
                          Huang, G., Nix, A. R., & Armour, S. M. D. (2009). Feedback reliability
calculation for an iterative block decision feedback equalier. In IEEE 70th
Vehicular Technology Conference Fall 2009 (VTC 2009-Fall), Anchorage,
USA. (pp. 1 - 5). Institute of Electrical and Electronics Engineers (IEEE).
10.1109/VETECF.2009.5378682

Link to published version (if available):
10.1109/VETECF.2009.5378682

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/VETECF.2009.5378682
http://research-information.bristol.ac.uk/en/publications/feedback-reliability-calculation-for-an-iterative-block-decision-feedback-equalier(5e084301-e73c-461c-b3fa-ac5412513ffc).html
http://research-information.bristol.ac.uk/en/publications/feedback-reliability-calculation-for-an-iterative-block-decision-feedback-equalier(5e084301-e73c-461c-b3fa-ac5412513ffc).html


Feedback Reliability Calculation for an Iterative
Block Decision Feedback Equalizer

Gillian Huang, Andrew Nix and Simon Armour
Centre for Communications Research, University of Bristol

Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
Email: {G.Huang, Andy.Nix, Simon.Armour}@bristol.ac.uk

Abstract—A new class of iterative block decision feedback
equalizer (IB-DFE) was pioneered by Chan and Benvenuto.
Unlike the conventional DFE, the IB-DFE is optimized according
to the reliability of the feedback (FB) symbols. Since the use of the
training sequence (TS) for feedback reliability (FBR) estimation
lowers the bandwidth efficiency, FBR estimation without the need
for additional TS is of considerable interest. However, prior FBR
estimation is limited in the literature to uncoded M-ary phase-
shift keying (PSK). In this paper we investigate FBR calculation
methods for uncoded and coded M-ary quadrature amplitude
modulation (QAM) systems. Results show that our newly pro-
posed method has similar or better error rate performance than
the TS method without the associated loss of bandwidth efficiency.

I. I NTRODUCTION

Broadband single-carrier (SC) systems such as single-carrier
frequency-domain equalization (SC-FDE) [1] and single-
carrier frequency division multiple access (SC-FDMA) [2]
have attracted significant research interest in recent years. SC
systems have an inherent low peak-to-average power ratio
(PAPR) property and this makes them better candidates com-
pared to multicarrier systems for mobile uplink transmissions.
For this reason, SC-FDMA is currently used on the uplink
in the 3GPP LTE standard, while orthogonal frequency divi-
sion multiple access (OFDMA) is used on the downlink [3].
Frequency-domain (FD) linear equalizers (LE) are commonly
used in SC-FDE and SC-FDMA systems. However LE does
not yield the best performance for SC systems due to the
residual intersymbol interefence (ISI) [8].

Hybrid decision feedback equalizers (H-DFE) that consist of
a FD feedforward (FF) filter and a time-domain (TD) feedback
(FB) filter were proposed in [1] and [4] for SC-FDE. The H-
DFE has lower complexity than a conventional TD-DFE due
to the FD-FF filter. Since the design of the H-DFE is based on
the assumption that postcursor-ISI can be completely removed
(i.e. all the FB symbols are correct), the H-DFE achieves its
optimal performance in a reference-directed mode. However,
the decision-directed H-DFE is liable to error propagation
and this results in degraded performance relative to LE when
channel coding is applied [5].

The concept of an iterative block DFE (IB-DFE) was first
introduced in [6]. Compared to a conventional TD-DFE, the
IB-DFE has two distinct properties: (1) an iterative block
operation allows all the detected symbols from the previous
iteration to be used as FB symbols in the current iteration.
Hence both pre- and post-cursor ISI can be cancelled via the

FB process. (2) The design of the IB-DFE is optimized at each
iteration according to the reliability of the FB symbols. Hence,
it is robust against error propagation and better performance
is achieved with increasing iteration number.

In contrast to the TD-based IB-DFE [6], the FD-based IB-
DFE in [7] implements its FF and FB filters in the FD. This
gives a very computational efficient solution. Furthermorethe
FD-based IB-DFE has lower complexity than the H-DFE due
to the FD-FB filter and a simpler approach to coefficient
calculation (i.e. no matrix inversion is required for IB-DFE).
The soft-decision IB-DFE is also proposed in [7]. Due to
the high complexity of obtaining soft-decision FB symbols
(especially in a coded system), this paper focuses on feedback
reliability (FBR) calculation for the hard-decision IB-DFE. In
the remainder of this paper IB-DFE is used to refer to the
FD-based hard-decision IB-DFE.

As mentioned earlier, FBR is key to optimizing the per-
formance of IB-DFE. Although a training sequence (TS) can
be sent for the purposes of FBR estimation, this lowers the
bandwidth efficiency. Hence estimating the FBR without the
use of TS is of research interest. In [6], the approximated
FBR calculation is given for uncoded M-ary phase-shift keying
(PSK) via a symbol error probability. In [7], the FBR estimate
is obtained by taking the channel response into account.
However this approach is specifically for the uncoded QPSK
case and may not be applicable to other modulation and coding
schemes. To the authors’ best knowledge, in the literature the
results on IB-DFE are limited to uncoded QPSK due to the
lack of FBR estimation. In this paper we investigate the FBR
calculation and extend the performance evaluation of IB-DFE
to M-ary quadrature amplitude modulation (QAM) for systems
with and without coding.

The rest of this paper is organized as follows: Section II
describes the IB-DFE operation. Section III investigates the
FBR calculation methods for uncoded and coded M-ary QAM.
The performance of the proposed IB-DFE scheme is compared
with the TS method and the H-DFE in Section IV. Section V
concludes the paper.

II. H ARD-DECISION IB-DFE

For a cyclic prefix (CP) based SC-FDE system, the transmis-
sion block can be described asxn = [x−Q, . . . , x0, . . . , xP−1],
where Q denotes the length of the CP andP denotes the
number of baseband symbols in one transmission block. Let



Fig. 1. SC-FDE receiver with IB-DFE

{hk}k=0,...,L denote the channel impulse response (assuming
the CP length is longer than the maximum channel delay
spread, i.e.Q > L + 1) and wn denotes the white Gaussian
noise. The TD received signal can be described as

rn =

L
∑

k=0

hkxn−k + wn. (1)

For n = 0, . . . , P − 1, rn denotes the received signal with
the CP removed. The CP forces the linear convolution of the
transmit signal and the channel impulse response to appear as
a cyclic convolution at the receiver. Hence taking the discrete
Fourier transform (DFT) ofrn the received FD signalRp can
be described as

Rp =
1√
P

P−1
∑

n=0

rne−j 2π

P
pn = HpXp + Wp (2)

wherep = 0, . . . , P − 1. Hp =
∑L

k=0 hke−j 2π

P
pk denotes the

channel frequency response.Xp = 1√
P

∑P−1
n=0 xne−j 2π

P
pn de-

notes the FD transmit signal andWp = 1√
P

∑P−1
n=0 wne−j 2π

P
pn

denotes the noise in the FD.
Fig. 1 shows a SC-FDE receiver with an IB-DFE, where

the FF and FB filters are both implemented in the FD. The
received TD signal{rn} is first converted to the FD, denoted
as{Rp}. The received FD signal is filtered by the FD-FF filter
{C(l)

p } where the superscriptl denotes thel-th iteration of
the IB-DFE process. ISI cancellation is then applied to this
FF filtered signal. The FD-ISI estimate{Y (l)

p } is obtained
from the multiplication of the FD-FB filter{B(l)

p } and the
estimated FD signal{X̂(l−1)

p } from the previous iteration. The
FD-FB signal {X̂(l−1)

p } comes from the hard detected TD
signal{x̂(l−1)

n } in the previous iteration. Finally the equalized
FD signal{U (l)

p } is converted back to the TD, i.e.{u(l)
n }.

The equalized TD signalu(l)
n is multiplied by 1

β(l) to scale
the TD signal to the desired signal amplitude for detection.
β(l) is introduced since the FF filter power varies with FB
reliability ρ(l−1). This will be seen later in the FF filter design.

Hence the output of the IB-DFE at thel-th iteration can be
described as

x̃(l)
n =

1

β(l)
√

P

P−1
∑

p=0

(

RpC
(l)
p + B(l)

p X̂(l−1)
p

)

ej 2π

P
pn. (3)

The IB-DFE is designed to minimize the MSE at the
equalizer output according to the reliability of the FB symbols.
Optimal FF and FB filter coefficients for the IB-DFE are
derived in [7]. Hence only the results are given here. The
FD-FF filter coefficients at thel-th iteration are defined as

C(l)
p =

H∗
p

σ2
w + Es

(

1 −
(

ρ(l−1)
)2
)

|Hp|2
(4)

whereEs = E
[

|xn|2
]

andσ2
w = E

[

|wn|2
]

are the expected
value of the transmit signal power and the noise power
respectively.ρ(l−1) denotes the reliability of the FB symbols
(i.e. FBR) and is defined as the expectation of the normalized
correlation between the hard detected symbols at the previous
iteration and the transmit symbols [6], i.e.

ρ(l−1) =
E
[

x̂
(l−1)
n x∗

n

]

Es
. (5)

Note that the FBR in (5) results in a value between 0 and 1.
The FD-FB filter coefficients at thel-th iteration are

B(l)
p = −ρ(l−1)

[

C(l)
p Hp − β(l)

]

(6)

where β(l) denotes the average signal amplitude after FF
filtering. This DC value has to be removed from the FB filter.
β(l) can be calculated using

β(l) =
1

P

P−1
∑

p=0

C(l)
p Hp. (7)

At the first iteration, no FB symbols are available so the
FBR is set to zero, i.e.ρ(0) = 0. In this case, the FF filter
coincides with the minimum mean square error (MMSE) LE
and the FB filter is turned off (see (4) and (6)). As the FBR
increases, the FB filter tends to cancel more ISI. Therefore the
performance improves with the number of iterations. When
ρ(l−1) = 1, the FF filter coincides with the matched filter
and the FB filter aims to cancel all the ISI. Hence the ideal
performance of IB-DFE (assuming all the FB symbols are
error free and the FBR is 1) is the matched filter bound (MFB).

III. F EEDBACK RELIABILITY CALCULATION

When the TS method is used to estimate FBR, the TS
must have the same modulation and coding scheme as the
data sequence. This implies that the TS cannot be shared with
the existing reference signals. Since the TS method lowers the
bandwidth efficiency and achievable throughput, it is desirable
to obtain an accurate FBR without the need for additional TS
in order to optimize the performance of IB-DFE. However
current FBR estimation is limited to uncoded M-ary PSK
systems [6] [7]. In this section FBR calculation methods for
uncoded and coded M-ary QAM systems are proposed.



In order to keep the FBR calculation simple and channel-
independent, we propose to calculate the FBR from the signal-
to-noise ratio (SNR) at the equalizer output. The SNR at the
IB-DFE output can be estimated via

SNR(l−1) =
Es

1
P

∑P−1
n=0

∣

∣

∣
x̃

(l−1)
n − x̂

(l−1)
n

∣

∣

∣

2 (8)

wherex̂
(l−1)
n are the re-encoded symbols in the coded case.

The following FBR calculation methods are based on the
assumption that the noise at the equalizer output (which is the
sum of filtered noise and residual-ISI) is Gaussian distributed.
It was verified by simulation that this equalized noise can
be well-approximated by a Gaussian distribution. This occurs
because the equalized noise is mainly dominated by the filtered
noise (Note: filtered noise will still be Gaussian distributed
even though it is coloured) and in a time-dispersive channelthe
residual-ISI can be approximated by a Gaussian distribution
from the central-limit theorem.

A. Feedback Reliability Derivation for 4QAM

The hard-decision TD-FB symbols at thel-th iteration can
be described aŝx(l−1)

n = xn + ê
(l−1)
n , where ê

(l−1)
n denotes

the hard-decision error (Note: we will drop thel-th iteration
at the superscript for the following derivation). Hence (5)can
be rewritten as

ρ = 1 +
E [ênx∗

n]

Es
(9)

whereE [ênx∗
n] can be expressed as

E [ênx∗
n] =

∑

i∈A

∑

k∈A,k 6=i

ê(i, k)x∗(i)p (ê(i, k), x∗(i)) (10)

whereA denotes a set of all possible transmit symbols in a
baseband modulation scheme.

For 4QAM, all the transmit symbols have the same mag-
nitude and the same symbol error probability (Note: this will
not be the case for 16QAM). Hence (10) can be simplified to

E [ênx∗
n] =

∑

k

ê(k)x∗p (ê(k)|x) . (11)

Fig. 2 shows the hard-decision error pattern for 4QAM. Let
x̃ = s1 + js2 denote the soft symbols at the equalizer output,
andγs = Es/N0 denote the equivalent SNR at the equalizer
output. Hence the probability of receiving the symbols in the
region ofk = 1 when transmittingx = 1√

2
(1 + j) is [8]

p (ê(k = 1)|x) = p(s1 < 0, s2 > 0)

= Q (
√

γs) [1 − Q (
√

γs)]
(12)

whereQ (u) = 1√
2π

∫∞
u

e−t2/2dt. Likewise, the probabilities
of receiving the symbols in the region ofk = 2 andk = 3 are

p (ê(k = 2)|x) = [1 − Q (
√

γs)]Q (
√

γs) (13)

p (ê(k = 3)|x) = [Q (
√

γs)]
2
. (14)

For ê (k) x∗, ê (k = 1)x∗ = −1+ j, ê (k = 2) x∗ = −1− j
and ê (k = 3) x∗ = −2. Substituting the results of̂e (k) x∗

k=2

k=1

k=3

( )j−1
2

1
( )j−−1
2

1

( )j+−1
2

1
( )jx += 1

2

1

Fig. 2. Hard-decision error pattern for 4QAM

and (12)-(14) into (11), it can be shown thatE [ênx∗
n] =

−2Q
(√

γs

)

. Hence the FBR for uncoded 4QAM is

ρ = 1 − 2Q (
√

γs) . (15)

B. Gaussian CDF Approximation for 16QAM

It is possible to derive the reliability for uncoded 16QAM
using (10). However, the derivation process is very tediousand
the final expression includes numerous terms. It is observed
that the simulated reliability curves for uncoded 16QAM
and 64QAM fit well to a Gaussian CDF model and this
model also gives values between 0 and 1. Hence we propose
to approximate the reliability as a function of SNR at the
equalizer output using a Gaussian CDF model, i.e. [8]

ρ̂i =
1

2
+

1

2
erf(aγi + b) (16)

where ρ̂i is the approximated reliability andγi is the SNR
value in dB.a andb are parameters to be determined.

Let εi denote the inaccuracy of the model; the true reliability
ρi can be expressed as

ρi =
1

2
+

1

2
erf(aγi + b + εi) . (17)

Since the true reliability is unknown, the simulated reliability
is used asρi. Simulated reliability is an average reliability that
is obtained via large numbers of simulations using an additive
white Gaussian noise (AWGN) channel. Now the inverse error
function can be utilized to convert the non-linear regression
problem into a simple linear regression problem. Letzi denote
the inverse error function in (17) such that

zi = erf−1 (2ρi − 1) = aγi + b + εi. (18)

In (18), the optimum̂a and b̂ values that minimize the sum of
the square error ofεi are [9]

â =

1
N

(

∑N−1
i=0 γizi

)

− 1
N2

(

∑N−1
i=0 γi

)(

∑N−1
i=0 zi

)

1
N

(

∑N−1
i=0 γ2

i

)

− 1
N2

(

∑N−1
i=0 γi

)2 (19)

b̂ =
1

N

(

N−1
∑

i=0

zi

)

− â
1

N

(

N−1
∑

i=0

γi

)

(20)

whereN is the number of samples used in the regression.
Fig. 3(a) shows the linear regression graph ofzi vs. γi for

16QAM, whereâ = 0.0750 and b̂ = 0.4098. The regression



(a) (b)

Fig. 3. Uncoded 16QAM: (a) Linear Regression. (b) Gaussian CDF
approximation vs. simulated reliability.

is performed in the SNR range from -10dB to 10dB since
the accuracy of low reliability at low SNR is not of interest
andzi goes to infinity at high SNR. Fig. 3(b) shows that the
reliability for uncoded 16QAM is well-approximated using the
Gaussian CDF model in (16) with the aboveâ and b̂ values.
Note that for uncoded 64QAM the reliability curve can also
be well-approximated via a Gaussian CDF model.

C. Lookup Table for IB-DFE with Channel Coding

When operating the IB-DFE in a coded system, it is
recommended to decode the equalized symbols and use the
re-encoded data to form the FB symbols with higher reliability
[6]. However, there is no explicit method for deriving the
reliability of the re-encoded symbols. In this paper, we propose
to use a pre-defined lookup table for reliability mapping in
the channel coding case. The reliability of the re-encoded
FB symbols is a function of the coding (and decoding) and
the modulation scheme. Fig. 5 shows the lookup graph for
4QAM and 16QAM. This graph maps the SNR at the equalizer
output to the reliability of the re-encoded symbols. A1/2-rate
convolutional encoder (133,171) and a soft-decision Viterbi
decoder are used in this example. Fig. 5 is obtained via a
large number of simulations using an AWGN channel.

IV. RESULTS AND DISCUSSION

In the simulation it is assumed that the subcarrier spacing
is 15kHz [3] and the number of subcarriers isP = 512. The
CP length is set toQ = 64 which is longer than the maximum
channel delay spread. Hence one SC-FDE block period is
TBLK = (512+64)

15kHz×512 = 75µs. The urban macro scenario of the
Spatial Channel Model Extended (SCME) [10] is used and
ideal channel estimation is assumed. When channel coding is
applied, a1/2-rate convolutional encoder and a soft-decision
Viterbi decoder are used with a block bit-interleaving scheme.
The subframe structure in the LTE uplink [3] is adapted to
calculate the bandwidth efficiency. Each subframe has six data
blocks and two short blocks for reference signals. Assuming
that one data block will be used as the TS in the TS method,
the bandwidth efficiencies for the TS method and the proposed
method areηBW = 5/7 andηBW = 6/7 respectively.

Fig. 5 shows the bit error rate (BER) comparison of uncoded
4QAM with IB-DFE using the TS method and the proposed

Fig. 4. Lookup table for reliability vs. SNR for 4QAM and 16QAM with
1/2-rate convolutional encoder (133,171) and soft-decision Viterbi decoder.

method. For clarification of the curves, the third iterationis
not shown. It can be seen that the FBR calculation in (15)
gives almost the same BER performance as the TS method.
In this case the FBR calculation method is preferred since
it offers better bandwidth efficiency. For IB-DFE, the second
iteration gives a large gain over the first iteration (i.e. LE) and
the gains of further iterations are reduced. This is because
the performance of LE is limited by residual-ISI. The use
of FB ISI cancellation in the second iteration is able to
overcome this limitation considerably and hence achieves a
large performance gain.

Fig. 6 shows the BER comparison for uncoded 16QAM.
In this case the proposed method (see Fig. 3(b)) outperforms
the TS method. Unlike 4QAM, 16QAM symbols do not have
uniform reliability. FBR estimation from a TS composed of
random 16QAM symbols can result in more FBR mismatch
than the Gaussian CDF approximation based on average FBR.
As a result, the proposed Gaussian CDF model outperforms
the TS method for uncoded 16QAM.

Fig. 5 and Fig. 6 both show that the proposed IB-DFE
scheme in the second iteration has similar performance as
the decision-directed H-DFE for the uncoded case. While the
complexity of H-DFE grows linearly with the TD-FB filter
length (or the maximum channel delay spread), the IB-DFE
requires only a one-tap per subcarrier FD-FB filter. Moreover
the matrix inversion required as part of the H-DFE coefficient
calculation [4] results in greatly increased complexity. Hence,
notwithstanding the second iteration, the IB-DFE still has
significantly lower complexity than the H-DFE.

Fig. 7 shows the block error rate (BLER) comparison
of coded 16QAM. In this case the proposed lookup table
approach (see Fig. 4) produces a BLER result that is close to
the TS method. The proposed coded IB-DFE scheme shows
superb performance. The second iteration gives a 2.5dB gain
over the LE, and after the fourth iteration it performs within
1dB of the MFB at a BLER of 0.01. The H-DFE gives poor
performance in a coded system due to error propagation as
investigated in [5]. Fig. 8 shows the corresponding throughput
comparison of coded 16QAM. The throughput is estimated as
(1−BLER)×Nbits

TBLK
×ηBW, whereNbits is the number of information

bits per block. For the same BLER, the proposed IB-DFE
scheme shows significantly better throughput compared to the



Fig. 5. BER of uncoded 4QAM with IB-DFE

Fig. 6. BER of uncoded 16QAM with IB-DFE

TS method due to improved bandwidth efficiency.

V. CONCLUSIONS

The FBR calculation and the performance of IB-DFE was
investigated for both uncoded and coded M-ary QAM. Results
show that the proposed method gives similar or better error
rate performance than the TS method without sacrificing
bandwidth efficiency. The proposed IB-DFE scheme is also
better than the H-DFE since it matches its performance (with
lower complexity) in the uncoded case and provides a more
consistent result in the coded case. Hence, by using our
proposed FBR calculation method the IB-DFE becomes a very
reliable and attractive equalization scheme for enhancingthe
performance of broadband SC systems such as SC-FDMA in
the LTE uplink.
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