1,872 research outputs found

    From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples

    Full text link
    Linear parameter-varying (LPV) models form a powerful model class to analyze and control a (nonlinear) system of interest. Identifying a LPV model of a nonlinear system can be challenging due to the difficulty of selecting the scheduling variable(s) a priori, which is quite challenging in case a first principles based understanding of the system is unavailable. This paper presents a systematic LPV embedding approach starting from nonlinear fractional representation models. A nonlinear system is identified first using a nonlinear block-oriented linear fractional representation (LFR) model. This nonlinear LFR model class is embedded into the LPV model class by factorization of the static nonlinear block present in the model. As a result of the factorization a LPV-LFR or a LPV state-space model with an affine dependency results. This approach facilitates the selection of the scheduling variable from a data-driven perspective. Furthermore the estimation is not affected by measurement noise on the scheduling variables, which is often left untreated by LPV model identification methods. The proposed approach is illustrated on two well-established nonlinear modeling benchmark examples

    Nonlinear structural damage detection based on cascade of Hammerstein models

    Get PDF
    Structural damages can result in nonlinear dynamical signatures that can significantly enhance their detection. An original nonlinear damage detection approach is proposed that is based on a cascade of Hammerstein models representation of the structure. This model is estimated by means of the Exponential Sine Sweep Method from only one measurement. On the basis of this estimated model, the linear and nonlinear parts of the output are estimated, and two damage indexes (DIs) are proposed. The first DI is built as the ratio of the energy contained in the nonlinear part of an output versus the energy contained in its linear part. The second DI is the angle between the subspaces obtained from the nonlinear parts of two set of outputs after a principal component analysis. The sensitivity of the proposed DIs to the presence of damages as well as their robustness to noise are assessed numerically on spring-mass-damper structures and experimentally on actual composite plates with surface-mounted PZT-elements. Results demonstrate the effectiveness of the proposed method to detect a damage in nonlinear structures and in the presence of noise

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Estimations of non-linearities in structural vibrations of string musical instruments

    Full text link
    Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.Comment: 11th Congr\`es Fran\c{c}ais d'Acoustique, Nantes : France (2012

    Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    Get PDF
    High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea underlying the SHM procedure proposed here is to monitor the apparition of cracks in the ceramic insulators at their early stage through the change of the resonant frequency of the first mode of the structure and the non-linearity that they generate in its dynamic response. The Exponential Sine Sweep Method is used to estimate a nonlinear model of the structure under test from only one dynamic measurement. A classic linear damage index (DI) based on the variation of the frequency of the first mode is compared to an original nonlinear one using the ratio of the amplitudes of the third harmonic and the fundamental frequency. Results show that both DIs increase monotonically with the number of solicitations, thus validating the use of the nonlinear DI. It is also shown that the nonlinear DI presented here seems more sensitive than the linear one
    corecore