34 research outputs found

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Freehand three dimensional ultrasound for imaging components of the musculoskeletal system

    Get PDF
    There have been reports on the use of Ultrasound (US) for monitoring fracture repair and for measuring muscle volume. Change in muscle mass is a useful bio-marker for monitoring the use and disuse of muscle, and the affects of age, disease and injury. The main modality for imaging bone is X-ray and for muscle volume Magnetic Resonance (MR). Previous studies have shown US to have advantages over X-ray and MR. US can image all stages of the fracture repair process and can detect signs of healing 4-6 weeks before X-ray allowing earlier detection of possible complications. Compared to MR, US is less resource intensive, easier to access and also has fewer exclusion criteria for patients. Despite these advantages, the limited field of view that US can provide results in high operator dependency for scan interpretation and also for length and volume measurements. Three-dimensional Ultrasound (3D US) has been developed to overcome these limitations and has been used to provide extended field of view images of the foetus and the heart and to obtain accurate volume measurements for organs. In this thesis it is hypothesized that 3D US can provide a more comprehensive method of imaging fracture repair than X-ray and is also a viable alternative to MR for determining muscle volumes in vivo. Initially, an electromagnetically (EM) tracked 3D US system was evaluated for clinical use using phantom-based experiments. It was found that the presence of metal objects in or near the EM field caused distortion and resulted in errors in the volume measurements of phantoms of up to ±20%. An optically tracked system was also evaluated and it was found that length measurements of a phantom could be made to within ±1.3%. Fracture repair was monitored in five patients with lower limb fractures. Signs of healing were visible earlier on 3D US with a notable, although variable, lag between callus development on X-ray compared to 3D US. 3D US provided a clearer view of callus formation and the changes in density of the callus as it matured. Additional information gained by applying image processing methods to the 3D US data was used to develop a measure of callus density and to identify the frequency dependent appearance of the callus. Volume measurements of the rectus femoris quadricep muscle were obtained using 3DUS from eleven healthy volunteers and were validated against volume measurements derived using MR. The mean difference between muscle volume measurements obtained using 3D US and MR was 0.53 cm3 with a standard deviation of 1.09 cm3 and 95% confidence intervals of 0.20 - 1.27 cm3 In conclusion, 3D US demonstrates great potential as a tool for imaging components of the musculoskeletal system and as means of measuring callus density

    Automated ultrasound calibration solution for the Ultrasound Fracture Analysis Scanning System

    Get PDF
    Ultrasound calibration is an essential element for morphometric three-dimensional (3D) ultrasound medical systems that are equipped with two-dimensional (2D) ultrasound probes (transducers). Such systems have a position sensor that measures the position of a transducer in space. These measurements are used to combine 2D ultrasound scans into a 3D volume for further object reconstruction and visualisation. However, spatial transformation between the scan coordinate system and the position sensor transmitter remains unknown. The calibration procedure provides this transformation, normally obtained by scanning a device with known geometrical properties called ultrasound phantom. The accuracy of the calibration transformation directly influences the 3D reconstruction quality, however the accuracy is not the only quality characteristic of a calibration device. Phantoms vary in construction providing different calibration procedures, speed, number and positions of scans, type of calibration landmarks, automatic or manual data acquisition and segmentation, and many other criteria. The calibration method should be chosen individually for every calibrated system and there is no "one for all" solution. In this work we introduce a novel calibration phantom with a custom calibration procedure designed for the UFASS - the Ultrasound Fracture Analysis Scanning System - an automated scanner for orthopaedic diagnostics. Our method is designed to fulfil the calibration objectives of the UFASS which are not fully covered by any of the standard phantoms. Our phantom is based on spherical landmarks chosen for their support of a number of calibration requirements such as automated data acquisition and segmentation, and a variety of scanning positions and orientations. It consists of 12 small balls that centre coordinates must be measured with the ultrasound probe during the calibration procedure. We suggest and successfully implement a novel method to obtain and process the input ultrasound data from the phantom without manual operations from a user. Our method uses the motion controller of the UFASS to sequentially move the ultrasound probe and obtain parallel sphere slices with a small step. The scan corresponding to the central section is found by matching a circle template of the sphere's radius to each image. The image with the highest cross-correlation with the template is the central sphere section and it's circle centre is the sphere's centre. For the UFASS our method outperforms comparable calibration solutions providing the automated data acquisition and landmarks detection procedure, high calibration speed, low calibration error, and requiring no experience and no expert knowledge from the end user performing the calibration

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan
    corecore