423 research outputs found

    Decision feedback equalization in SC-FDMA

    Get PDF

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Joint Tomlinson-Harashima precoding and optimum transmit power allocation for SC-FDMA

    Get PDF

    A novel frequency-domain implementation of Tomlinson-Harashima precoding for SC-FDMA

    Get PDF

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    No full text
    In this paper, we investigate the achievable performance of channel coded single-carrier frequency division multiple-access (SC-FDMA) systems employing various detection schemes, when communicating over frequency-selective fading channels. Specifically, three types of minimum mean-square error (MMSE) based frequency-domain (FD) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one is the proposed hybrid interference cancellation (HIC)-aided turboFD-DFE, which combines successive interference cancellation (SIC) with iterative PIC and decoding. The benefit of interference cancellation (IC) is analysed with the EXtrinsic Information Transfer (EXIT) charts. The performance of the coded SC-FDMA systems employing the above-mentioned detection schemes is investigated with the aid of simulations. Our studies show that the IC techniques achieve an attractive performance at a moderate complexity

    Feedback reliability calculation for an iterative block decision feedback equalier

    Get PDF

    Sparsity Enhanced Decision Feedback Equalization

    Full text link
    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution

    Improving SC-FDMA performance by Turbo Equalization in UTRA LTE Uplink

    Get PDF

    Performance evaluation of IB-DFE-based strategies for SC-FDMA systems

    Get PDF
    The aim of this paper is to propose and evaluate multi-user iterative block decision feedback equalization (IB-DFE) schemes for the uplink of single-carrier frequency-division multiple access (SC-FDMA)-based systems. It is assumed that a set of single antenna users share the same physical channel to transmit its own information to the base station, which is equipped with an antenna array. Two space-frequency multi-user IB-DFE-based processing are considered: iterative successive interference cancellation and parallel interference cancellation. In the first approach, the equalizer vectors are computed by minimizing the mean square error (MSE) of each individual user, at each subcarrier. In the second one, the equalizer matrices are obtained by minimizing the overall MSE of all users at each subcarrier. For both cases, we propose a simple yet accurate analytical approach for obtaining the performance of the discussed receivers. The proposed schemes allow an efficient user separation, with a performance close to the one given by the matched filter bound for severely time-dispersive channels, with only a few iterations
    corecore