGS datasets of varying sizes on a GTX 680 Kepler architecture GPU.

1M0 1000 10K 100K

205

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

Number of Queries

G
CU

PS

MIRA 4.0

MR-CUDASW++

CUDASW++ 3.0

WATERWATERWATER
CUDASW++ 3.0

CUDASW++ 3.0

MR-CUDASW++

MR-CUDASW++

MIRA 4.0

MIRA 4.0

(2224.43 GCUPS)

76

Chapter 7

Conclusion and discussion

This research work aimed to determine the possibility of improving the performance of the overlap deter-

mination stage of an OLC-based assembler by using a GPU-based implementation of the Smith-Waterman

algorithm, given the current state of GPU technology.

To this end, an existing assembly program, which met a number of criteria such that modification and

improvement of the software is possible, was selected (i.e. MIRA) (Chapter 4). By taking advantage of

parallelism we sought to improve the performance of the overlap determination stage of the chosen assembler

by better utilizing computational resources (i.e. GPUs) available on a commodity desktop computer. For this

purpose, a set of GPU-accelerated alignment programs that can be used to accurately find potential overlaps

between each pair of sequences from a given list in a timely manner was determined. These algorithms were

evaluated in order to pick the best software suitable for aligning medium-length nucleotide reads (Chapter 5).

Techniques used in the chosen GPU-accelerated alignment software (i.e. CUDASW++ 3.0) were explored,

adapted, and expanded in order to improve the performance of the software. As a result, various methods

were implemented and the accuracy of the resuls were evaluated. The research led to the creation of MR-

CUDASW, the final improved version of CUDASW++ 3.0, specifically designed to handle medium-length

sequences. Finally, the performance of the resultant software, the sequential SW algorithm and the technique

used by MIRA assembler were compared in order to assess the efficacy of the software and determine whether

or not replacing MIRA’s overlap determination technique would be advantageous. This chapter summarizes

the results presented in Chapters 4 and 6. It provides discussion concerning selected aspects of MR-CUDASW

and suggests possibilities for future work. Section 7.1 provides a more detailed review of MR-CUDASW, and

Section 7.2 briefly highlights the major contributions of this thesis (these contributions are presented in italic

form), gives some concluding remarks, and comments about the general applicability of this software. Finally,

Section 7.3 discusses some of the future work that could be performed to further enhance the results.

7.1 Conclusion and remarks

As presented in Chapter 2, the major objective of this thesis was to determine the possibility of improving

the performance of the overlap determination stage of an OLC-based assembler (e.g. MIRA) by using a

GPU-based implementation of the Smith-Waterman algorithm, given the current state of GPU technology.

77

We aimed to take advantage of the highly parallel many-core processor architecture of GPUs in order to

incorporate the fastest, most sensitive method of identifying overlaps between two sequences into OLC-based

assembly software that can be run on commonly available inexpensive hardware. This section briefly reviews

the foundation, design, and implementation of this program. The conclusions and the major contribution of

this research work are highlighted within the running synopsis.

This first step of this study was identification of existing assembly software that has the potential to be

extended as a parallelized and optimized assembler for medium-length nucleotide reads sampled from highly

complex environments with small sequence length deviation. To this end, a group of assemblers that are cur-

rently used for assembly of medium-length nucleotide data were evaluated. The applicability and performance

of these assemblers were compared utilizing simulated data of different microbial community complexities

(low, medium and high complexities, abbreviated as LC, MC and HC, respectively) as well as real DNA

sequence fragments obtained from randomly selected whole-community DNA using Ion Torrent technology.

Considering the computational time, maximum random access memory (RAM) occupancy, assembly accu-

racy and integrity, and the presence of a program’s source and its maintainability and modularity, our study

identified MIRA as the best potential assembly software that could meet our performance expectations while

having grounds for improvement and modifications. For this purpose, several independent sequential modules

implemented in MIRA (Figure 1.1) were considered to be replaced with scalable replacements. Specifically,

the most compute-intensive portion of the application (i.e. the alignment step) was selected for replacement

by an alternative GPU-based implementation of the Smith-Waterman algorithm.

In this regard, a set of GPU-accelerated alignment software that could be used to accurately find potential

overlaps between each pair of sequences from a given list in a timely manner was identified. The suitability

of these software tools was determined based on our review of their published descriptions and evaluation

of their performances. To this end, three simulated nucleotide datasets as well as three real nucleotide

datasets containing 1000, 10,000, and 100,000 reads were used to benchmark these algorithms. Since most

of these algorithms were originally designed to take advantage of many-core parallelism on GPUs with

Fermi architecture and could not be readily transformed onto a machine with Kepler architecture GPU,

our evaluation was carried out in two steps. First all the software tools designed based on Fermi architecture

were compared against each other. The fastest sequence aligner running on a Fermi architecture GPU was

then modified to run on a Kepler architecture and benchmarked against CUDASW++ 3.0. Conclusively,

CUDASW++ 3.0 showed the best performance among the other benchmarked GPU-based implementations of

the Smith-Waterman algorithm (Figures 6.3 & 6.4).

In the next step, to answer the question of whether or not it is possible to improve the performance of an

OLC-based assembly software by using GPU-based acceleration techniques, the performance of MIRA’s over-

lap determination stage was compared with the fastest GPU-based implementation of the Smith-Waterman

algorithm (Tables 6.2 & 6.3). As this evaluation illustrated, the average elapsed real time of MIRA whole

assembly process was significantly smaller than the average elapsed real time of CUDASW++ 3.0. Hence the

78

performance of CUDASW++ 3.0 still needed to be improved in order to replace MIRA’s overlap determina-

tion technique.

For this purpose, CUDASW++ 3.0 was closely analyzed and the technical features that made this software

far faster than the other benchmarked software were identified. Some of these techniques were further

extended to improve the performance of this software tool and some were replaced. Over the course of this

phase, workload distribution, query profile construction, and thread scheduling techniques implemented in

CUDASW++ 3.0 were replaced by techniques specifically customized to handle medium-length reads.

This research’s focus on a distinct range of sequence lengths and its use of the expanded per-thread local

memory size of the Kepler architecture eliminated the necessity of implementing the intra-task parallelization

technique. In addition, instead of distributing the workload only according to the compute power of CPUs

and GPUs (the technique employed in CUDASW++ 3.0), the workload distribution was modified in a way

that distributes the workload based on the length of the query sequence, the length of the subject sequence,

and the total sequence length deviation calculated for the dataset, as well as the compute power of the CPUs

and GPUs. Using this method of thread scheduling and workload distribution, the computation waste of CPU

and GPU SIMD instructions was avoided as all alignments in all lanes are completed at the same time. This

technique also prevented the computational imbalance between threads within a warp and a thread block.

Conclusively, this new workload distribution technique yielded an average performance of 44.62 GCUPS, 1.28

times faster compare to CUDASW++ 3.0 (see Figures 6.9 & 6.10).

Although modification of the methods for workload distribution and thread scheduling led to significant

speed up of the software tool, the performance of MIRA whole assembly process was still far better than the

performance of the improved version of CUDASW++ 3.0. More improvements were then required. It was

known that CUDASW++ 3.0 made use of the Rognes and Seebergs technique to construct query profiles,

parallel to the query sequence for each possible residue (Figure 5.2 part B). Using this technique, four

substitution scores were realized using only one texture fetch, thus significantly improving texture memory

throughput. It has been noted [53] that the execution time of this method is heavily dependent on the length

of the query string and the database, the scoring matrix and gap penalties. The distinct range of target

sequences in this study provided an opportunity to explore the effects of the striped implementation of Smith

Waterman on a Kepler architecture GPU, without being concern about the this technique’s high dependency

on query length. This implementation of the Smith-Waterman algorithm was introduced by Farrar et al. [50]

and, although highly dependent on query length, is believed to be the fastest implementation of this algorithm.

As a result of improving and customizing the already-implemented striped query profile construction method

for Kepler architecture and taking advantage of this architecture’s expanded texture memory, the improved

version illustrated an average performance of 40.66 GCUPS, gaining 1.17 times speedup compared to the

original version of the software. Figures 6.9 and 6.10 show the effects of this modification.

Eventually, all these modifications were combined together to create MR-CUDASW, the final improved

version of CUDASW++ 3.0, specifically designed to handle medium-length sequences. To ensure the cor-

79

rectness of the resultant tool, it was evaluated against the EMBOSS sequential implementation of the Smith-

Waterman algorithm. All the resultant scores from two programs were compared using a custom shell script

and in all the cases scores were identical (data not shown). In the next step, the performance of the resultant

software was compared with MIRA’s overlap detection phase. As mentioned before, however, due to lack

of documentation and inadequate modularity in the software design, MIRA’s overlap determination stage

could not be extracted from MIRA package. The performance of MIRA’s whole assembly process, hence,

was reported. To this end, performances of all algorithms were compared by using simulated and real WGS

datasets of varying sizes. Conclusively, MR-CUDASW yields an average performance of 46.09 GCUPS, with

a maximum of 81.53 GCUPS. EMBOSS water achieve nearly constant performance for all database sizes

(< 0.01 GCUPS). CUDASW++ 3.0 has an average performance of 34.95 GCUPS, while MIRA yields an

average performance of 443.37 GCUPS, with a maximum of 2224.43 GCUPS. MR-CUDASW is superior to

both CUDASW++ 3.0 and EMBOSS Water for every dataset size. MR-CUDADSW++ runs on average

1.40 times faster than CUDASW++ 3.0 and 65,854 times faster than EMBOSS Water, while running 9.61

times slower that MIRA 4.0 on average. Figures 6.11 and 6.12 illustrate the performance of all evaluated

algorithms for varying dataset sizes.

Our techniques exploit the GPU cores efficiently by distributing the sequences with large deviation to the

CPU. On average, compared to the aforementioned performance of CUDASW++ 3.0, the alternative distribu-

tion technique can improve the performance by 17% for medium-length queries. In general, for medium-length

queries, more performance gains can be realized from the stripped query profile because it can reduce the num-

ber of texture fetches by half and use fewer bitwise operations per cell. Considering that MR-CUDASW is

targeting a specific range of sequence lengths and the new workload distribution technique in which sequences

with large sequence length deviation are assigned to CPUs, the length dependency of the stripped query profile

construction method can be dismissed and 28% performance gain can be achieved as the result of replacing

the sequential query profile construction technique with the stripped method.

7.2 Discussion

MR-CUDASW is the first highly parallel solution that has been specifically optimized to process medium-

length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent). Results show

that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single GPU running on

a commodity desktop hardware and as a result it is the fastest tool in its class. Despite being designed

for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, MR-CUDASW also

presents great potential for heterogeneous computing with CUDA-enabled GPUs and is expected to make

contributions to any other research problems that require sensitive pairwise alignment to be applied to a

large number of reads.

Our results utilizing GPUs show that it is possible to improve the performance of biological algorithms

80

by making full use of the compute characteristics of the underlying commodity hardware and further, our

results are especially encouraging since GPU performance is growing faster than multi-core CPUs [75].

7.3 Future work

This section describes further work that could be carried out to improve on or extend this work.

• Although specifiably designed to handle nucleotide sequences, none of the techniques implemented in

this work limits MR-CUDASW to nucleotide sequences. This program can be readily modified to

perform Smith Waterman algorithm on amino acids sequences.

• In addition to the performance evaluation of hybrid CPU-GPU parallelism, the evaluation of relative

performance of CPU computation to GPU computation can be used to further measure the balance

of the implemented workload distribution technique. To this end, the runtime of CPU and GPU

computation should be recorded in order to calculate their performance relative to a specific workload.

• All the performance evaluations presented in this thesis were carried out on a single-GPU GTX680

card. Since MR-CUDASW is considered to be the improved version of CUSAW++ 3.0, specifically

adapted to accommodate medium-length nucleotide sequences, it, potentially, has the ability to run on

dual-GPU Geforce graphic cards. The lack of such hardware prevented us from further investigations.

Better results might be gathered in a performance comparison between MR-CUDASW and MIRA on

machine equipped with dual-GPU graphic cards.

• As discussed by Liu [75], the optimal alignment scores of the SW algorithm are biased by sequence length

and composition. The Z-value has been proposed to estimate the statistical significance of these scores.

However, the computation of Z-value requires performing a large set of pairwise alignments between

random permutations of the sequences compared, which is highly time-consuming. The acceleration of

a Z-value computation with on CUDA-enabled graphic card can therefore be a part of future work. For

more information about Z-value, please refer to the work by Comet et al. [79], Bastien et al. [80], and

Peris et al. [81].

81

References

[1] Fredrick Sanger, Smith Nicklen, and Arnold Coulson. DNA sequencing with chain-terminating inhibitors.
Proceedings of the National Academy of Sciences, 74(12):5463–5467, December 1977.

[2] Craig J. Venter, Karin Remington, John F. Heidelberg, Aaron L. Halpern, Doug Rusch, Jonathan A.
Eisen, Dongying Wu, Ian Paulsen, Karen E. Nelson, William Nelson, Derrick E. Fouts, Samuel Levy,
Anthony H. Knap, Michael W. Lomas, Ken Nealson, Owen White, Jeremy Peterson, Jeff Hoffman, Rachel
Parsons, Holly Baden-Tillson, Cynthia Pfannkoch, Yu-Hui Rogers, Hamilton O. Smith. Environmental
genome shotgun sequencing of the Sargasso Sea. Science, 304(5667):66–74, April 2004.

[3] Daniel N. Frank. Growth and development symposium: Promoting healthier humans through healthier
livestock. Journal of Animal Science, 89(3):835–844, 2011.

[4] The NIH HMP Working Group. The NIH human microbiome project. Genome Research, 19(12):2317–
2323, December 2009.

[5] Norman Grossblatt. The new science of metagenomics: revealing the secrets of our microbial plan. The
National Academies press, 2007.

[6] Falk Warnecke and Matthias Hess. A perspective: Metatranscriptomics as a tool for the discovery of
novel biocatalysts. Journal of Biotechnology, 142(1):91–95, June 2009.

[7] Rudolf Amann, Wolfgang Ludwig, and Karl H. Schleifer. Phylogenetic identification and in situ detection
of individual microbial cells without cultivation. Microbiological Reviews, 59(1):143–169, March 1995.

[8] Johannes Dröge and Alice C. McHardy. Taxonomic binning of metagenome samples generated by next-
generation sequencing technologies. Briefings in Bioinformatics, 13(6):646–655, 2012.

[9] John C. Wooley, Adam Godzik, and Iddo Friedberg. A primer on metagenomics. Journal of Computa-
tional Biology, 6(2):e1000667, February 2010.

[10] Simon Dear, Richard Durbin, LaDeana Hillier, Gabor Marth, Jean Thierry-Mieg, and Richard Mott.
Sequence assembly with CAFTOOLS. Genome Research, 8:260/267, 1998.

[11] Chris Armen and Clifford Stein. Short superstrings and the structure of overlapping strings. Journal of
Computational Biology, 2(2):307–332, 1995.

[12] Bastien Chevreux. MIRA: An automated genome and EST assembler. PhD thesis, German Cancer
Research Center Heidelberg. June 2005.

[13] David Hernandez, Patrice François, Laurent Farinelli, Magne Øster̊as, and Jacques Schrenzel. De novo
bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome
Research, 18(5):802–809, May 2008.

[14] Pavel A. Pevzner, Haixu Tang, and Michael Waterman. An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

[15] Daniel R. Zerbino. Genome assembly and comparison using de Bruijn graphs. PhD thesis, Darwin
College, University of Cambridge. September 2009.

[16] Adam Phillippy, Micheal Schatz, and Mihai Pop. Genome assembly forensics: finding the elusive mis-
assembly. Genome Biology, 9(3):55–67, March 2008.

82

[17] Wenyu Zhang, Jiajia Chen, Yang Yang, Yifei Tang, Jing Shang and Bairong Shen. A practical comparison
of de novo genome assembly software tools for next-generation sequencing technologies. PLoS ONE,
6(3):e17915, March 2011.

[18] Liu Weiguo, Bertil Schmidt, Gerrit Voss, and Wolfgang Muller-Wittig. Streaming algorithms for biolog-
ical sequence alignment on GPUs. IEEE Transactions on Parallel and Distributed Systems, 18(9):1270–
1281, 2007.

[19] Sébastien Boisvert, Frédéric Raymond, Élénie Godzaridis, François Laviolette, and Jacques Corbeil. Ray
Meta: scalable de novo metagenome assembly and profiling. Genome Biology, 13(12):122–137, December
2012.

[20] Marketa Zvelebil and Jeremy Baum. Understanding Bioinformatics. Garland Science Press, Taylor and
Francis Group, 2008.

[21] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose GPU
programming. Addison-Wesley, 2010.

[22] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews Genetics, 14:157–
167, March 2013.

[23] Saul Needleman and Christian Wunsch. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[24] Temple F. Smith and Michael S. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–197, March 1981.

[25] John W. Wilbur and David J. Lipman. Rapid similarity searches of nucleic acid and protein data banks.
Proceedings of the National Academy of Sciences. 80(3):726–730, February 1983.

[26] Stephen F Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, October 1990.

[27] Burkhard Rost, Chris Sander, and Reinhard Schneider. PHD – an automatic mail server for protein
secondary structure prediction. Computer Applications in the Biosciences, 10(1):53–60, February 1994.

[28] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis.
Cambridge University press, 1998.

[29] Margaret O. Dayhoff, and Robert M. Schwartz. Chapter 22: A model of evolutionary change in proteins,
In Atlas of protein sequence and structure. National Biomedical Research Foundation, 1978.

[30] AAindex. Amino acid index database. July 2014.

[31] Arthur M. Lesk. Introduction to bioinformatics. Oxford University press, 2006.

[32] Peter H. Sellers. The theory and computation of evolutionary distances: Pattern recognition. SIAM
Journal on Applied Mathematics, 26(4):787–793, 1974.

[33] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular Biology,
162:705–708, 1982.

[34] Jonathan Pevsner. Bioinformatics and functional genomics. John Wiley and Sons, 2009.

[35] Stephen F. Altschul. Gloabal and local sequence alignment, Lecture slides. Department of Computer
Science, University of Maryland. October 2011.

[36] Lusheng Wang and Tao Jiang. On the complexity of multiple sequence alignment. Journal of Compu-
tational Biology, 1(4):337–348, 1994.

[37] Victor Simossis, Jens Kleinjung, and Jaap Heringa. Chapter 3: An overview of multiple sequence
alignment. In Current Protocols in Bioinformatics, 2003.

83

[38] David J. Lipman and William R. Pearson. Rapid and sensitive protein similarity searches. Science,
227(4693):1435–1441, March 1985.

[39] Makoto Hirosawa, Yasushi Totoki, Masaki Hoshida, and Masato Ishikawa. Comprehensive study on
iterative algorithms of multiple sequence alignment. Computer Applications in the Biosciences, 11(1):13–
18, February 1995.

[40] Blaise Barney. Introduction to parallel computing, Tutorial series. Lawrence Livermore National Labo-
ratory. July 2013.

[41] Nicholas Carriero and David Gelernter. How to write parallel programs. Massachusetts Institute of
Technology, 1999.

[42] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Com-
puters, C-21(9):948–960, September 1972.

[43] John Von Neumann. First draft of a report on the EDVAC. Moore School of Electrical Engineering,
University of Pennsylvania 1945.

[44] Michael Catherwood. Modified harvard architecture processor having data memory space mapped to
program memory space with erroneous execution protection. US Patent Application. 09/870,460. Jan-
uary 2003.

[45] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian Buck, Cliff Woolley, and
Aaron Lefohn. GPGPU: general purpose computation on graphics hardware. In ACM SIGGRAPH 2004
course notes, pages 33+, New York, NY, USA, 2004. ACM.

[46] John Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron Lefohn, and Timothy
J. Purcell. A Survey of general-purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, March 2007.

[47] Victor Lee, Changkyu Kim, Jatin Chhugani, Micheal Deisher, Daehyun Kim, Anthony Nguyen, Na-
dathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and
Pradeep Dubey. Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. In Proceedings of the 37th annual international symposium on computer architecture,
Volume 38 of ISCA 2010, pages 451–460, New York, NY, USA, June 2010. ACM.

[48] Timothy F. Oliver, Bertil Schmidt, and Douglas L. Maskell. Reconfigurable architectures for bio-sequence
database scanning on FPGAs. Circuits and systems II: Express briefs, IEEE Transactions, 52(12):851–
855, 2005.

[49] Tim Oliver, Bertil Schmidt, Darran Nathan, Ralf Clemens, and Douglas Maskell. Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics, 21(16):3431–3432,
2005.

[50] Michael Farrar. Striped Smith-Waterman speeds database searches six times over other SIMD imple-
mentations. Bioinformatics, 23(2):156–161, January 2007.

[51] Svetlin A. Manavski and Giorgio Valle. CUDA compatible GPU cards as efficient hardware accelerators
for Smith-Waterman sequence alignment. BMC Bioinformatics, 9(Suppl 2):S10–9, March 2008.

[52] Adam Wozniak. Using video-oriented instructions to speed up sequence comparison. Computer Appli-
cations in the Biosciences, 13(2):145–150, April 1997.

[53] Torbjørn Rognes, Erling Seeberg. Six-fold speed-up of Smith-Waterman sequence database searches
using parallel processing on common microprocessors. Bioinformatics, 16(8):699–706, August 2000.

[54] Adam M. Szalkowski, Christian Ledergerber, Philipp Krähenbühl, and Christophe Dessimoz. SWPS3
– Fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Research
Notes, 1(1):107+, 2008.

84

[55] CUDA C programming guide. NVIDIA official technial report. July 2013.

[56] Jonh Nickolls, Ian Buck, Micheal Garland, and Kevin Skadron. Scalable parallel programming with
CUDA. In ACM SIGGRAPH 2008 classes, pages 1–14, New York, NY, USA, 2008. ACM.

[57] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC Research Notes, 2(1):73+,
2009.

[58] James Wang. From fermi to kepler. Nvision Magazine, March 2012.

[59] Yu Peng, Henry Leung, Siu-Ming Yiu, and Francis Chin. IDBA-UD: a de novo assembler for single-cell
and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11):1420–1428, June
2012.

[60] Toshiaki Namiki , Tsuyoshi Hachiya, Hideaki Tanaka, Yasubumi Sakakibara. MetaVelvet: an extension
of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Research,
40(20):e155, November 2012.

[61] R. L. Warren, G Sutton, S Jones, and R Holt. Assembling millions of short DNA sequences using
SSAKE. Bioinformatics, 23(4):500–501, February 2007.

[62] Miguel Pignatelli and Andres A. Moya. Evaluating the fidelity of de novo short read metagenomic
assembly using simulated data. PLoS ONE, 6(5):e19984+, May 2011.

[63] Kim Pruitt, Tatiana Tatusova, and Donna R. Maglott. NCBI reference sequence (RefSeq): a curated
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 1(33),
2005.

[64] Stephen E. Johnson, Brett Trost, Jeffrey R. Long, and Anthony Kusalik. A better sequence-read gener-
ator program for metagenomics. European Molecular Biology Network Journal, 19(A):49–50, 2014.

[65] Hannon Lab. FASTX Toolkit. Official Mannual.

[66] Nicholas J. Loman, Raju V. Misra, Timothy J. Dallman, Chrystala Constantinidou, Saheer E. Gharbia,
John Wain, and Mark J. Pallen. Performance comparison of benchtop high-throughput sequencing
platforms. Nature Biotechnology, 30(5):434–439, April 2012.

[67] Ben Langmeadand and Steven L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature Methods,
9(4):357–9, April 2012.

[68] I Li, Warren Shum, and Kevin Truong. 160-fold acceleration of the Smith-Waterman algorithm using a
field programmable gate array (FPGA). BMC Bioinformatics, 8(1):185+, June 2007.

[69] Michael S. Farrar. Optimizing Smith-Waterman for the cell broadband engine.
http://cudasw.sourceforge.net/sw-cellbe.pdf July 2014

[70] Kwoh Adrianto, Keong K. Chee, Nim Hieu, and Bertil Schmidt. CBESW: sequence alignment on the
Playstation 3. BMC Bioinformatics, 9(1):377+, September 2008.

[71] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics,
14(1):117+, April 2013.

[72] Wojciech Frohmberg, Michal Kierzynka, Jacek Blazewicz, Peter Gawron, and Peter Wojciechowski. G-
DNA – a highly efficient multi-GPU/MPI tool for aligning nucleotide reads. Bulletin of the Polish
Academy of Sciences, 61(4):989–992, 2013.

[73] Alan Bleasby. Smith-Waterman local alignment of sequences. European Bioinformatics Institute, Cam-
bridge, UK. 3rd edition, October 2000.

85

[74] Torbjørn Rognes. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.
BMC Bioinformatics, 12(1):221+, June 2011.

[75] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions.
BMC Research Notes, 3(1):93+, 2010.

[76] Torbjørn Rognes, Erling Seeberg. Six-fold speed-up of Smith-Waterman sequence database searches
using parallel processing on common microprocessors. Bioinformatics, 16(8):699–706, August 2000.

[77] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified graphics
and computing architecture. IEEE Micro Magazine, 28(2):39–55, March 2008.

[78] Jeremiah van Oosten. Introduction to CUDA 5.0. NVIDIA Official Release Note. NVIDIA, October
2012.

[79] Jean P. Cometa, Jean C. Audea, Emilie Glémeta, Jill L. Rislerb, Antonie Hénautb, Piotr P. Slonimskib,
and Ju Codani. Significance of Z-value statistics of Smith-Waterman scores for protein alignments.
Computers & Chemistry, Elsevier, 23(3-4):317–334, 1999.

[80] Olivier Bastien, Jean-Christophe Aude, Sylvaine Roy, and Eric Marchal. Fundamentals of massive
automatic pairwise alignments of protein sequences: theoretical significance of Z-value statistics. Bioin-
formatics, 20(4):534–537, 2004.

[81] Guillermo Peris, and Andres Marzal. A screening method for Z-Value assessment based on the normalized
edit distance. Lecture Notes in Computer Science, 5518:1154–1161, 2009.

[82] PTX: Parallel Thread Execution, NVIDIA Corporation, 1.0 edition, 2007.

86

Appendix A

Comparison of assembly software

A.1 Evaluating various assembly software using low complexity
simulated dataset

Table A.1: Size statistics of the results of using various assembly program on low complexity simulated
data.

IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

Assembled total size (Bp) 31,241,384 23,468,395 24,528,006 31,494,293 28,263,944 28,762,606
Number of total contigs 29,040 24,387 33,376 32,685 64,499 43,296
Number of major contigsa 2638 1357 1266 2406 1634 1703
Size of the longest contig (Bp) 245,266 192,000 165,859 214,691 72,596 149,340
Average contig Size (Bp) 1075 962 734 963 438 664
N50 size (Bp) 2045 3458 2684 1935 644 1281
N80 size (Bp) 520 453 318 479 197 327
Average number of reads per contig 6.76 6.05 4.62 6.06 2.75 4.17
Number of short contigsb 0 1401 53 92 64,214 4069

aNumber of contigs longer than 10*(average read size)
bNumber of short contigs shows the number of contigs with a length smaller than the average read size. These contigs are

filtered out from our basic evaluation, and are not included in the“total number of contigs”.

Table A.2: Percentage of contigs produced by various assembly software, assembling low complexity
simulated data, mapping to the reference genomes.

% of contigs having IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

≥ 60% identity 98.11% 99.98% 99.97% 99.75% 99.95% 99.96%
≥ 80% identity 94.55% 99.80% 99.94% 98.76% 99.95% 99.85%
≥ 90% identity 92.81% 99.33% 99.59% 97.66% 99.81% 99.51%
≥ 95% identity 87.70% 95.07% 94.59% 92.91% 96.3% 93.24%
≥ 98% identity 81.55% 88.39% 90.22% 87.49% 93.71% 86.24%

87

A.2 Evaluating various assembly software using medium complex-
ity simulated dataset

Table A.3: Size statistics of the results of using various assembly programs on medium complexity
simulated data.

IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

Assembled total size (Bp) 45,323,281 31,099,506 32,503,362 45,966,279 35,997,207 38,721,566
Number of total contigs 53,317 38,573 48,783 61,575 95,808 69,968
Number of major contigsa 3218 2083 1945 3681 2058 2295
Size of the longest contig (Bp) 190,588 191,991 165,499 204,271 67,122 149,340
Average contig Size (Bp) 850 806 666 746 375 553
N50 size (Bp) 1128 1843 1397 1041 422 858
N80 size (Bp) 430 380 297 399 178 271
Average number of reads per contig 5.34 5.07 4.19 4.69 2.36 3.48
Number of short contigsb 0 2548 90 223 126,147 7949

aNumber of contigs longer than 10*(average read size).
bNumber of short contigs shows the number of contigs with a length smaller than the average read size. These contigs are

filtered out from our basic evaluation, and are not included in the “total number of contigs”.

Table A.4: Percentage of contigs produced by various assembly software, assembling medium com-
plexity simulated data, mapping to the reference genomes.

% of contigs having IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

≥ 60% identity 96.14% 99.95% 99.98% 99.72% 99.96% 99.95%
≥ 80% identity 90.55% 99.70% 99.91% 98.61% 99.95% 99.86%
≥ 90% identity 87.91% 99.10% 99.46% 97.34% 9.83% 99.43%
≥ 95% identity 81.61% 93.20% 93.47% 92.46% 96.32% 92.42%
≥ 98% identity 73.67% 83.89% 87.39% 85.38% 93.52% 84.46%

88

A.3 Evaluating various assembly software using high complexity
simulated dataset

Table A.5: Size statistics of the results of using various assembly program high complexity simulated
data.

IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

Assembled total size (Bp) 86,986,932 58,408,513 52,715,872 91,903,971 75,025,609 153,414,832
Number of total contigs 123,875 109,008 118,855 142,052 287,690 553,507
Number of major contigsa 7648 4338 3285 8767 2044 4278
Size of the longest contig (Bp) 44,499 33,881 30,878 84,297 22,072 35,058
Average contig Size (Bp) 702 535 443 646 260 277
N50 size (Bp) 792 611 456 804 233 266
N80 size (Bp) 409 321 262 379 174 176
Average number of reads per contig 4.41 3.36 2.78 4.06 1.64 1.74
Number of short contigsb 0 7325 261 610 510,310 54,534

aNumber of contigs longer than 10*(average read size).
bNumber of short contigs shows the number of contigs with a length smaller than the average read size. These contigs are

filtered out from our basic evaluation, and are not included in the “total number of contigs”.

Table A.6: Percentage of contigs produced by various assembly software, assembling high complexity
simulated data, mapping to the reference genomes.

% of contigs having IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

≥ 60% identity 97.67% 99.94% 99.97% 99.62% 99.98% 99.96%
≥ 80% identity 94.64% 99.62% 99.92% 98.23% 99.97% 99.92%
≥ 90% identity 90.80% 98.99% 99.52% 96.75% 99.87% 99.71%
≥ 95% identity 81.10% 93.26% 95.10% 91.51% 96.83% 94.69%
≥ 98% identity 69.15% 82.37% 90.18% 82.57% 93.39% 88.39%

89

A.4 Evaluating various assembly software using real WGS dataset

Table A.7: Size statistics of the results of using various assembly program on real WGS data.

IDBA-UD Newbler SSAKE MIRA RayMéta MetaVelvet

Assembled total size (Bp) 44,419,747 21,436,696 166,712 40,699,034 233,027,595 67,618,696
Number of total contigs 109,800 54,555 538 85,226 1,102,935 273,128
Number of major contigsa 41 121 0 671 1 1
Size of the longest contig (Bp) 3289 6988 655 9374 2344 1961
Average contig Size (Bp) 404 392 309 477 211 247
N50 size (Bp) 385 399 308 505 215 227
N80 size (Bp) 325 287 271 334 201 206
Average number of reads per contig 2.09 2.03 1.60 2.47 1.09 1.28
Number of short contigsb 0 13,420 13 3683 2,738,596 245,926

aNumber of contigs longer than 10*(average read size).
bNumber of short contigs shows the number of contigs with a length smaller than the average read size. These contigs are

filtered out from our basic evaluation, and are not included in the ”Number of total contigs”.

90

Appendix B

Core PTX SIMD assemblies

To gain more speedup, CUDASW++ 3.0 implements the recurrence in Equation B.1 with PTX SIMD
assembly instructions1. The code consists of ten assembly instructions for the recurrence and one instruction
for obtaining the optimal local alignment score. For additions and subtractions, saturation instructions have
been used to clamp the values to their appropriate signed ranges [71]. Listings B.1 shows the PTX SIMD
assembly instructions as implemented by CUDASW++ 3.0.

Given two sequences Sa and Sb of lengths la and lb respectively, the SW algorithm computes the similarity
score H(i, j) of two sequences ending at position i and j of Sa and Sb, respectively. This figure show the
computation of H(i, j) where, sbt is the character substitution cost table, ρ is the gap opening penalty and
σ is the gap extension penalty.

E(i, j) = max {E(i, j − 1)− σ,H(i, j − 1)− ρ− σ}
F (i, j) = max {E(i− 1, j)− σ,H(i− 1, j)− ρ− σ}
H(i, j) = max {0, E(i, j), F (i, j), H(i− 1, j − 1) + sbt(Sa[i], Sb[j])}

(B.1)

As it appears in the listing, every instruction operates on quads of 8-bit signed values, corresponding to
four independent alignments. Variables h, n and he represent the alignment score vectors corresponding to
matrix H, where h denotes the score vector of the four current cells, n the score vector of the four diagonal
neighbours and he the score vector of the four upper neighbours. Variables e and f represent the score vectors
corresponding to the matrices E and F respectively, and S stores.

Listing B.1: PTX SIMD assembly instructions.

#define ONE_CELL_COMP_QUAD(f, oe, ie, h, he, hd, sub, gapoe, gape,maxHH) \

asm("vsub4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(f) : "r"(f),"r"(gape), "r"(0)); \

asm("vsub4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(oe) : "r"(ie), "r"(gape), "r"(0)); \

asm("vsub4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(h) : "r"(h), "r"(gapoe), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(f) : "r"(f), "r"(h), "r"(0)); \

asm("vsub4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(h) : "r"(he), "r"(gapoe), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(oe) : "r"(oe), "r"(h), "r"(0)); \

asm("vadd4.s32.s32.s32.sat %0, %1, %2, %3;" : "=r"(h) : "r"(hd), "r"(sub), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(h) : "r"(h), "r"(f), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(h) : "r"(h), "r"(oe), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(h) : "r"(h), "r"(0), "r"(0)); \

asm("vmax4.s32.s32.s32 %0, %1, %2, %3;" : "=r"(maxHH) : "r"(maxHH), "r"(h), "r"(0)); \

asm("mov.s32 %0, %1;" : "=r"(hd) : "r"(he));

1PTX defines a virtual machine and virtual ISA for general purpose parallel thread execution. PTX programs are translated
at install time to the target hardware instruction set. The PTX to GPU translator and driver enables NVIDIA GPUs to be
used as programmable parallel computers [82].

91

Appendix C

Performance details of GPU-accelerated alignment

tools

Table C.1: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in SYN 1000.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 0 m 16 s 0 m 11 s 0 m 4 s 2.44
G-PAS 0 m 44 s 0 m 33 s 0 m 9 s 0.89
SW-CUDA 5 m 12 s 3 m 34 s 1 m 25 s 0.13
water 344 m 22 s 150 m 37 s 64 m 49 s < 0.01

aThe time or difference between the beginning time and an ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.

Table C.2: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in SYN 10K.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 23 m 19 s 17 m 16 s 5 m 58 s 2.79
G-PAS 53 m 31 s 38 m 29 s 13 m 14 s 1.21
SW-CUDA 434 m 32 s 308 m 30 s 122 m 19 s 0.15
water 33,024 m 12 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated.

Table C.3: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in SYN 100K.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 2235 m 56 s 1714 m 0 s 515 m 309 s 2.89
G-PAS N/A N/A N/A N/A
SW-CUDA N/A N/A N/A N/A
water 3,170,304 m 46 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated.

92

Table C.4: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in ENV 1000.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 0 m 13 s 0 m 9 s 0 m 3 s 2.54
G-PAS 0 m 40 s 0 m 27 s 0 m 9 s 0.82
SW-CUDA 5 m 12 s 3 m 23 s 1 m 16 s 0.13
water 341 m 15 s 143 m 54 s 62 m 28 s < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.

Table C.5: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in ENV 10K.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 21 m 22 s 16 m 12 s 5 m 5 s 2.80
G-PAS 55 m 55 s 0 m 9 s 0 m 3 s 1.07
SW-CUDA 435 m 54 s 310 m 32 s 115 m 43 s 0.14
water 32,736 m 11 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated.

Table C.6: Performance details of GPU-accelerated alignment software tools determining overlaps
between reads in ENV 100K.fna dataset

Software Elapsed real time a User time b System time c GCUPS d

CUDASW++ 2.0 2165 m 7 s 1646 m 42 s 512 m 15 s 2.89
G-PAS N/A N/A N/A N/A
SW-CUDA N/A N/A N/A N/A
water 3,142,656 m 31 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated.

93

Table C.7: Performance details of CUDASW++ 3.0, MR-CUDASW ,MIRA, and water. Datasets of
sizes of simulated datasets were used for this experiment.

Software Elapsed real time a User time b System time c GCUPS d

SYN 1000.fna
CUDASW++ 3.0 0 m 7 s 0 m 9 s 0 m 1 s 5.95
MR-CUDASW 0 m 4 s 0 m 11 s 0 m 1 s 9.79
MIRA 4.0 0 m 26 s 0 m 3 s 0 m 4 s 1.50
water 848 m 31 s 311 m 1 s 134 m 13 s < 0.01

SYN 10K.fna
CUDASW++ 3.0 1 m 53 s 6 m 20 s 0 m 11 s 34.64
MR-CUDASW 1 m 16 s 1 m 59 s 0 m 7 s 51.51
MIRA 4.0 0 m 58 s 0 m 12 s 0 m 11 s 67.49
water 81,408 m 36e N/A N/A < 0.01

SYN 100K.fna
CUDASW++ 3.0 102 m 32 s 408 m 18 s 2 m 16 s 63.15
MR-CUDASW 79 m 25 s 145 m 25 s 1 m 37 s 81.53
MIRA 4.0 37 m 6 s 7 m 11 s 2 m 33 s 174.53
water 7,815,168 m 12 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated.

Table C.8: Performance details of CUDASW++ 3.0, MR-CUDASW ,MIRA, and water. Datasets of
various sizes of real WGS dataset were used for this experiment.

Software Elapsed real time a User time b System time c GCUPS d

ENV 1000.fna
CUDASW++ 3.0 0 m 6 s 0 m 8 s 0 m 1 s 5.51
MR-CUDASW 0 m 4 s 0 m 5 s 0 m 0 s 8.27
MIRA 4.0 0 m 12 s 0 m 0 s 0 m 1 s 2.75
water 835 m 12 s 302 m 8 s 117 m 35 s < 0.01

ENV 10K.fna
CUDASW++ 3.0 1 m 33 s 5 m 17 s 0 m 10 s 38.72
MR-CUDASW 1 m 7 s 3 m 51 s 0 m 8 s 53.75
MIRA 4.0 0 m 19 s 0 m 3 s 0 m 4 s 189.55
water 80,160 m 25 se N/A N/A < 0.01

ENV 100K.fna
CUDASW++ 3.0 104 m 49 s 405 m 54 s 2 m 8 s 59.77
MR-CUDASW 84 m 21 s 326 m 8 s 1 m 50 s 71.72
MIRA 4.0 2 m 49 s 0 m 36 s 0 m 35 s 2224.43
water 7,695,360 m 7 se N/A N/A < 0.01

aThe time or difference between the beginning time and the ending time of the program.
bTotal amount of CPU-time that the process spent in user mode.
cTotal amount of CPU-time that the process spent in kernel mode.
dGiga Cell Updates per Second.
eThis value is extrapolated

94

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Aim of the thesis
	Structure of this document

	Research goal
	Research goals
	Limitations

	Background
	Sequence assembly
	Brief overview of existing assembly strategies
	Overlap-layout-consensus strategy
	MIRA: an automated genome and EST assembler

	Sequence alignment
	Principles of sequence alignment
	Scoring alignments and substitution matrices
	Dynamic programming algorithms
	Types of alignment
	Algorithmic approximations

	Parallel computing
	CPU vs. GPU

	GPU computing
	Why CUDA?
	CUDA architecture
	Kepler vs. Fermi architecture

	Comparison of assembly software for metagenomic data
	Methods
	Artificial metagenomic communities
	Generation of artificial reads

	Results
	Conclusions

	Data and methodology
	Structure of this chapter
	Selection of the fittest
	Related works
	GPU-accelerated sequence aligners
	Comparing GPU-accelerated sequence alignment tools
	Is CUDASW++ 3.0 fast enough?

	Improving the fittest
	CUDASW++ 3.0

	MR-CUDASW
	Sequence length deviation & thread scheduling
	Query profile
	Ensuring the fidelity of the result

	Results
	Benchmarking GPU-accelerated Smith-Waterman tools
	Metric
	Benchmarking

	Improving CUDASW++ 3.0
	Sequence length deviation and thread scheduling
	Query profile

	Evaluating MR-CUDASW

	Conclusion and discussion
	Conclusion and remarks
	Discussion
	Future work

	References
	Comparison of assembly software
	Evaluating various assembly software using low complexity simulated dataset
	Evaluating various assembly software using medium complexity simulated dataset
	Evaluating various assembly software using high complexity simulated dataset
	Evaluating various assembly software using real WGS dataset

	Core PTX SIMD assemblies
	Performance details of GPU-accelerated alignment tools

