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ABSTRACT

REDUCED ORDER MODELING OF INFINITE
DIMENSIONAL SYSTEMS FROM FREQUENCY

RESPONSE DATA

Okan Demir

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hitay Özbay

September, 2014

In this thesis, a system identification method using frequency response data is

studied. Identification method is applied to various types of distributed parameter

systems, in particular flexible structures. One of the challenging tasks in the

control of flexible structures is the estimation of the dominant modes (location

of resonant frequencies and associated damping coefficients). In the literature,

there are several studies where transfer functions of flexible structures are derived

from PDEs (Partial Differential Equations); these are infinite dimensional models.

In this study, a numerical method is proposed to identify the dominant flexible

modes of a flexible structure with an input/output delay. The method uses a

frequency domain approach (frequency response data) to estimate the resonating

frequencies and damping coefficients of the flexible modes, as well as the amount

of the time delay. A sequential NLLS (Non-Linear Least Squares) curve fitting

procedure is adopted. Instead of optimizing over all available data collected on a

frequency interval, a data selection scheme that increases the amount of data at

each step is followed. Selecting relevant parts of data and optimizing sequentially

increasing number of coefficients in every step is the essential part idea behind this

approach. The optimization problem solved reduces to a curve fitting problem.

It is illustrated that such a Newtonian optimization method has the capability of

finding the parameters of a reduced order transfer function by minimizing a cost

function involving nonlinearities such as exponential and rational terms. Further

model reduction techniques can be applied by analyzing Hankel singular values of

the resulting transfer function. Comparisons with other methods solving similar

problems are illustrated with examples. Simulation results demonstrate efficiency

of the proposed algorithm.
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ÖZET

SONSUZ BOYUTLU SİSTEMLERİN FREKANS
TEPKİSİ VERİSİNDEN İNDİRGENMİŞ DERECELİ

MODELLENMESİ

Okan Demir

Elektrik ve Elektronik Mühendisği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Hitay Özbay

Eylül, 2014

Bu tezde, frekans tepkisi verisini kullanan bir sistem tanılama yöntemi üzerine

çalışılmıştır. Sistem tanılama yöntemi bir grup dağıtık parametreli sistem (özel

olarak esnek yapılar) üzerinde uygunlanmıştır. Esnek yapıların kontrolünü

zor kılan bir nokta baskın kiplerin (rezonant frekanslarının konumu ve ilgili

sönümlenme katsayıları) kestirilmesidir. Literatürde, Kısmi Diferansiyel Den-

klemler’den esnek sistemlerin transfer fonkisyonlarını elde eden ve esnek sistemleri

sonsuz boyutlu modellerle tanımlayan pek çok çalışma bulunmaktadır. Bu tezde,

girdi/çıktı gecikmesi içeren bir esnek yapının baskın esnek kiplerini tanımlayan

bir sayısal yöntem önerilmiştir. Yöntem, esnek kiplerin rezonant frekansları ve

sönümlenme katsayılarını, aynı zamanda zaman gecikmesinin miktarını kestirmek

için bir frekans alanı yaklaşımı (frekans tepkisi verisi) kullanmaktadır. Ardışık

bir Doğrusal Olmayan En Küçük Kareler (DOEKK) eğri eşleştirme işlemi benim-

senmiştir. Bir frekans aralığında toplanmış tüm mevcut veri üzerinden optimiza-

syon yapmak yerine, her bir adımda veri sayısını artıran bir veri seçimi şeması

takip edilmiştir. Verinin ilgili parçalarının seçimi ve her adımda ardışık olarak ar-

tan sayıdaki katsayıların optimize edilmesi, basit ifadeyle bir eğri eşleştirme prob-

lemi olan optimizasyon probleminin çözülmesi için esas teşkil eder. Bu tür bir

Newton optimizasyon yönteminin doğrusal olmayan üstel ve oransal öğeler içeren

bir maliyet fonksiyonunu küçülterek indirgenmiş dereceli bir transfer fonksiyonun

katsayılarını bulabildiği gösterilmiştir. Elde edilen çok yüksek dereceli model-

lerin Hankel tekil değerleri incelenerek daha düşük dereceli sistemlere indirgenme

özellikleri de araştırılmıştır. Ayrıca, benzer problemleri çözen diğer yöntemler

uygulanıp, karşılaştırmaları sonuç olarak verilmiştir. Benzetim sonuçları önerilen

algoritmanın etkinliğini ortaya koymaktadır.
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Chapter 1

INTRODUCTION

1.1 Aim and Scope

Control of distributed parameter systems is a important research field in control

systems and has many applications in industrial area, e.g. aerospace technology,

robotics, where flexible structures are modeled by Partial Differential Equations

(PDEs). One of the challenging tasks in the control of flexible structures is

the estimation of the dominant modes. Resonance and anti-resonance terms

parameterized as resonant frequencies and associated damping coefficients need

to be obtained for this purpose.

Studies on control systems and algorithms for controller design mostly cover

models derived from ordinary differential equations. Adequate models can be

obtained for many systems, e.g. RLC circuits, rigid robot arms. For the sys-

tems which input/output relation taken into consideration depends on more than

one independent variable are expressed appropriately by PDEs. For example, a

rotating beam which a torque applied to, generates angular velocity output on

its rotation axis that depends on the distance to the point where the torque ap-

plied, [1], i.e. it is a distributed parameter system. Since there are more than

one independent variables in such systems, dynamics are modeled by PDEs, [2].
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By using the Laplace transform, infinite dimensional transfer functions are ob-

tained from PDEs. An interesting feature of these infinite dimensional models is

that they contain a few parameters, depending on the properties of the structure.

Although they provide a complete abstraction of their physical properties, small

variations on the modal parameters may generate large errors in the frequency

response. This fact makes it difficult to develop robust control algorithms.

In order to overcome this difficulty finite order approximations must be used

for these systems which are represented by transcendental functions of complex

Laplace variable ‘s’. A finite order model having a large number of parameters

that matches the system response precisely leads to a lower relative error level

than a distributed parameter model whose coefficients are not estimated very ac-

curately. As the number of states is increased in the finite order approximation,

mathematical model might be expected to be close to the original transfer func-

tion. In a precise manner, a transcendental transfer function for a flexible beam

can be represented as an infinite product of second order terms. Truncating high

frequency modes is a method for expressing an infinite product in finite order.

An adequate amount of information on the system is preserved by truncating the

exact poles and zeros in a frequency band of interest.

For example, consider a free-free beam with end points at x = 1 and x = −1
and control input is a moment m(t) applied to the middle of the beam. The

dynamics of the beam are described by

∂2w

∂x2
+ ǫ

∂5w

∂x4∂t
+
∂4w

∂x4
= δ(0)f(t)− δx(0)m(t) (1.1)

where w(x, t) is the deflection along the beam and f(t) is a point normal force. If

output is selected as the deflection of the middle of the beam, Laplace transform of

the (1.1) results to an in-homogeneous differential equation having independent

variable ‘s’. By solving the resulting differential equation, transfer function is

obtained as

G(s) =
β

2s2

(

1 + cosh β cos β

cosh β sin β + sinh β cos β

)

(1.2)

where β4 = −s2

(1+ǫs)
, [3].

This transfer function can be expanded into a infinite product of second order

2



Figure 1.1: Experimental procedure conducted on rigid robot arm to collect in-
put/output data.

terms:

G(s) =
1

2s2

∞
∏

n=1

(

1 + ǫs+ s2

c4n

)

(

1 + ǫs+ s2

µ4n

)

which has zeros at s = −c4n
2

(

ǫ±
√

ǫ2 − 4
c4n

)

and poles at s = −µ4n
2

(

ǫ±
√

ǫ2 − 4
µ4n

)

.

In general, modeling the dynamics of an arbitrary system by differential equa-

tions is not always possible. Obtaining an idealized physical equation as done for

the free-free beam example above might be difficult to evaluate or an idealized

model can not give sufficient information on the real system. Some external ef-

fects may not be included in the mathematical model. Robust control of these

systems by using frequency response requires input/output relationship at the

frequency band of interest. Characteristics of the system can be accessed by con-

ducting experiments. Critical steps are input design and applying a parametric

identification method on the collected data.

This approach can be considered as ‘black box’ modeling. For this purpose,

several experiments that simulates systems process in different types of possible

operating conditions can be designed and implemented. During experimental

process, input and output data are recorded. Comparison between output and

corresponding input signal demonstrates system behavior for inputs having differ-

ent frequencies. Figure 1.1 shows a representation of data collection procedure.

This procedure is conducted on a flexible, rigid robot arm for the purpose of

extracting an approximating transfer function. Inputs are selected as sinusioids

3



having different frequencies denoted by ωk; yk(t) is the velocity output of the

system on which torque uk(t) is applied. By removing DC term A0 from uk(t)

using a high pass filter, a sinusoidal signal with additional noise is handled by

the non-parametric identification method. The DC term is added in order to

overcome possible nonlinear effects, such as friction.

When a sinusoidal input at a constant frequency is applied to a linear system,

it produces a sinusoidal output at the same frequency but having a different

magnitude and phase. If difference of phases and ratio of magnitudes between

input and output signal is calculated, an estimation of systems response at the

corresponding frequency can be made.

Comparison of input and output signals can be evaluated in time domain.

Peak points of sinusoidal input signal and related output signal at steady state

are compared in the sense of magnitude change and time shift. But this method

may produce erroneous results that are caused by distorted output signal. An-

other option is to transform all data to Fourier domain; DFT (Discrete Fourier

Transform) is used for this purpose. DFT at specified frequencies is applied sepa-

rately to data sets containing sinusoids having different frequencies. Ratio of DFT

of output and input sinusoids results to frequency response at a frequency point,

[4]. Frequency domain data makes it available to select a parametric model that

approximates ‘black box’ system. In [5], optimal inputs for experiment design are

characterized by a sum of sinusoids. A method for selecting optimal parameters

of sinusoids is proposed to excite system. Also, [6] investigates selecting optimal

inputs with a constraint on the energy of input.

1.2 Literature Survey

System identification methods deal with two groups of data:

• time domain data,

• frequency domain data.
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In [7] both time domain and frequency domain data sets are handled; this book

contains detailed study of various system identification techniques. A set of mod-

els (e.g., AR, ARMA, ARMAX) expressed by linear difference equations are de-

fined. Furthermore, state space models are investigated. Non-parametric and

parametric system identification methods are handled. Least squares and max-

imum likelihood are used as solutions for identifying parameters from time and

frequency response data.

Time domain data based approaches have great priority in real time modeling,

especially for adaptive control. Time domain data can be collected real time and

easily used to update parameters by low cost linear least squares calculations.

Adaptive control algorithms use least squares calculations as a key element for

on-line determination of parameters. Parameter count is the decisive factor on the

order of the resulting transfer function. Model structure, experimental procedure

and parameter estimation method must be selected logically.

Particularly, [8] focuses on on-line estimation of parameters for adjusting con-

trol oriented parameters dynamically. Parameters are distributed linearly in the

model to simplify calculations for identification. Input which are used in experi-

ments is based on some knowledge of the process and selected carefully. Recursive

estimation of parameters is also investigated. Transfer function models are se-

lected as FIR or ARMA models, see for example [9]. Robust control oriented

identification is handled in [10]. ’Unfalsification’ arises as a new paradigm in

system identification area by directing identification algorithms to make a modi-

fication in order to be compatible with robust control design. Main point is such

that “Given some data, a model is said to be validated if and only if it could

have produced the data.”, [11]. Model unfalsification is defined as a feasibility

problem. Study uses FIR and ARX models as transfer function structure and

linear least squares solution methods are also proposed to determine parameters.

Furthermore, uncertainty ‘w’ is embedded into model and a bound on uncertainty

is introduced to prove a system is unfalsified. In [12], definition of systems val-

idation is given and uncertainty model unfalsification is adopted to closed loop

systems in the presence of noise, see also [13].

5



In all the studies discussed above, constraints are not defined on the param-

eter set in the least squares solutions. This may lead to a transfer function with

properties which are inconsistent with the real system. For example when a flex-

ible system has collocated actuators and sensors its transfer function is minimum

phase, i.e. it has no right-half plane poles and zeros.

Frequency response based methods deal with experimental data which are

difficult to evaluate in real time, since obtaining frequency response points may

need to excite system for a large period of time. On the other hand, these methods

are formulated to represent an infinite dimensional system with finite number of

states. Thus, obtaining frequency response from analytic formula of the transfer

function of distributed parameter system is also a viable approach.

For instance, [14] investigates approximating a given infinite dimensional

transfer function by a finite order transfer function by minimizing infinity norm

of the error. Infinite dimensional transfer function is assumed to be analytic

in the right-half plane. A Fourier transform based approach is used in order to

determine Fourier series, Fast Fourier Transform is preferred for efficiency of com-

putations. Resulting large number of coefficients lead to a very high order transfer

function after bilinear transform applied to FIR transfer function parameterized

by time domain data. Thus, a model reduction method is applied. Furthermore

a bound on error is investigated. A subspace based approach is proposed in

[15]. State space matrices are obtained from observability matrix by following

a method based on Ho and Kalman realization algorithm. Their method deals

with uniformly spaced frequency response data and Hankel matrix coefficients are

obtained by Inverse Discrete Fourier Transform. Noisy data is also handled and

number of data is a key point to suppress noise to converge to correct transfer

function. Non-uniformly spaced data case is also investigated. Additionally, in

[16] subspace based algorithm is applied to spectral data Sk = G∗(ωk)G(ωk) in

order to obtain a minimum phase transfer function. Technique has similarities

with the method used in the second algorithm of [15]. Non-positive definiteness

problem rises at the point where B andD matrices are extracted by solving a least

squares problem followed by a Riccati equation. However first two methods can-

not be used for simultaneous estimation of delay term and minimum phase part;

6



and it may result in a non-minimum phase transfer function. In [16], a convex

optimization procedure is required in order to make Riccati equation solvable.

In [17], three identification algorithms, Sanathanan and Koerner algorithm,

Levenberg-Marquardt method and the two-stage nonlinear algorithm, are com-

pared. Advantages and disadvantages are shown for three examples in discrete

time domain. Connections between frequency and time domain techniques are

discussed in [18]. Parseval’s theorem shows that minimization in time domain

is analogous to minimization over frequency response data. Advantages of fre-

quency domain approach for certain cases are noticed. In [19], authors deal with

Hammersytein model identification based on frequency response data. Non-linear

effects are also handled. An experimental procedure, which uses sinusoidal in-

puts and collects data by using the Hammerstein model, is adopted. Linear and

nonlinear parts are identified separately from filtered output data. Robust con-

trol oriented system identification is also the subject of [20]. Identified model

is structured by linear combination of bases from Laguerre functions. Likewise,

experimental frequency response data is used for non-parametric identification

and developing a model by using Chebyshev polynomials are investigated in [21].

In [22], an iterative scheme is proposed to adjust plant and controller parame-

ters sequentially for robust control. Minimization over parameters are made for

parameters of the closed loop system. Consistency of an open-loop model are

investigated in [23]. Model validation problem is determined by the relation of

uncertainty in new experiments and a predetermined uncertainty bound. This

method checks if a model satisfies an uncertainty bound when different inputs are

applied, which may lead to selecting a larger uncertainty bound. Similar to time

domain methods, [24] uses rational functions of polynomials as models for curve

fitting. Same method can be adopted to frequency response data by separating

real and imaginary parts.

7



1.3 Overview of the Proposed Method

In all mentioned methods, constraints on resulting model are not considered to be

a priority. Aim of this study is to determine a parametric model from obtained

frequency response data. Furthermore, resulting parametric model must have

a frequency response that leads to a small relative error but also must satisfy

known properties of the system. Thus, attribute ‘black box’ may not fully define

the system to be identified; ‘grey box’ might be a more legitimate term.

By using well-known properties of the system, a ‘true’ transfer function is

assumed to be in the form G(s) or G0(s) given below:

G(s) =
K0

s
G0(s) and G0(s) = P (s)e−hs (1.3)

where h is the effective time delay, P (s) is the minimum-phase part and if the

integral action is present K0 is the associated gain. The goal is to find estimated

values of the parameters h and K0 and a reduced order minimum-phase transfer

function PN(s) approximating P (s).

P (s) =
∞
∏

k=0

(

s2

ω2
k,n

+
2ζk,ns

ωk,n
+ 1

)

(

s2

ω2
k,d

+
2ζk,ds

ωk,d
+ 1

) (1.4)

For many flexible systems when actuator and sensors are collocated, P (s)

turns out to be minimum-phase. On the other hand, non-collocated actuator

and sensors lead to a transfer function having zeros on the right half plane.

Nevertheless, it is possible to separate this zeros and approximate them by a

single lumped delay e−hs, see for example [25] where high frequency dynamics

caused by elasticity, non-collocated actuator and sensors, effects of computer and

zero hold are also approximated by a time delay, [26].

Since minimum phase is a requirement for the solution, constraints need to be

involved in the mathematical representation of the minimization problem. When

the estimate of P (s) is defined as

PN(s) =

N
∏

k=1

aks
2 + 2ζk,nωk,ns+ ω2

k,n

bks2 + 2ζk,dωk,ds+ ω2
k,d

, (1.5)

8



in order to have all poles and zeros on the left half plane, this requirement can

be embedded into the optimization problem as a positivity constraint on the

coefficients ak, bk, ζk,n, ζk,d, ωk,n, ωk,d for k = 1, . . . , N , and h. If integral action

is present, a positive K0 must be involved in calculations. If these coefficients are

collected in one vector β for k = 1, . . . , N , constraint can be expressed as

β � 0

where ‘�’ means element-wise inequality of a vector and

β = [h,K0, θ
T
1 , θ

T
2 , . . . , θ

T
N ]

T (1.6)

where θk is

θk = [ak, ζk,n, ωk,n, bk, ζk,d, ωk,d]
T .

In this study proposed algorithm uses log-barrier method to satisfy positiv-

ity constraint. Log-barrier method has similarities with the solution of a dual

problem in non-linear optimization, [27] and gives efficient results for most cases

despite its simpler structure.

In addition, an alternative basis function is investigated. Proposed algorithm

can be modified to a product of first order terms instead of second order ones.

Alternative model, simulation results and comparisons are also taken into scope of

this study. Obtained transfer functions are further reducible, and model reduction

properties are also handled.

This thesis is based on our earlier publications, [28, 29, 30]. The thesis is orga-

nized as follows. In Chapter 2, structure of the transfer functions considered are

discussed in detail, and related optimization problem is expressed. Preliminaries

of Newton’s methods are given and methods applied to solve the optimization

problem are also investigated in Chapter 2 and furthermore, PDE based models

and non-parametric identification method are handled. In Chapter 3, details of

the NLLS method are investigated and proposed algorithm is represented step by

step. Chapter 4 is the part where simulation result are given for several examples.

Concluding remarks are made in Chapter 5.
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Chapter 2

PROBLEM DEFINITION

2.1 System Structure

In this thesis a numerical method for extracting a finite order transfer function

followed by a delay term from frequency response data of an infinite dimensional

system’s transfer function is investigated. Frequency response data can be col-

lected by conducting experiments on the system or obtained from infinite dimen-

sional transfer functions. Infinite dimensional transfer functions which are taken

into scope of this study are derived from PDEs and in a form of transcendental

functions of Laplace variable ‘s’. They can be expanded to a infinite product of

second order terms. Models in the scope of this study are assumed to be in a

general form

G(s) = e−hs
K0

s
P (s) or G0(s) = e−hsP (s) (2.1)

where the minimum phase part of the transfer function P (s) is expanded to

P (s) =
∞
∏

k=1

(s/ωk,n)
2 + 2ζk,n(s/ωk,n) + 1

(s/ωk,d)2 + 2ζk,d(s/ωk,d) + 1
.

and h ≥ 0 is the effective time delay. If there is an integral action is present,

K0 is the associated gain. ωk,n and ωk,d are natural frequencies of resonance and

anti-resonance terms and ζk,n, ζk,d are corresponding damping coefficients.
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Frequency response at distinct frequencies are given by Φi = G(jωi) or

Ψi = G0(jωi) at frequency points ωi, for i = 1, . . . ,M . After collecting fre-

quency response data in a frequency region of interest, following procedure can

be considered as solving a complex curve fitting problem in basic terms. This

is a minimization problem and literature has many techniques to solve this opti-

mization objective. In this study, an algorithm using Non-Linear Least Squares

(NLLS) solution is preferred. Although NLLS iterations have a big cost of time

and computation expense compared to linear least squares solutions, better re-

sults are obtained with resulting transfer functions having lower orders.

The goal is to estimate an approximating transfer function GN
∼= G, or GN

∼=
Go which is defined as

GN(s) = e−hs
K0

s
PN(s) or GN(s) = e−hsPN (s) (2.2)

PN(s) =
N
∏

k=1

(aks
2 + 2ζk,nωk,ns+ ω2

k,n)

(bks2 + 2ζk,dωk,ds+ ω2
k,d)

. (2.3)

The terms ak, bk are added in order to adjust the low frequency gain of PN . As

it can be seen PN(s) is a product of second order terms. Second order transfer

functions in the product is selected as a basis to approximate resonance and anti-

resonance terms. Non-linear terms like exponential term and ratio of polynomials

make NLLS solution a preferred method instead of linearizing the problem in pa-

rameters. Non-linear parameter search techniques give the opportunity of adding

constraints on the parameters and give results that minimizes the error by a lower

order transfer function. This fact lessen importance of the cost of large number

of iterations compared to its results.

The objective is to minimize the relative error between a set of given frequency

response data points Φi and GN(jωi). Precisely, the constrained optimization

problem is defined as

minimize
β

ǫ(β) =
M
∑

i=1

∣

∣

∣

∣

Φi −GN(jωi, β)

GN(jωi, β)

∣

∣

∣

∣

2

subject to β � 0,

(2.4)

where ‘�’ means element-wise inequality of a vector, and the parameter vector β
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is defined as

θk = [ak ζk,n ωk,n bk ζk,d ωk,d]
T (2.5)

β =
[

h,K0, θ
T
1 , θ

T
2 , . . . , θ

T
N

]T
(2.6)

where the count of items in vector β is denoted byK which will be used in sequent

sections.

Solution of the constrained optimization problem given in (2.4) must obey the

non-negativity constraint beside finding minimizing coefficients distributed in the

objective function non-linearly.

2.2 Preliminaries

Newtonian optimization methods give a base for solving one equation or multiple

equations of multiple unknown parameters. If objective function is linear in

parameters, Newton’s Method solves the problem in one iteration. Nevertheless

iterations last more than one step due to non-linearly distributed parameters in

objective function. If initialization point of parameters is not selected reasonably,

iterations may never converge to a minimum. When objective function is denoted

by ‘f ’, objective is,

minimize f(β), (2.7)

whose minimizing Newton step is

∆β = −∇2f(β)−1∇f(β). (2.8)

where

∇f(β) =















∂f(β)

∂β1
∂f(β)

∂β2
...

∂f(β)

∂βK
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∇2f(β) = and















∂2f(β)

∂β2
1

∂2f(β)

∂β1∂β2
. . .

∂2f(β)

∂β1∂βK
∂2f(β)

∂β2∂β1

∂2f(β)

∂β2
2

. . .
∂2f(β)

∂β2∂βK
...

. . .
...

∂2f(β)

∂βK∂β1

∂2f(β)

∂βK∂β2
. . .

∂2f(β)

∂β2
K















Equation (2.8) is derived from second-order approximation of the variated version

f̂ of f at β; f̂ is

f̂(β + β
+
) = f(β) +∇f(β)Tβ

+
+

1

2
βT
+
∇2f(β)β

+
. (2.9)

f̂ is minimized when β
+
is selected as β

+
= ∆β of (2.8). In order to minimize

objective function β should be variated towards β +∆β, [27]. Objective to solve

may be expressed in equality form

f(β) = 0,

instead of minimizing f(β). Target objective function of this study which is given

in (2.4) is of this kind and general solution is handled in the next section.

2.2.1 Newton-Raphson Method for Solving One Equation

Problem of solving one non-linear equation can be defined in the form

arg f(β) = 0, (2.10)

which has a solution β = β∗.

For simplicity, consider a function f(β) : R→ R continuous in its parameter

β and by linearizing the function at a point βc and draw a tangent at point

(βc, f(βc)). This line is modeled as

Mc(β) = f(βc) + f ′(βc)(β − βc) (2.11)

The point that Mc(β) crosses the β axis can be easily shown

0 = f(βc) + f ′(βc)(β
∗ − βc)
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β∗ = βc −
f(βc)

f ′(βc)

where −f(βc)/f ′(βc) is known as Newton-Raphson method’s step. Newton-

Raphson steps iterates through the point where f(β) crosses the β axis if problems

is well defined, means f(β) = 0 at some point.

2.2.2 Multivariate Case

When the aim is to solve M number of equations in K number of parameters,

Gauss-Newton method gives a solution. Abstract model 2.11 can be generalized

to multidimensional case as given in (2.12).

Mc(β) = F (β) + J(β)(β − β
c
) (2.12)

where F (β) and J(β) are defined as

F =















f1(β)

f2(β)
...

fM(β)















and Jij =

[

∂fi(β)

∂βj

]

(2.13)

Since Mc(β) is a vector, in general it is not expected that there is a β∗ that

makes Mc(β) = 0. A least-squares solution can be found.

minimize
1

2
‖Mc(β)‖22 (2.14)

If J(β) has full column rank, then the (2.14) is expanded to

minimize
1

2

(

F (β) + J(β)(β − β
c
)
)T (

F (β) + J(β)(β − β
c
)
)

which has a minimizing solution [31]

∆β = −
(

J(β
c
)TJ(β

c
)
)−1

J(β
c
)TF (β

c
). (2.15)
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2.3 Partial Differential Equation Based Models

Dynamics of a physical system are modeled by Partial Differential Equations

(PDEs) when relation between chosen input and output depends on more than

one variable. As an example, dynamics of a large space structure from a torque

input to a deflection or angular velocity at some point on the structure depends

on time and the distance from where the input is applied. A second order PDE

is represented as a function of a function depending n variables and its first and

second partial derivatives,

F

(

x1, x2, . . . , xn,
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
,

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xn
, . . . ,

∂2u

∂xn∂xn

)

= 0

having a solution

u = u(x1, . . . , xn).

A second order PDE in two independent variables x1 and x2 and has a linear

form can be represented as

A
∂2u

∂x21
+B

∂2u

∂x1∂x2
+ C

∂2u

∂x22
+D

∂u

∂x1
+ E

∂u

∂x2
+ Fu = G

where A, B, C, D, E and F are constants or functions of x1 and x2, [32].

An application to flexible systems is from a study of Raskin and Halevi [1].

In this study a transfer function model governed by wave equation is derived and

a model based controller is developed to increase performance characteristics.

Structure is a uniform rod with free ends having length L, an input M(t) which

is torque moment at one end of the rod and output θ(x, t) which is the torsion

angle at distance x from where the torque applied shown in Figure 2.1.

Dynamics are represented by the wave equation θ(x, t)

∂2θ(x, t)

∂x2
=

1

c2
∂2θ(x, t)

∂t2

and boundary conditions are

GIp
∂θ(x, t)

∂x|x=0

= −M(t),
∂θ(x, t)

∂x|x=L
= 0
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Figure 2.1: Free-free uniform rod with input M(t) and output θ(x, t).

where Ip is the polar moment of inertia, G is the shear elasticity modulus, ρ is

the material density and c = (G/ρ)1/2 is the wave propagation velocity. After

taking Laplace transform, PDE turns into be an ordinary differential equation in

x
∂2θ(x, t)

∂x2
− s2

c2
θ(x, s) = 0

Then the solution is

θ(x, s) = C1(s)e
sx
c + C2(s)e

− sx
c

from the boundary conditions we can solve for C1 and C2, and obtain

θ(x, s)

M(s)
=

c

GIp

1

s

e−2τ(1−λ)s + 1

1− e−2τs
e−τλs

where λ = x/L is normalized distance and τ = L/c is a time constant. Resulting

transfer function has infinite number of poles and zeros on imaginary axis, at

points given as

pk =
kπ

τ
j and zk(λ) =

(k + 1/2)π

τ(1− λ) j.

Thus it can not be represented by a finite number of states but can be approxi-

mated. Small perturbations in parameter L may result large changes in pole and

zero locations of the plant model.
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2.4 Experiment Based Non-Parametric Identi-

fication

For the cases which a consistent system model that includes all dynamics can

not be defined for the real system or an abstract structure does not include all

external effects, experiments can be conducted on the real system. This gives an

understanding of input/output characteristics of the system. Procedure starts by

defining a reasonable signal as an input to the plant and collecting samples of

output data. Comparing magnitude and phase properties of input and output at

distinct frequencies results into accurate frequency response characteristics. In

order to obtain these characteristics a non-parametric identification method based

on Discrete Fourier Transform (DFT) is used. Frequency response characteristics

at predefined, distinct frequencies are obtained in terms of phase and magnitude

values by applying sinusoids having constant frequencies and magnitudes. DFT

is derived from Fourier Transform in continuous time domain

Xc(jω) =

∞
∫

−∞

xc(t)e
−jwtdt

by discretizing time axis,

X̂(jω) =
∞
∑

−∞

xc(kTs)e
−jwkTsTs, t = kTs

is obtained, by discretizing frequency axis,

X̂(jωn) =
∞
∑

−∞

xc(kTs)e
−jwnkTsTs

is obtained.

Input signals are selected as

x(t) = Asin(ωt)

and in discretized form

x[kTs] = Asin(ωkTs)
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Frequency points ωk, k = {1, . . . ,M} are in the interval 0 < ωk <
2π
Ts

by

Nyquist sampling theorem. If this interval is separated to N uniform steps,

discrete frequency steps ωn are defined for N point DFT

ωn =
2πn

NTs
, n = 0, 1, ..., N − 1 (2.16)

1

Ts
X̂(j

2πn

NTs
) =

N−1
∑

0

x[k]e−j2πkn/N

If X [n] is defined as

X [n] =
1

Ts
X̂(j

2πn

NTs
)

DFT of x[n] is calculated by the sum below

X [n] =

N−1
∑

0

x[k]e−j2πkn/N

In order to obtain magnitude and frequency response of the system at given

frequency point ratio of the DFT sum of output and input is calculated.

Y [n] =
N−1
∑

k=0

y[k]e−j2πkn/N

U [n] =

N−1
∑

k=0

u[k]e−j2πkn/N

G[n] =
Y [n]

U [n]

G[n0] = |G[n0]|∠G[n0] =
|Y [n0]|
|U [n0]|

ej(∠Y [n0]−∠U [n0])

where n0 =
ω0NTs

2π
from (2.16).

Non-parametric identification by using DFT gives more reliable results than

comparing input and output signals in time domain.
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Figure 2.2: y(t) = Aycos(ωkt+ ψy) and u(t) = Aucos(ωkt + ψu)

Figure 2.3: Block model.
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2.5 Model Constraints

In this study proposed method uses frequency response of the system taken into

consideration to match a transfer function. Frequency response can be obtained

by solving dynamic equations of the system or by conducting experiments on

the system. These two methods were explained in previous two sections. After

phase and magnitude responses at distinct frequencies which are not needed to

be uniformly spaced are collected, next step is to solve an optimization problem.

Aim is to find parameters of a finite order transfer function multiplied by a

delay term. Parameter search problem is solved by Non-Linear Least Squares

(NLLS). Resulting parameters must not only minimize the relative error between

previously obtained frequency response and identified parametric model but also

satisfy constraints.

Target transfer function after separating integral action and delay term, PN(s)

in (1.5) is restricted to be minimum phase. When negative gain situation is

neglected, hence it can be separated from collected frequency response data,

restrictions can be embedded into the optimization problem as a non-negativity

constraint. Therefore, all parameters in the vector β defined in (1.6) must be

non-negative.

After adding constraints, optimization problem (2.7) turns into the form

minimize f(β) (2.17)

subject to fi(β) ≤ 0, for i = 1 . . . , L. (2.18)

One solution is rewriting the constrained optimization problem by making con-

straints implicit in the objective function. [27]

minimize f(β) +

K
∑

i=1

I(fi(β)) (2.19)

where I(fi) : R→ R for i = 1, . . . , L is the indicator function:

I(fi) =







0 fi ≤ 0

∞ fi > 0
. (2.20)
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Figure 2.4: Log-barrier function for several µ values. (I(fi) vs. −fi)

Indicator function is not differentiable and can not be used in Newton method.

Logarithmic barrier function is an approximation to the indicator function, dif-

ferentiable and it is given as

Î(fi) = −µ log(−fi(β)), (2.21)

where µ is a positive constant. Figure 2.4 shows log-barrier function for decreasing

µ values. As µ decreases approximation becomes more accurate, [27].

Log-barrier method can be implemented in the proposed method of this study

by selecting constraint functions fi as negative of each parameter of vector β.

When β is redefined as

β =















β1

β2
...

βK















,

then constraint functions are

fi = −βi for i = 1, 2, . . . , K.
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By inserting constraints to the objective function and selecting indicator function

as logarithmic function, overall optimization objective becomes

minimize
β

ǫ(β) =
M
∑

i=1

∣

∣

∣

∣

Φi −GN(jωi, β)

GN(jωi, β)

∣

∣

∣

∣

2

− µQ(β) (2.22)

where Φi are frequency response data points G(jωi) as obtained from the proce-

dure of Section 2.4 and

Q(β) =

K
∑

i=1

log(βi). (2.23)

Substitute (2.23) in (2.22), obtain:

minimize
β

ǫ(β) =
1

µ

M
∑

i=1

∣

∣

∣

∣

Φi −GN(jωi, β)

GN (jωi, β)

∣

∣

∣

∣

2

−
K
∑

i=1

log(βi), (2.24)

GN(s) has the structure of (2.2) with parameters β (2.6) to be determined. In

terms of a simplified notation the optimization problem defined above can be

considered as minimizing

ǫ(β) = FHF (2.25)

where

F =















1
µ

Φ1−GN (jω1,β)

GN (jω1,β)
−∑K

i=1 log βi
1
µ

Φ2−GN (jω2,β)

GN (jω2,β)
−∑K

i=1 log βi
...

1
µ

ΦM−GN (jωM ,β)

GN (jωM ,β)
−∑K

i=1 log βi















=















F1

F2

...

FM















(2.26)

Furthermore the Jacobian of vector F is defined as

Jij(β) =

[

1

µ

∂Fi(β)

∂βj
− 1

βj

]

(2.27)

Log-barrier method has similarities with solution methods for dual optimization

problems and efficient for most cases. The above discussion summarizes the main

idea behind the steps of the algorithm.

2.6 Alternative Basis Function

Whereas the aim is extracting resonant modes from frequency response data,

basis function in (2.2) is expressed by second order terms. For different cases
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basis can be selected as a first order term, and minimum phase part PN(s) of

GN(s) turns into a product of first order transfer functions,

PN(s) =

N
∏

k=1

(ak,1s+ ak,0)

(bk,1s+ bk,0)
. (2.28)

In an other study proposed method is implemented to find a finite order

approximation of a fractional order transfer function that models non-laminated

magnetic suspension system, [30]. Basis function is selected as above. Suitable

results that are very close to the fractional expansion method used in Matsuda’s

study [33] are obtained. Simulation results and comparisons are also given in

Section 4.2.
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Chapter 3

NLLS APPROACH and

PROPOSED ALGORITHM

3.1 Gauss-Newton Method

Problem is mainly finding a suitable complex function of ‘s = jω’ in the form

of (2.2) that matches M number of complex data points as close as possible and

satisfies non-negativity constraints. Objective can be expressed in vectorial form

as

minimize ǫ(β) = FHF (3.1)

where F is defined in (2.26).

For solving a set of non-linear equations, Gauss-Newton method is used. This

non-linear solver has advantages over linearizing problem such as adding con-

straints, on the other hand comes up with some disadvantages. Advantages are:

1. Locally quadratically convergent on problems whose optimal solutions are

zero or very small.

2. Quickly locally linearly convergent on problems which are not highly non-

linear and have solutions very close to zero.
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3. It takes one iteration to solve linear problems.

and disadvantages are:

1. Slowly locally linearly convergent on problems that are highly non-linear or

have large errors at optimal points.

2. Not locally convergent on problems that are very non-linear or have very

large errors at optimal points.

3. Not well defined if Jacobian does not have full column rank.

4. Does not guarantee to converge to global minimum.

Although Gauss-Newton method can not guarantee convergence to the global

minimum, it is certain that it iterates through a local minimum. [31] Newton’s

method may also fail to converge and µ parameter of the log-barrier method

may not be chosen optimally, picking a static µ value may make log function

a bad approximation to the indicator function in (2.20). In order to overcome

these two difficulties, an extension to log-barrier method given in Boyd’s [27] and

Levenberg-Marquardt algorithm in Lourakis’ [34] is used as inner iterations of

the algorithm proposed in this study.

Full structure of the implementation can be expressed as a tree model as given

below:

• Input: Collected frequency response data at distinct frequency points, de-

sired order of the resulting transfer function.

• Main loop: Data set selection and parameter initialization.

– Outer loop: Extended log-barrier iterations of decreasing µ.

∗ Inner loop: Levenberg-Marquardt algorithm.

• Output: Minimizing parameter set, β∗.
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3.1.1 Inner Loop

All non-linear optimization problems are not solvable by most basic form of

Gauss-Newton method. There are ill-conditioned cases, for example objective

function ǫ(β) may not cross β plane. Ill-conditioned circumstances impose to

extend basic form of iterations with modified Newton steps that guarantee con-

vergence. Trust region methods are a class of solvers and Levenberg-Marquardt

method which can be considered as a predecessor of trust region methods consti-

tutes inner loop of the algorithm.

Trust region methods increases the reliability of iterative optimization meth-

ods and can be applied to ill-conditioned problems. Trust region is a neighbor-

hood of the result of the current iteration which is centered at current result,

[35]. Trust region is adjusted at every iteration in a reasonable way in order to

find a better minimizer. Precisely, trust region is expanded when the result of

current iteration improves solution of the problem. On the other hand it shrinks

if it reduces the optimality of the solution.

The critical step is to compute the radius of the trust region. Method starts

with an initial trust region and a point β at the center of the region. Newton step

is modified by recalculation of the trust region. Contribution of the current iter-

ation is obtained and a merit function updates trust region for the next iteration.

Levenberg-Marquardt method adjusts trust region by increasing or decreasing a

damping coefficient. Step is modified by σ as follows

MLM(β) = JH(β
c
)J(β

c
) + σI (3.2)

sN = −M−1
LM (β

c
)JH(β

c
)F (β

c
) (3.3)

β
n
= β

c
+ sN (3.4)

where I is the identity matrix, multiplied by damping coefficient σ [34], β = βc

denote the current selection of the parameters, it is updated by sN .
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Step sN is a minimizer of

min ‖F (β
k
) + JH(β

k
)s‖22 (3.5)

s. t. ‖s‖2 ≤ ∆k, (3.6)

which is a similar expression as (2.14), but a bounding constraint is added. Region

∆k is called the trust region radius, [36].

Constraint 3.6 provides trust region method properties to Levenberg-

Marquardt algorithm and ‘trust region’ ∆ is revised at every iteration by the

update of σ.

Algorithm that is used in Inner Loop is as follows

Step 1 Initialize parameter set β = β
0
and ǫ1, ǫ2, ǫ3, k = 0, τ > 0, kmax is a

very large integer.

Step 2 k = 0; v = 2; β = β
0

Step 3 A = JHJ ; ǫβ = FH(β)F (β) of (2.25); g = JHǫβ ;

Step 4 Stop if ‖g‖∞ ≤ ǫ1.

Step 5 σ = τ maxi=1,...,m(Aii)

Step 6 Repeat:

Step i k = k+1;

Step ii Solve (A+ σI)δβ = g;

Step iii Stop if ‖δβ‖ ≤ ǫ2‖β‖;

Step iv β
new

= β + δβ ;

Step v ρ =
(

‖ǫβ‖2 − FH(β
new

)F (β
new

)
)

/
(

δTβ

(

σδβ + g
))

Step vi If ρ ≤ 0, σ = σv; v = 2v; Goto Step i.

Step vii β = β
new

;

Step viii A = JHJ ; ǫβ = FH(β)F (β) of (2.25); g = JHǫβ;
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Step ix σ = σmax(1
3
, 1− (2ρ− 1)3); v = 2; Goto Step i.

Step x Stop if
(

‖g‖∞ ≤ ǫ1
)

or
(

‖ǫβ‖2 ≤ ǫ3

)

.

Step xi Stop if k = kmax.

Step xii Goto Step i.

Step 7 β∗ = β

At Step ii of the Levenberg-Marquardt algorithm, a complex least squares

solution with constrained phase is used, [37]. Least squares problem is defined

as follows

Ax = b (3.7)

where A, x and b ∈ C, by writing x in polar form

Axmage
jψ = b. (3.8)

Solution to xmag is given as

xmag =M †ℜ(AHbe−jψ) (3.9)

where ‘†’ denotes pseudo-inverse and

M = ℜ(AHA). (3.10)

Purpose is to obtain real coefficients, so ψ is selected ψ = 0.

‘Trust region’ ∆ is initialized at Step 5 of the Levenberg-Marquardt algorithm.

There are four kinds of stopping criterion: procedure stops if

• a large number of iterations is reached, at Step xi of the procedure k is

checked,

• error which is denoted by ǫβ = FH(β)F (β) is below a predefined error level

ǫ3,

• magnitude of the gradient g = JHǫβ drops below threshold ǫ1,

• or the change δβ in parameters is less than a threshold ǫ2‖β‖.
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Damping factor σ is adjusted at Step vi or Step ix. ρ ≤ 0 means new error

after the update of parameters is higher than previous error level. If this occurs

damping factor σ is increased by multiplier v. Increase in damping factor shrinks

‘trust region’ ∆. Rationale behind this is that a minimizer is in an area of a

smaller radius or the current point itself. Otherwise, ρ > 0 means that a better

minimizer is reached, and new parameter set β can be selected as β = β
new

. This

is followed by Step ix where the damping coefficient σ is reset. When current point

is close to the solution, σ is selected as a small number, and the step becomes a

Gauss-Newton step.

3.1.2 Outer Loop

So far unconstrained optimization is discussed. Further, non-negativity con-

straints should also be handled, since all poles and zeros of GN(s) are restricted

to be in the left half plane when integrator and delay terms are removed. A

simple solution is to use barrier functions, [27].

Log-barrier function is an approximation to the indicator function in (2.20).

Purpose of the indicator function is to raise magnitude of the cost function to

a very large value if constraints are not satisfied. Precisely, this method inserts

a barrier on the parameter space between the region where the constraints are

satisfied and the region where they are not satisfied.

Logarithmic barrier function is used in our case and added to objective func-

tion implicitly as shown in (2.24). In order to increase optimality of the solution,

a simple extension is applied to the log-barrier method. Instead of solving the

problem in Inner Loop by using one constant value of µ, a sequence of problems

which are turned into be unconstrained by adding constraints to the objective

function are solved with decreasing µ values. Parameter set in each problem are

initialized by last found values in previously solved problem. This method was

first called sequential unconstrained minimization technique and proposed by Fi-

anco and McCormick, [27]. A version of the method proposed in Boyd [2009] is

as follows
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Step 1 Given strictly feasible β, µ = µ0 > 0, α > 1.

Step 2 Set tol ∈ R+ a very small number.

Step 3 Compute β∗ by minimizing (2.25), starting at β.

Step 4 Update β = β∗.

Step 5 Quit if mµ < tol.

Step 6 Decrease µ, µ = µ/α, Goto Step 3.

Inner Loop where the solution is calculated by Levenberg-Marquardt algo-

rithm is at Step 3. Iterations are stopped by the condition in Step 5 when µm

decreases to a number below threshold tol, where m > 0 is a constant. Result

returned from Outer Loop is a minimizer parameter set for the approximating

function GN(s) that fits data selected in the current iteration of the Main Loop

and returned as an initialization point of the next iteration of Main Loop.

However, for good convergence properties, initial values assigned to β in the

parameter space must be selected carefully. There is no perfectly defined initial-

ization point, it can be selected in a logical way for our specific case.

3.1.3 Main Loop

Complex curve fitting operation is made in arbitrary intervals on the frequency

domain. Since the aim is to obtain resonance and anti-resonance terms, peaks

on the magnitude curve increase in importance. Resonance and anti-resonance

terms show themselves as peaks on magnitude curve at some frequencies. Proce-

dure starts at lowest frequency point to obtain integral gain when integral action

is present. It is followed by an iterative parameter search sub-step which is per-

formed by focusing on the frequency point, where the highest error between Φ

and GN(s) occurs. Parameter count is dynamic, and increases at every iteration

of Main Loop. Adding new parameters to parameter set β improves the feasi-

bility of the optimization problem in Inner Loop. Outer Loop is continued until

reaching a reasonable error level or a given transfer function order.
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Applying NLLS methods on all data points at one outer step makes it difficult

to define model order and initial values of parameters and will not give desired

result. Therefore, selection of frequency intervals where resonant/anti-resonant

peaks are visible gives a good starting point. An admissible approach for data

point selection is starting from the lowest frequency region and working our way

to high frequencies we try to estimate the values of resonance frequencies and

damping coefficients by successively adding the frequency intervals where the

highest relative error occurs to the previously considered intervals.

These intervals are defined as:

A = {AL0
, AL1

, . . . ALN
|1 ≤ Li ≤M},

ALi
= {Φl |l = 1, 2, . . . Li}, (3.11)

Li+1 = max

{

arg
i

∥

∥

∥

∥

Φi −GN (jωi)

GN(jωi)

∥

∥

∥

∥

∞

, Li

}

,

AL0
⊆ AL1

⊆ · · · ⊆ ALN
,

B = {BL0
, BL1

, . . . BLN
|1 ≤ Li ≤M},

BLi
= {jωl |l = 1, 2, . . . Li}, (3.12)

BL0
⊆ BL1

⊆ · · · ⊆ BLN
.

Every new data set includes previous set and data points from low frequency to

high frequency where maximum error occurs. BLi
is the set of data on frequency

axis and ALi
is the set of frequency response data. These data is passed to the

Inner Loop to conduct optimization algorithm. Main Loop procedure is given as

follows

Step 1 Set tol ∈ R+ a very small number and N , where 2N + 1 defines the

degree of the resulting transfer function GN(s),

Step 2 Set N ← 0

Step 3 Calculate integral gain K0;
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Step i Define L0 ← Linit, where Linit ∈ Z+ and Linit ≪ M ,

Step ii Define AL0
and BL0

, according to (3.11), (3.12),

Step iii Define GN(s), G0(s) = e−hsK
s
,

Step iv Initialize: K ← |Φ1|
w1

and h← 0,

Step v Pass initial parameters K, h and data sets AL0
, BL0

to Outer Loop

and solve optimization problem

Step 4 Set ωc ← arg
ωi

∥

∥

∥

Φi−GN (jωi)
GN (jωi)

∥

∥

∥

∞
,

Step 5 Calculate the coefficients of increasing number of resonance/anti-

resonance terms,

Step i LN+1 = max

{

arg
i

∥

∥

∥

Φi−GN (jωi)
GN (jωi)

∥

∥

∥

∞
, LN

}

,

Step ii Set N ← N + 1,

Step iii Define data sets ALN
(3.11) and BLN

(3.12),

Step iv Define parameter vector β = [K0, h, θ
T
1 , . . . , θ

T
N ]

T as given in (2.6).

Step v Initialize: θN , select aN = 1, ζN,n = 0.5, ωN,n = ωc, bN = 1, ζN,d =

0.5, ωN,d = ωc, values of the remaining items in vector β come from

the previous iteration.

Step vi Pass initial parameters β and data sets ALN
, BLN

to Outer Loop

and solve optimization problem

Step 6 Goto Step 4 if (N < N and max
∣

∣

∣

Φi−G(jωi,θ)
GN (jωi,θ)

∣

∣

∣
> tol).

Step 7 β =
[

K0, h, θ
T
1 , θ

T
2 , . . . , θ

T
N

]T
and exit

Step 1 is the initialization step where error tolerance tol and degree of the

resulting transfer function 2N + 1 are defined. 2N + 1 is correct for the case

when an integral action is present. Otherwise, result is a 2N order transfer

function. In Step 3 gain K0 associated with the integral action is calculated. For

most cases this step is skipped, since integral action may not be present or can

be separated from obtained frequency response. Step 4 is a critical step where

data points are selected to apply optimization procedure on. It is illustrated in
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Figure 3.1: Graphical representation of Step 4 of the Main Loop.

Figure 3.1. Black arrow shows the magnitude of the maximum error that occurs

at a frequency point.

Step 5 is applied in each iteration of the main loop with dynamically increasing

number of data points and coefficients. Procedure is continued until desired order

of the transfer function is reached. Step 6 tests the termination conditions.

In order to increase the efficiency of barrier method, initial values of θk can

be modified, they can be selected as θk = [lak,
√
lζk,n,

√
lωk,n, lbk,

√
lζk,d,

√
lωk,d]

T ,

where l > 1.

Finally after obtaining an (2N+1)-th order approximate model for the infinite

dimensional system, a balance and truncate method can be used to further reduce

the order of the system, [38, 39].
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Chapter 4

NUMERICAL EXAMPLES

4.1 Results On Flexible System Models

Three different transfer functions are used for simulation purposes in order to

show efficiency of the proposed algorithm. In all the examples M = 500 and

frequency response is available at logarithmically spaced frequency points (ωi)

between 10−2rad/sec and 103rad/sec. Furthermore, result are compared to two

other methods. Subspace based method from [15] and Fourier Transform based

method from [14] are implemented and applied to the same infinite dimensional

transfer functions. Approximating transfer functions for each methods are ad-

justed to have the same order in three examples.

4.1.1 Free-Free Beam System

First example is the transfer function of free-free flexible beam which has an

integrator term and a delay term of h = 0.01 sec. Its transfer function from force

input to velocity measurement is, [3],

GA(s) =
−s e−hs

(ǫ1s+ 1)(ǫ2s+ 1)

(sinh(m(s)) cos(m(s))− cosh(m(s)) sin(m(s)))

m(s)3 (cos(m(s)) cosh(m(s))− 1)
(4.1)
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Figure 4.1: Bode plots of GA(s) and the identified model GN (s).

where m4(s) = −s2

(1+ǫ1s)
and the damping parameters are selected as ǫ1 = 0.001

and ǫ2 = 0.0033.

By applying the algorithm given in above, a 34th order PN(s) is determined;

the estimated delay value is h = 0.0106 sec. The Bode plots of the original

transfer function and that of GN(s) are given in Figure 4.1; the resulting relative

error is as shown in Figure 4.2. The pole-zero map of GN is shown in Figure 4.3,

see Figure 4.4 for detailed view. The Hankel singular values of PN are as shown

in 4.5.

These result are compared to results of other two methods and relative error

plots are given in Figure 4.6. Figure shows plots of NLLS approach (Method

I), subspace based method (Method II) and Fourier transform based method

(Method III) respectively. Degrees of the transfer functions are 34 for three

cases, when integral part is separated.

Subspace based method gives a good approximation of the logarithmically

spaced frequency response data. Method works in discrete time domain with
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Figure 4.6: Relative error comparison for three methods.
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normalized frequency axis, pole and zero locations are given in Figure 4.7. There

are zeros outside of the unit circle and they will be mapped to right-half plane

when bilinear transform is applied. Thus, obtained transfer function is not mini-

mum phase.

If GA(s) of (4.1) is taken as nominal plant, GA,5%(s) and GA,10%(s) are per-

turbed versions of GA(s). Perturbation is made on parameters ǫ1 and ǫ2. Fig-

ure 4.8 shows relative errors between nominal transfer function GA(s) and transfer

functions GA,5%(s) and GA,10%(s) with +5% and +10% modified parameters. Top

plot shows relative error between GA(s) and estimated transfer function GN(s).

In order to clarify the notation relative errors are defined as follows

Erel
GA,GN

(jω) =

∣

∣

∣

∣

GA(jω)−GN(jω)

GN(jω)

∣

∣

∣

∣

, Erel
GA,GA,5%

(jω) =

∣

∣

∣

∣

GA(jω)−GA,5%(jω)

GA,5%(jω)

∣

∣

∣

∣

and Erel
GA,GA,10%

(jω) =

∣

∣

∣

∣

GA(jω)−GA,10%(jω)

GA,10%(jω)

∣

∣

∣

∣

(4.2)
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4.1.2 Clamped-Free Beam

An infinite dimensional transfer function of a vibrating beam determined in [2] is

taken into consideration as a second example. The transfer function is defined as

GB(s) =
N(s)

EIm3(s)D(s)

where

m(s) =

( −s2
EI + scdI

)1/4

N(s) = cosh(Lm(s)) sin(Lm(s))− sinh(Lm(s)) cos(Lm(s)),

D(s) = 1 + cosh(Lm(s)) cos(Lm(s)).

Here, E and I are material constants and selected as E = 5 and I = 1; cd is the

damping constant and selected as cd = 0.01. The beam is clamped at x = 0 and

free at x = L where L = 5.5.

At first, proposed algorithm is modified in order to make basis functions

proper. GN is selected as GN = 1|Φ1| for N = 0, where 1 is a vector con-

sisting of ones and Step 3 is ignored since GB(s) does not have a pole at the

origin. The resulting GN(s) has a time delay term which is h = 0.011 sec. The

degree of PN(s) is 18 and GN(s) does not contain an integral term. Bode plots of

GB(s) and GN(s) are given in Figure 4.9, and the relative approximation error is

shown in Figure 4.10. The Hankel singular values of GN are shown in Figure 4.11.

Figure 4.12 gives relative error for three methods. Transfer functions have the

same order of 18.

Transfer function GB(s) is defined as nominal plant. Perturbation is made on

parameters E and I. Figure 4.13 shows relative errors between nominal transfer

function GB(s) and transfer functions GB,5%(s) and GB,10%(s) with +5% and

+10% modified parameters. Erel values are defined as similar to those in (4.2).
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Figure 4.9: Bode plots of GB(s) and the identified model GN(s).
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Figure 4.10: Relative error |GB(jω)−GN(jω)|/|GN(jω)|.
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Figure 4.11: Hankel singular values of PN (s), for example B.

4.1.3 Free-Free Uniform Rod

The third example is an infinite dimensional transfer function which is a damped

version of the wave system studied in [1]. This transfer function is expressed by

delay terms as follows:

GC(s) =
c

GIp

e−2τ(1−λ)s + 1

(ǫs+ 1)− e−2τs
e−τλs,

where parameters selected as λ = 0.5, τ = 0.0525, c = 0.2, G = 0.4, Ip = 2.5 and

ǫ = 0.001. Resulting transfer function PN (s) is 54th order. The identified GN(s)

contains an integral term and a time delay whose estimated value is 0.0261, which

is very close to the exact value τλ. Bode plots of GC(s) and GN(s) are given in

Figure 4.14, and the relative approximation error is shown in Figure 4.15. The

Hankel singular values of GN are shown in Figure 4.16.

NLLS approach and subspace based method applied to the third example.

Figure 4.17 shows results. Fourier transform based method is omitted. Orders of

the resulting transfer functions are 54, when integral part is separated.
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Figure 4.12: Relative error comparison for three methods.
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Figure 4.14: Bode plots of GC(s) and the identified model GN(s).
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Figure 4.15: Relative error |GC(jω)−GN(jω)|/|GN(jω)|.
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Figure 4.16: Hankel singular values of PN(s) for example C.

NLLS method Subspace based method
Example A 0.2549 2.5724
Example B 0.0027 0.0044
Example C 5.9884 7.3382

Table 4.1: Error norms:
∥

∥

∥

G(ω)−GN (ω)
GN (ω)

∥

∥

∥

∞

Pole zero map in z-domain is given in Figure 4.18. Subspace method gives

right-half plane zeros. Estimated transfer function by Method B is not minimum

phase.

Transfer function GC(s) is defined as nominal plant. Perturbation is made on

parameters τ and λ. Figure 4.19 shows relative errors between nominal transfer

function GC(s) and transfer functions GC,5%(s) and GC,10%(s) with +5% and

+10% modified parameters.

Table 4.1.3 displays maximum relative errors for three examples.
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Figure 4.17: Relative error comparison for two methods.
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4.2 Alternative Basis Function Example

Sequential data selection and optimization method is applied to a fractional order

transfer function which is also infinite dimensional. Frequency response of G(s)

G(s) =
1√
s

(4.3)

is calculated for (ωi) between 10−5rad/sec and 105rad/sec. Results from NLLS

based approach (Method 1) are compared to the ones those from [33] (Method

2) in which continued fraction expansion of square root function is used and [40]

(Method 3) using Regular Newton Process. In Figure 4.20, plots show error

defined as

E(jω) = |GD(jω)−GN(jω)| .

where GD(s) is

GD(s) =
1

1 +
√
s

Figure 4.21 shows the error between transfer function of 1/
√

(s) in closed
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Figure 4.19: Relative error between GC(s) and GN(s), GC,5%(s), GC,10%(s) re-
spectively.
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Figure 4.21: Error between GD(s) and model identified by Method C.

loop and estimated transfer function by using Fourier Transform based method,

Method C, of previous section.
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Chapter 5

CONCLUSIONS

In this thesis, a numerical method is proposed that aims to represent an infinite

dimensional transfer function by a finite dimensional model and a delay term.

We considered infinite dimensional models defined by PDEs. Non-parametric

identification using DFT and experimental procedure for a ‘black box’ model

are illustrated. A data selection scheme is proposed and mature optimization

methods are implemented. For this purpose a NLLS approach is proposed to

minimize a cost function which is quadratic in relative error in the frequency

response. Minimization problem is solved by finding appropriate parameters. A

brief description of Newtonian optimization methods is given. The optimization

is modified to handle some physical constraints: minimizer parameters are con-

strained by using the log-barrier method. Intuition behind constraint is such

that resulting transfer function must be minimum phase. In order to improve the

results a version of the Levenberg-Marquardt algorithm is used. The Levenberg-

Marquardt method’s main contribution is that convergence is guaranteed. Thus,

algorithm inside the Inner Loop prevents infinite loops.

It is shown that the log-barrier method can be efficient since it is a simpler

form of solution to a dual problem that aims minimizing a cost function when

constraints are involved. Nevertheless, log-barrier can not handle the objective

optimization problem’s ill-condition for some cases where the damping coefficients

are very small.
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The results are illustrated with three different examples. From the relative

error plots it is observed that the modeling is very good within the frequency range

where frequency response data is taken (for all three examples this was between

10−2 rad/sec and 103 rad/sec). However, the relative error becomes large outside

this frequency band. Result are compared to subspace based method and FFT

based method. Also, the Hankel singular value plots show that the order of PN(s)

can be further reduced. Nevertheless, having a large number poles and zeros close

to the imaginary axis forces PN to be of relatively large degree.

A version having an alternative basis function is implemented and applied

to a fractional order system. Results are given and compared to two different

methods. For this example we have encountered large number of iterations that

lasts for a long period of time. On the other hand, when compared to other

methods, NLLS approach gives accurate results despite the fact that parameters

in the system appear in a non-linear fashion.
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Appendix A

Code

MATLAB R© code: main.m

1 G = G_A % G_B

2 omega = logspace (-2, 3, 500);

3

4 start_ = 1;

5 step_ = 1;

6

7 [cost , coeffs_int , frep] = cost_and_coeffs_n(G, omega ,

1, 5, [], 1);

8

9 s_ = 1j*omega;

10

11 G_apprx = tf_approx (s_ , coeffs_int , []);

12

13 figure;

14 subplot (2, 1, 1);

15 loglog(omega(start_:step_:end), abs(G_apprx(start_:

step_:end)));

16 hold on;
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17 loglog(omega(start_:step_:end), abs(G(start_:step_:end)

), ’r’);

18

19 subplot (2, 1, 2);

20 semilogx (omega(start_:step_:end), unwrap(angle(G_apprx (

start_:step_:end))));

21 hold on;

22 semilogx (omega(start_:step_:end), unwrap(angle(G(start_

:step_:end))), ’r’);

23

24 coeffs2 = coeffs_int ;

25 cost_all = Inf;

26 NN = 9;

27 g = 0;

28 w_index_pre = 0;

29 while (g < NN || cost_all > 1e-2)

30

31 H_err = (G-G_apprx)./ G_apprx ;

32

33 w_maxerr_index = find(abs(H_err) == max(abs(H_err)));

34 w_maxerr = omega(w_maxerr_index);

35

36 if (w_maxerr_index > w_index_pre )

37 w_index_pre = w_maxerr_index;

38 end

39

40 [cost2 , coeffs2 , frep] = cost_and_coeffs_n_noint (G,

omega , w_index_pre , w_maxerr , coeffs2);

41 coeffs2

42

43 G_apprx = tf_approx_noint(s_ , coeffs2 , []);

44

45 hold on;
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46 subplot (2, 1, 1);

47 loglog(omega(start_:step_:end), abs(G(start_:step_:end)

), ’r*’, ’markers ’, 7);

48 hold on;

49 loglog(omega(start_:step_:end), abs(G_apprx(start_:

step_:end)), ’LineWidth ’, 2);

50

51 subplot (2, 1, 2);

52 semilogx (omega(start_:step_:end), unwrap(angle(G(start_

:step_:end))), ’r*’, ’markers ’, 7);

53 hold on;

54 semilogx (omega(start_:step_:end), unwrap(angle(G_apprx (

start_:step_:end))), ’LineWidth ’, 2);

55

56 g = g+1

57

58 coeffs_all = coeffs2

59

60 end

MATLAB R© code: cost and coeffs.m

1 function [ cost , coeffs , frep ] = cost_and_coeffs_n(H,

omega , start , n, ctnow , sel)

2 %COST_AND_COEFFS_N

3 % calculates cost of optimization problem and

4 % coefficient found until the current step of main loop

5 % H is collected freq response

6 % omega is corresponding frequency axis points

7 % start gives the index of selected part of freq

response data

8 % sel is given to select optimization of the integral

part of transfer function or resonance and

9 % anti -resonance terms
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10 % returns current cost

11 % returns current coefficients

12

13 if (nargin > 5 && sel == 1)

14 [cost , coeffs , frep] =

integrator_cost_and_coeffs (H, omega , start ,

n);

15 else

16 [cost , coeffs , frep] =

res_antires_cost_and_coeffs (H, omega , start ,

n, ctnow);

17 end

18 end

19

20 function [cost , coeffs , frep] =

integrator_cost_and_coeffs (H, omega , start , n)

21 tol1 = 1e-15;

22 eps = 0;

23

24 ni = 1;

25 Ni = 1;

26 start_dom = start;

27

28 while (Ni+ni <= n+2)

29

30 if (Ni+ni > n)

31 Ni = n;

32 ni = 1;

33 end

34

35 fin = start_dom +Ni+ni -2;

36 start = start_dom ;

37 s_ = 1j*omega(start:fin);
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38 Hi_u = H(start:fin);

39

40 if (Ni == 1)

41 beta_i_1 = [0. abs(Hi_u (1)*1j*s_(1)) 0 0 0 0]’;

42 end

43

44 beta_i = beta_i_1 ;

45

46 t_ = 1200;

47 fi = exp(-beta_i (1)*s_).*( beta_i (2))./s_;

48

49 Jr = create_jacob (s_ , [], beta_i , Hi_u , fi , 1200);

50 Jr = Jr(:, 2:end);

51

52 k = 0;

53 v = 2;

54 A = real(Jr ’*Jr);

55 eps_p = (Hi_u -fi)./fi -1/t_*log(beta_i (2));

56 g = real(Jr ’*eps_p);

57 stop = 1;

58

59 if (max(abs(g)) < tol1)

60 stop = 0;

61 end

62 tau = 1;

63 mu = tau*max(diag(A));

64 rho = 0;

65 while (stop)

66 k = k+1;

67 if (mod(k, 1000) == 0)

68 tol1 = tol1 *10;

69 end

70 % rho = 0;
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71 % while (rho <= 0 || stop)

72 delta_beta = pinv(A+mu*eye(size(A)))*g;

73

74 if (norm(delta_beta ) < tol1*norm(beta_i))

75 stop = 0;

76 else

77 beta_i_1 = beta_i+delta_beta ;

78 fi_new = exp(-beta_i_1 (1)*s_).*( beta_i_1 (2)

)./s_;

79 eps_p_new = (Hi_u -fi_new)./fi_new -1/t_*log(

beta_i_1 (2));

80

81 rho = (norm(eps_p)^2-norm(eps_p_new )^2)/(

delta_beta ’*(mu*delta_beta +g));

82

83 if (rho > 0)

84 beta_i = beta_i_1 ;

85

86 % Jri1 = -s_.*exp(-beta_i

(1)*s_).*(beta_i (2)*s_+beta_i (3))./

s_;

87 % Jri2 = exp(-beta_i (1)*s_)

.*zeros(length(s_), 1);

88 % Jri3 = exp(-beta_i (1)*s_)

.*1./s_;

89

90 Jr = create_jacob (s_ , [], beta_i , Hi_u ,

fi , 1200);

91 Jr = Jr(:, 2:end);

92

93 A = real(Jr ’*Jr);

94
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95 fi = exp(-beta_i (1)*s_).*( beta_i (2))./

s_;

96 eps_p = (Hi_u -fi)./fi -1/t_*log(beta_i

(2));

97 g = real(Jr ’* eps_p);

98

99 if (max(abs(g)) < tol1)

100 stop = 0;

101 end

102

103 if (norm(eps_p)^2 < tol1)

104 stop = 0;

105 end

106

107 mu = mu*max(1/3, 1-(2* rho -1) ^3);

108 v = 2;

109 else

110 mu = mu*v;

111 v = 2*v;

112 end

113 end

114 % end

115 end

116

117 Ni = Ni+1;

118 ni = ni+1;

119 end

120

121 coeffs = [beta_i_1 ; 0; 0; 0; 0];

122 s_ = 1j*omega(1: fin);

123 fi = exp(-coeffs (1)*s_).*( coeffs (2))./s_;

124 cost = cost_func (H(1: fin), fi);

125 s_ = 1j*omega;
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126 fi = exp(-coeffs (1)*s_).*( coeffs (2))./s_;

127 frep = fi;

128 % cost = cost_func (H(1:end), fi);

129 end

130

131

132 function [cost , coeffs , frep] =

res_antires_cost_and_coeffs (H, omega , start , n,

ctnow)

133

134 tol1 = 1e-20;

135 eps1 = 1e-12;

136 m_ = 1;

137 eps = 0;

138 mu1 = 20;

139 t_ = 1;

140 lb = 1e-4;

141 alpha = 1e-12;

142

143 ni = n;

144 Ni = 1;

145 start_dom = start;

146

147 while (Ni+ni <= n+1)

148

149 if (Ni+ni > n)

150 Ni = 1;

151 ni = n;

152 end

153

154 NN = length(H);

155

156 fin = start_dom ;
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157

158 if (fin > NN)

159 fin = NN;

160 end

161 % start = start_dom ;

162 start = 1;

163 s_ = 1j*omega(start:fin);

164 Hi_u = H(start:fin);

165 % Hi_u = Hwi_;

166

167 % w_n_n = abs(omega(floor((fin+start_dom )/2)));

168 w_n_n = n;

169 w_n_d = w_n_n;

170

171 zeta_n = 0.5;

172 zeta_d = 0.5;

173

174 tt_ = 30;

175

176 if (Ni == 1)

177 % beta_i_2 = [0 1 zeta_n w_n_n 1 zeta_d w_n_d]’;

178 beta_i_2 = [1*tt_ zeta_n*sqrt(tt_) w_n_n*sqrt(

tt_) 1*tt_ zeta_d*sqrt(tt_) w_n_d*sqrt(tt_)

]’;

179 end

180

181 while (m_/t_ > eps1)

182

183 beta_i = beta_i_2 ;

184

185 fi = tf_approx (s_ , ctnow , beta_i);

186

187 Jr = create_jacob (s_ , ctnow , beta_i , Hi_u , fi , t_);
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188 Jr = Jr(:, 2:end);

189 k = 0;

190 v = 2;

191 A = real(Jr ’*Jr);

192 coeffs_constraint = reshape (ctnow (1:end , 1:end),

[], 1);

193 coeffs_constraint (1) = [];

194 coeffs_constraint (2:5) = [];

195 eps_p = t_*(Hi_u -fi)./(fi)-sum(log(beta_i (1: end)))-

sum(log(coeffs_constraint));

196 g = real(Jr ’*eps_p);

197 stop = 1;

198

199 if (max(abs(g)) < tol1)

200 4

201 stop = 0;

202 end

203 tau = 0.1;

204 mu = tau*max(diag(A));

205 rho = 0;

206 beta_i_all = [reshape (ctnow , [], 1); beta_i ];

207 beta_i_all (3:6) = [];

208 while (stop && k < Inf)

209 k = k+1;

210 if (mod(k, 1000) == 0)

211 tol1 = tol1 *10;

212 end

213 % rho = 0;

214 % while (rho <= 0 || stop)

215 % A

216 % mu

217 mu;

218 if (isinf(mu) || isnan(mu))
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219 55

220 end

221 if (sum(sum(isinf(A))) > 0 || sum(sum(isnan(A))

) > 0)

222 A

223 end

224 delta_beta = pinv(A+mu*eye(size(A)))*g;

225

226

227 if (norm(delta_beta ) < tol1*norm(beta_i_all ))

228 stop = 0;

229 else

230 size(delta_beta );

231 size(beta_i_all );

232 beta_i_2_all = beta_i_all +delta_beta ;

233

234 if (beta_i_2_all (1) < 0)

235 beta_i_2_all (1) = 0;

236 end

237

238

239

240

241 beta_i_2_all_dum = [beta_i_2_all (1:2);

zeros(4, 1); beta_i_2_all (3: end)];

242 ctnow = reshape (beta_i_2_all_dum , 6, []);

243 beta_i_2 = ctnow(:, end);

244 fi_new = tf_approx (s_ , ctnow(:, 1:end -1),

beta_i_2 );

245

246 coeffs_constraint = reshape(ctnow (1:end , 1:

end), [], 1);

247 coeffs_constraint (1) = [];
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248 coeffs_constraint (2:5) = [];

249 coeffs_constraint;

250 eps_p_new = t_*(Hi_u -fi_new)./( fi_new)-sum(

log(beta_i_2 (1: end)))-sum(log(

coeffs_constraint));

251

252 rho = (norm(eps_p)^2-norm(eps_p_new )^2)/(

delta_beta ’*(mu*delta_beta +g));

253

254 if (rho > 0)

255 beta_i_all = beta_i_2_all ;

256

257

258 Jr = create_jacob (s_ , ctnow(:, 1:end -1)

, beta_i , Hi_u , fi_new , t_);

259 Jr = Jr(:, 2:end);

260

261 A = real(Jr ’*Jr);

262

263

264 beta_i_all_dum = [beta_i_2_all (1:2);

zeros(4, 1); beta_i_2_all (3: end)];

265 ctnow = reshape (beta_i_all_dum , 6, []);

266 beta_i = ctnow(:, end);

267 fi = tf_approx (s_ , ctnow(:, 1:end -1),

beta_i);

268

269 coeffs_constraint = reshape(ctnow (1:end

, 1:end), [], 1);

270 coeffs_constraint (1) = [];

271 coeffs_constraint (2:5) = [];

272
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273 eps_p = t_*(Hi_u -fi)./(fi)-sum(log(

beta_i (1: end)))-sum(log(

coeffs_constraint));

274 g = real(Jr ’* eps_p);

275

276 if (max(abs(g)) < tol1)

277 6

278 stop = 0;

279 end

280

281 if (norm(eps_p)^2 < tol1)

282 7

283 stop = 0;

284 end

285

286 mu = mu*max(1/3, 1-(2* rho -1) ^3);

287 v = 2;

288 else

289 mu = mu*v;

290 v = 2*v;

291 end

292 end

293 % end

294 end

295

296 Ni = Ni+1;

297 ni = ni+1;

298 ctnow = ctnow(:, 1:end -1);

299

300

301 beta_i_2_all_dum = [beta_i_2_all (1:2); zeros(4, 1);

beta_i_2_all (3: end)];

302 coeffs = reshape(beta_i_2_all_dum , 6, []);
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303 beta_i_2 = coeffs(:, end);

304 ctnow = coeffs(:, 1:end -1);

305 t_ = t_*mu1;

306 end

307

308 end

309 [R, C] = size(coeffs);

310

311 for k = 1:0

312 coeffsi = coeffs (:, k);

313 if (sum(coeffsi (1:end) < -eps) > 0)

314 coeffs = NaN;

315 cost = Inf;

316 frep = NaN;

317 return;

318 end

319

320 if (sum(coeffsi (5:end)) == 0 && k > 1)

321 coeffs = NaN;

322 cost = Inf;

323 frep = NaN;

324

325 return;

326 end

327 end

328

329

330 ctnow = coeffs(:, 1:end -1);

331 beta_i_2 = coeffs(:, end);

332 s_ = 1j*omega(1: fin);

333 fi = tf_approx (s_ , ctnow , beta_i_2 );

334 cost = cost_func (H(1: fin), fi(1:fin));

335 s_ = 1j*omega;
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336 frep = tf_approx (s_ , ctnow , beta_i_2 );

337 % cost = cost_func (H(1:end), fi);

338 end

339

340

341 function [cost] = cost_func (H, H_new)

342 cost = sqrt(sum(abs((H-H_new)./ H_new).^2)/length(H)

);

343 % cost = max(abs((H-H_new)./H_new));

344 end

MATLAB R© code: create jacob.m

1 function [ J ] = create_jacob ( s_ , ctnow , cnewinit ,

Hi_u , fi , t_ )

2 % Calculates jacobian of current transfer function

3 % Jacobian is needed for calculating Newton step

4 % Jacobian is calculated by using analytic derivative

of cost function

5 % s_ is frequency axis data

6 % ctnow is array of coefficients found until the

current step

7 % Hi_u is the collected frequency response

8 % fi is the frequency response of the approximating

transfer function

9 % t_ is the coefficient comes from log-barrier method

10 % returns Jacobian matrix

11 [R, C] = size(ctnow);

12 N = length(s_);

13

14 J = zeros(N, 1);

15 alpha = 0;

16 ll_ = 1;

17
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18 for k = 1:C

19 beta_i = ctnow(:, k);

20 if (k == 1)

21 fik = exp(-beta_i (1)*s_).* beta_i (2)./s_;

22 Jri1 = -s_.*exp(-beta_i (1)*s_).*( beta_i (2))./s_

.*( Hi_u ./fi./fik);

23

24 Jri2 = t_*exp(-beta_i (1)*s_).*1./s_.*( Hi_u ./fi

./fik)-ll_*1/ beta_i (2);

25 Jr = [Jri1 Jri2 ];

26 else

27 fik = (beta_i (1)*s_ .^2+2* beta_i (2)*beta_i (3)*s_

+beta_i (3)^2) ./( beta_i (4)*s_ .^2+2* beta_i (5)*

beta_i (6)*s_+beta_i (6)^2+ alpha);

28

29

30 Jri2 = t_*s_ .^2./( beta_i (4)*s_ .^2+2* beta_i (5)*

beta_i (6)*s_+beta_i (6)^2+ alpha).* Hi_u ./fi./

fik -ll_ *1/ beta_i (1);

31 Jri3 = t_*2.*( beta_i (3)*s_)./( beta_i (4)*s_

.^2+2* beta_i (5)*beta_i (6)*s_+beta_i (6) ^2+

alpha).* Hi_u ./fi./fik -ll_ *1/ beta_i (2);

32 Jri4 = t_*2.*( beta_i (2)*s_+beta_i (3))./( beta_i

(4)*s_ .^2+2* beta_i (5)*beta_i (6)*s_+beta_i (6)

^2+ alpha).*Hi_u ./fi./fik -ll_*1/ beta_i (3);

33

34 Jri5 = t_*(-s_ .^2) .*( beta_i (1)*s_ .^2+2* beta_i

(2)*beta_i (3)*s_+beta_i (3)^2) ./( beta_i (4)*s_

.^2+2* beta_i (5)*beta_i (6)*s_+beta_i (6) ^2+

alpha).^2.* Hi_u ./fi./fik -ll_*1/ beta_i (4);
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35 Jri6 = t_*(-s_*2* beta_i (6)).*( beta_i (1)*s_

.^2+2* beta_i (2)*beta_i (3)*s_+beta_i (3) ^2)./(

beta_i (4)*s_ .^2+2* beta_i (5)*beta_i (6)*s_+

beta_i (6) ^2+ alpha).^2.* Hi_u ./fi./fik -ll_ *1/

beta_i (5);

36 Jri7 = t_*-2.*(s_*beta_i (5)+beta_i (6)).*( beta_i

(1)*s_ .^2+2* beta_i (2)*beta_i (3)*s_+beta_i (3)

^2)./( beta_i (4)*s_ .^2+2* beta_i (5)*beta_i (6)*

s_+beta_i (6)^2+ alpha).^2.* Hi_u ./fi./fik -ll_

*1/ beta_i (6);

37

38 Jr = [Jri2 Jri3 Jri4 Jri5 Jri6 Jri7 ];

39 end

40 J = [J Jr];

41 end

42

43 beta_i = cnewinit ;

44 if (length(beta_i) == 2)

45 fik = exp(-beta_i (1)*s_).* beta_i (2)./s_;

46 Jri1 = -s_.*exp(-beta_i (1)*s_).*( beta_i (2))./s_.*(

Hi_u ./fi./fik);

47 % Jri2 = exp(-beta_i (1)*s_).*zeros(length(s_),

1).*(Hi_u ./fi.^2);

48 Jri2 = t_*exp(-beta_i (1)*s_).*1./s_.*( Hi_u ./fi./fik

)-ll_*1/ beta_i (2);

49 J = [J Jri1 Jri2 ];

50 else

51 fik = (beta_i (1)*s_ .^2+2* beta_i (2)*beta_i (3)*s_+

beta_i (3)^2) ./( beta_i (4)*s_ .^2+2* beta_i (5)*

beta_i (6)*s_+beta_i (6)^2+ alpha);

52

53
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54 Jri2 = t_*s_ .^2./( beta_i (4)*s_ .^2+2* beta_i (5)*

beta_i (6)*s_+beta_i (6)^2+ alpha).*Hi_u ./fi./fik -

ll_*1/ beta_i (1);

55 Jri3 = t_*2.*( beta_i (3)*s_)./( beta_i (4)*s_ .^2+2*

beta_i (5)*beta_i (6)*s_+beta_i (6)^2+ alpha).* Hi_u

./fi./fik -ll_ *1/ beta_i (2);

56 Jri4 = t_*2.*( beta_i (2)*s_+beta_i (3))./( beta_i (4)*

s_ .^2+2* beta_i (5)*beta_i (6)*s_+beta_i (6) ^2+ alpha

).* Hi_u ./fi./fik -ll_*1/ beta_i (3);

57

58 Jri5 = t_*(-s_ .^2) .*( beta_i (1)*s_ .^2+2* beta_i (2)*

beta_i (3)*s_+beta_i (3)^2) ./( beta_i (4)*s_ .^2+2*

beta_i (5)*beta_i (6)*s_+beta_i (6)^2+ alpha).^2.*

Hi_u ./fi./fik -ll_ *1/ beta_i (4);

59 Jri6 = t_*(-s_*2* beta_i (6)).*( beta_i (1)*s_ .^2+2*

beta_i (2)*beta_i (3)*s_+beta_i (3)^2) ./( beta_i (4)*

s_ .^2+2* beta_i (5)*beta_i (6)*s_+beta_i (6) ^2+ alpha

).^2.* Hi_u ./fi./fik -ll_ *1/ beta_i (5);

60 Jri7 = t_*-2.*( s_*beta_i (5)+beta_i (6)).*( beta_i (1)*

s_ .^2+2* beta_i (2)*beta_i (3)*s_+beta_i (3) ^2)./(

beta_i (4)*s_ .^2+2* beta_i (5)*beta_i (6)*s_+beta_i

(6)^2+ alpha).^2.* Hi_u ./fi./fik -ll_*1/ beta_i (6);

61

62 J = [J Jri2 Jri3 Jri4 Jri5 Jri6 Jri7 ];

63 end

64

65 end

MATLAB R© code: tf approx.m

1 function [ fi ] = tf_approx ( s_ , ctnow , beta )

2 % Calculates frequency response of the approximating

tranferfunction

3 % found until the current step of
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4 % main loop

5 [R, C] = size(ctnow);

6 N = length(s_);

7

8 fi = ones(N, 1);

9

10 for k = 1:C

11 beta_i = ctnow(:, k);

12 if (k == 1)

13 fi = fi.*exp(-beta_i (1)*s_).*( beta_i (2))./s_;

14 else

15 fi = fi.*( beta_i (1)*s_ .^2+2* beta_i (2)*beta_i (3)

*s_+beta_i (3) ^2)./( beta_i (4)*s_ .^2+2* beta_i

(5)*beta_i (6)*s_+beta_i (6)^2);

16 end

17 end

18

19 if (~ isempty(beta))

20 beta_i = beta;

21

22 fi = fi.*( beta_i (1)*s_ .^2+2* beta_i (2)*beta_i (3)*s_+

beta_i (3)^2) ./( beta_i (4)*s_ .^2+2* beta_i (5)*

beta_i (6)*s_+beta_i (6)^2);

23 end
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