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Abstract 
 
 
There have been reports on the use of Ultrasound (US) for monitoring fracture repair 

and for measuring muscle volume.  Change in muscle mass is a useful bio-marker for 

monitoring the use and disuse of muscle, and the affects of age, disease and injury.   

     The main modality for imaging bone is X-ray and for muscle volume Magnetic 

Resonance (MR).  Previous studies have shown US to have advantages over X-ray 

and MR.  US can image all stages of the fracture repair process and can detect signs 

of healing 4-6 weeks before X-ray allowing earlier detection of possible 

complications.  Compared to MR, US is less resource intensive, easier to access and 

also has fewer exclusion criteria for patients.   

     Despite these advantages, the limited field of view that US can provide results in 

high operator dependency for scan interpretation and also for length and volume 

measurements. 

     Three-dimensional Ultrasound (3D US) has been developed to overcome these 

limitations and has been used to provide extended field of view images of the foetus 

and the heart and to obtain accurate volume measurements for organs. 

     In this thesis it is hypothesized that 3D US can provide a more comprehensive 

method of imaging fracture repair than X-ray and is also a viable alternative to MR 

for determining muscle volumes in vivo.   

     Initially, an electromagnetically (EM) tracked 3D US system was evaluated for 

clinical use using phantom-based experiments. It was found that the presence of 

metal objects in or near the EM field caused distortion and resulted in errors in the 

volume measurements of phantoms of up to ±20%.  An optically tracked system was 

also evaluated and it was found that length measurements of a phantom could be 

made to within ±1.3%. 

     Fracture repair was monitored in five patients with lower limb fractures.  Signs of 

healing were visible earlier on 3D US with a notable, although variable, lag between 

callus development on X-ray compared to 3D US.  3D US provided a clearer view of 

callus formation and the changes in density of the callus as it matured.  Additional 

information gained by applying image processing methods to the 3D US data was 
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used to develop a measure of callus density and to identify the frequency dependent 

appearance of the callus.   

     Volume measurements of the rectus femoris quadricep muscle were obtained 

using 3DUS from eleven healthy volunteers and were validated against volume 

measurements derived using MR.  The mean difference between muscle volume 

measurements obtained using 3D US and MR was 0.53 cm3 with a standard 

deviation of 1.09 cm3 and 95% confidence intervals of 0.20 - 1.27 cm3 

     In conclusion, 3D US demonstrates great potential as a tool for imaging 

components of the musculoskeletal system and as means of measuring callus density. 
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1. Introduction and Outline of Thesis 

 

 

1.1. Musculoskeletal Imaging 

 

The musculoskeletal system accounts for over 75% of the mass of the human body 

(1).  As well as giving the body structure and the ability to move, the musculoskeletal 

system provides protection for vital organs.  Throughout life it is inevitable that a 

person will suffer numerous musculoskeletal injuries from minor cuts, bruises and 

stained muscles to traumatic injuries resulting in broken bones and torn muscles.  

Disease can also have a detrimental effect on the musculoskeletal system, arthritis 

and osteoporosis can damage joints and weaken the load bearing capacity of bones 

whilst multiple sclerosis and muscular dystrophy can cause muscle wastage and loss 

of function.   

 

When injury or disease affects the musculoskeletal system it is important to 

determine to what extent in order to plan the best course of treatment.  Medical 

imaging techniques provide vital information to aid diagnosis and are frequently used 

to monitor the rehabilitation process during treatment to ensure the best possible 

outcome for the patient.  In the field of musculoskeletal research imaging can be used 

to evaluate the effectiveness of treatment regimes as well as to monitor the 

progression of disease and to aid understanding of the ageing process.     

 

The most commonly used imaging modalities are X-ray, Computerised Tomography 

(CT), Magnetic Resonance (MR) and two-dimensional Ultrasound (2D US).  For 

musculoskeletal imaging, X-ray is primarily used to image broken bones.  CT is used 

to gain more comprehensive views of complex fractures i.e. fractures of the pelvis or 

skull as well as to look for tumours.  MR provides images of both bone and soft 

tissues and is particularly useful for imaging suspected damage to the spine and 
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joints.  2D US can image soft tissue damage such as muscle and tendon tears as well 

as be used to check for changes in the vascularisation of the musculoskeletal system 

resulting from injury or disease.   

 

Significant work has been carried out in the field of 2D US imaging since the 1970’s 

to develop three dimensional Ultrasound (3D US) which would widen the abilities 

and potential applications of US imaging (2-4).  The basic concept of 3D US is to 

track the motion of the US probe during scanning and use this information to stack a 

series of parallel 2D US images together to create a continuous volume of image 

data.  Over the last 15 years advancements in computing and technology have lead to 

a variety of 3D US systems being created, a number of which have been trialled 

successfully in the fields of Cardiology, Obstetrics and Gynaecology (5-8).  There 

have been a very limited number of studies into the use of 3D US for 

musculoskeletal imaging and it has not been adopted as an imaging technique in the 

field of Orthopaedics remaining overshadowed by MR, CT and X-ray.  When the 

imagining abilities of 3D US are given full consideration this new modality could 

play an important role in the field of musculoskeletal imaging.  Most importantly is 

its potential to provide a more effective and comprehensive means of imaging the 

fracture repair process than X-ray.  Furthermore, in the field of musculoskeletal 

research, 3D US could provide an inexpensive and accessible alternative to CT and 

MR for monitoring changes in the skeletal muscles which can be used as indicators 

of disease progression or the success of treatment and rehabilitation regimes.   

 

 

1.1.1. Monitoring Fracture Repair 

More than one million fractures occur each year in the UK alone as a result of 

diverse causes from high energy road accidents and sports injuries to low energy 

osteoporotic fractures (9).  Surgically induced divisions of the bone (osteotomies) are 

a necessary intervention to treat adults and children with conditions such as limb 

length discrepancy and hip dysplasia.  5-10% of these fractures/osteotomies have 

healing problems, thus, many thousands of patients each year suffer from 
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complications during fracture repair.  This causes considerable morbidity to the 

patient resulting in a burden to society due to the large number of working days lost 

as well as costing the NHS millions of pounds each year 

 

X-ray is the standard method used to image the fracture repair process, however, it is 

by no means ideal.  Despite giving a good outline of a patient’s healthy bone the 

forming fracture callus cannot be detected on X-ray until it has become sufficiently 

dense with calcium.  Even then, the variation in density of the callus makes an 

accurate outline of its volume hard to depict.  For a simple fracture of the tibia the 

callus is not expected to be visible on X-ray until around 6-8 weeks post fracture.  

Earlier signs of the healing process cannot be detected which means if complications 

occur before the callus becomes visible then these may go undetected for weeks.  

The occurrence of such complications will only be indicated by a delay in the 

appearance of callus and will lead to an increased rehabilitation time for the patient.  

The decision on the state of healing lies with the clinical interpretation of X-rays and 

physical examination of the injury site.  Both of these procedures are dependent on 

the physician making the assessment and both methods are subject to a degree of 

error (10). 

 

Previous studies into the use of 2D US for monitoring fracture repair, have found that 

it could detect the earliest stages of the healing process 1-2 weeks after fracture and 

that complications could also be identified earlier (11).  Ultrasound has been 

promoted as a useful adjunct to X-ray for monitoring fracture healing, however, 

despite its advantages 2D US has not been used in this role to any great extent.  The 

high operator dependency in scan interpretation and the problems of obtaining the 

same views to make repeat measurements over time have limited its use for this 

purpose.   

 

3D US overcomes these limitations by providing a volume dataset of images for 

scanned objects.  These datasets make it easier to interpret the scanned anatomy and 

to identify points between which to make repeated length measurements over time.  

It is possible to make 3D models of features of interest which could potentially 
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provide a physician with more information about the state of a fracture than either 

2D US images or X-rays. Building up a series of models charting a patient’s progress 

from as early as one week post injury means that signs of healing as well as possible 

complications could be detected at the earliest stages.  It is hypothesised that 3D US 

could provide an alternative method to X-ray for monitoring fracture repair. 

 

 

1.1.2. Muscle volume measurements 

Skeletal muscle provides the means to move the body, so if injury or disease effects a 

muscle it can reduce its ability to contribute effectively to the movement of the body.  

Understanding the effects of muscle disuse and the rate at which muscle strength 

diminishes over time is important when considering the rehabilitation of patients 

recovering from injury or disease.  In lower limb fracture patients it is common to 

see muscle wasting of the effected limb as a result of non-weight bearing during the 

healing process (12).   Conversely, if a specific physical training regime is 

undertaken this can enhance the size and strength of a muscle. 

 

Change in skeletal muscle due to use, disuse, injury or disease is reflected by muscle 

volume.  The ageing process also causes a gradual reduction in muscle volume over 

time.  With a growing number of people living beyond 75 years of age there is an 

increased need to establish the effects of ageing after this point and determine 

efficient ways of maintaining muscle function.  It has been shown that physical 

exercise at any stage in life can improve muscle strength and increase muscle volume 

(13).   

 

Change in muscle volume can be used as an indicator in the field of medicine to 

monitor patient progress and determine the effectiveness of set treatment and 

rehabilitation regimes.  It can also be used to monitor the progression of a disease 

and to assess whether a specific treatment is useful for slowing down or reversing the 

effects.  The key to the success of such studies is a means of accurately measuring 

muscle volumes.  Current methods include the use of MR, CT and US imaging as 
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well as the use of physical measurements such as limb girth and length 

measurements to estimate the cross-sectional area (CSA) and then volume of a group 

of muscles (1, 14, 15).  Each method has its benefits and its disadvantages.  MR is 

the favoured method for attaining muscle volume measurements as it can provide 

clear images of the different tissues found within the musculoskeletal system (16).  

However, it is resource intensive, waiting times for non urgent cases are long and 

there are a number of exclusion criteria for scanning.  CT has been used in cadaver 

studies but the dose of ionising radiation that would be delivered during scanning 

makes it difficult to justify its use in studies where healthy volunteers are involved.  

Physical measurements are quick and low in cost to carry out, however, the accuracy 

of estimated muscle volume from these measurements is poor due to the 

approximation required in the calculation (17).  Although US provides images of the 

musculoskeletal system at a much lower cost than MR and CT, it can only provide a 

limited field of view.  Volume measurements made from 2D US scans involve the 

use of approximations similar to those used with anthropometric measurements 

meaning this method would not be accurate enough to monitor small changes in 

muscle volumes. 

 

A further imaging technique is required that can provide images comparable to those 

of MR but without the limitations.  The accurate volume measurements and 

additional imaging facilities offered by 3D US make it a potential alternative 

imaging method for measuring muscle volumes. 3D US is not location restricted 

unlike MR, is suitable for use with healthy volunteers and is relatively inexpensive.  

It is hypothesised that 3D US could provide a flexible and non invasive means of 

obtaining accurate muscle volume measurements in vivo. 

 

 

1.2. Scope  

 

This thesis looks at the development of 3D US and its applications in order to 

identify a suitable 3D US system for musculoskeletal imaging.  The chosen system 
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will then be evaluated to ensure it is suitability for use before being trialled for the 

proposed applications of monitoring fracture repair and for determining muscle 

volume.  Novel image analysis is carried out on the US image data in order to 

develop a new means of determining the state of healing fracture callus. 

 

 

1.3. Outline of thesis 

 

Four research questions have been formulated to test the hypotheses that 3D US 

could provide a suitable alternative to X-ray for monitoring the fracture repair 

process and a viable alternative to MR for determining muscle volume measurements 

in vivo.  

 

1. Does an optically tracked or a magnetically tracked 3D US system offer the 

most accurate and reliable means of imaging the musculoskeletal system in a 

clinical environment?  

2. Can 3D US provide a more comprehensive means of monitoring fracture 

repair than X-ray?   

3. Can image data obtained from a 3D US scan of a fracture be used to 

determine a density measure of callus to provide a reliable and accurate 

means of identifying how healed a fracture is and at what stage full weight 

bearing can be safely resumed?   

4. Can 3D US provide a suitably accurate and reliable alternative to MR for 

determining muscle volume measurements in vivo? 

 

The background to the fracture repair process and the need for an accurate means of 

determining muscle volumes in vivo are introduced in Chapter 2.  The advantages 

and also the limitations of current methods used to image fracture repair and measure 

muscle volumes are discussed along with the available alternative imaging 

techniques, in particular Ultrasound.   
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Chapter 3 covers the development of 3D US and the setup and assessment of an 

electromagnetically tracked 3D US system using a series of phantoms experiments.  

The assessment of an alternative, optically tracked 3D US system, using a further 

series of phantom, is covered in Chapter 4. 

 

In Chapter 5, the abilities of the Optical 3D US system to monitor the fracture repair 

process are compared to the abilities of X-ray in a pilot clinical study of patients with 

lower limb fractures.  In Chapter 6, image processing is used to extract additional 

information from the 3D US scan data and develop a means of assessing the change 

in callus density during the fracture repair process.  A pre-clinical study is used to 

validate the callus density measure and determine its suitability for use on patient 

data. 

 

The ability of the 3D US system to measure muscle volumes in vivo is investigated in 

Chapter 7.  In a pilot healthy volunteer study, muscle volumes derived from 3D US 

scans are compared to volumes obtained using MR.   

 

The conclusions of this thesis work are drawn together in Chapter 8 and areas for 

future research are presented.   
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2. Ultrasound and Musculoskeletal Imaging  

 

 

2.1. Introduction 

In this Chapter the principles of fracture repair, muscle volume measurement and 2D 

US are introduced.  The current methods used to image fracture repair and obtain 

muscle volume measurements are covered highlighting the areas where 3D US could 

provide a more suitable alternative means of imaging. 

 

 

2.2. Fracture  

Fractures are a common occurrence and are caused by bones being loaded or strained 

beyond their normal biomechanical limits.  This may result from direct violence due 

to impact, indirect violence due to twisting of the bone, fatigue from repeated use or 

due to pathological causes such as osteoporosis, tumours and cysts (12).  

 

Fractures are classified as either open or closed.  Closed fractures, sometimes 

referred to as simple fractures, are where the broken bone has not broken the skin 

and has no contact with the external environment.  Open fractures, also referred to as 

compound fractures, are where the bone is exposed to the external environment i.e. 

the bone has either broken through the skin or significant laceration has occurred 

over the fracture site.  Further classifications of fracture type can relate to the cause, 

e.g. a pathological fracture, or may be representative of the resulting pattern of the 

broken bone as shown in figure 2-1 (18).  Fractures 1, 2, and 3 are simple fractures 

where the use of ‘simple’ relates to the fact that there are only two bone fragments 

and that the fracture runs around the full circumference of the bone: 1 simple 
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transverse; 2 simple oblique; 3 simple spiral.  Fractures 4–9 in figure 2-1 are multi-

fragmented fractures.   

 

 

 

Figure 2-1: Common fracture patterns, (1) simple traverse, (2) simple oblique, (3) simple spiral, 

(4-9) multi-fragmentary fractures (18). 

 

 

A fracture may be diagnosed from the patient’s history or physical examination of 

the injury site on admission to hospital.  If a fracture is suspected X-rays will be 

taken to confirm the diagnosis (18, 19).  When taking an X-ray of a fracture the 

standard procedure requires two projections through the injury site to be obtained, 

the antero-posterior (AP) and lateral views.  Both X-rays should include a reasonable 

length of the patient’s healthy bone above and below the fracture site (20).  In cases 

where fractures are known to be difficult to detect additional X-ray images at other 

orientations may be required (21).  On occasion more specialist imaging techniques 

may be used to gain an understanding of the full extent of a fracture.  With spinal and 

pelvic fractures or suspected bony lesions CT and MR may provide a more complete 

picture.  Furthermore, radioisotope scanning can be used as a method of diagnosing 

the presence of a stress fracture.   
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2.2.1. The Healing Process 

As soon as a fracture occurs the body responds by initiating the healing process.  

Despite this immediate response fracture repair is a lengthy process.  In a normal 

healthy adult it will take around 6 weeks for a fracture of the cancellous bone, found 

at the ends of a long bone, to unite.  A fracture of the cortical bone which makes up 

the shaft of a long bone can take 3 months to heal (22).  One of the proposed 

applications of 3D US is for the monitoring of fractures of the shaft of the tibia and 

femur, thus, it is the healing process of cortical bone which is of relevance.  Fractures 

of the shaft of the tibia often require surgical intervention to reduce and stabilise the 

fracture, this intervention can disrupt the healing process and lead to complications 

arising (9). 

 

The repair process for a cortical bone fracture is described as occurring in five stages, 

however, there are no definite transition points between these healing phases and it is 

possible that two or more healing processes can be underway at different sites of the 

same injury (12, 20-23). The five stages of fracture healing are shown in figure 2-2. 
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Figure 2-2: Stages of fracture healing.  (A) Formation of the haematoma.  (B) Subperiosteal and 

endosteal cellular proliferation.   (C) Callus formation.  (D) Consolidation.  (E) Remodelling 

(21). 
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Long bones are covered by a thin fibrous membrane called the periosteum which 

contains a network of nerves and blood vessels that supply nutrients and minerals to 

the bone.  There is also a blood supply running through the central medullary canal.  

When a bone breaks the blood vessels running through it and along its surface can be 

damaged along with the surrounding soft tissue.  Blood from these vessels will seep 

into the fracture site forming a haematoma which may be contained by the 

periosteum if it remains undamaged during fracture.  Usually however, the 

periosteum is lifted or stripped away from the bone surface and blood will seep into 

the surrounding soft tissues eventually becoming restricted by muscle, fascia and 

skin.  Formation of this haematoma is the first stage in the healing process.  The 

clotting of the torn blood vessels deprives regions of bone adjacent to the fracture 

site of a blood supply causing the bone to die back a few millimetres or more (20).   

 

Within hours of the injury the second stage of the repair process, known as cellular 

proliferation, commences.  The death of the bone ends attracts cells called 

macrophages and osteoclasts into the fracture gap which start removing the regions 

of dead bone.  Osteoblast cells which are responsible for the production of new bones 

are also attracted into the area (12).  Proliferation of other cells which are the 

precursors to osteoblasts occurs below the periosteum and within the medullary canal 

at the site of fracture (21).    These cells surround the broken bone ends and begin to 

bridge the gap and stabilise the fracture.  New blood vessels rapidly form and start to 

repair the vascular damage.  Revascularisation of the fracture site continues 

throughout the healing process and the haematoma is gradually re-absorbed. 

 

Cellular proliferation in the sub periosteal and medullary regions advances across the 

fracture gap to reunite the bone ends filling in the gap and enveloping any bone 

fragments lying in between.  These cells then mature into osteoblasts and begin to lay 

collagen fibres across the fracture gap.  The fibres are then gradually impregnated 

with calcium deposits to form immature woven bone which is called callus, see 

figure 2-2(C) (20).  Callus provides rigidity and stability across the fracture site often 

taking on a bulbous form which may be felt as a hard mass below the skin.  
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Formation of callus is the third stage in the healing process and is the point at which 

signs of healing become visible on X-ray (22).   

 

Consolidation is the fourth phase in fracture healing.  The regions of woven bone 

have now expanded to fill the whole of the fracture gap as can be seen in figure 2-2 

(D).  Further ossification of the woven bone occurs and the activity of both 

osteoclasts and osteoblasts transforms the structure into stronger more substantial 

bone, known as lamellar bone, which bridges the fracture site (21).   

 

In the final stage the bulbous shape of the lamellar bone callus is remodelled, see 

figure 2-2(E).  The lamellar bone filling the fracture gap often obscures the 

medullary canal and remodelling works to carve out and reform it.  Remodelling can 

take months or even years.  Regions of the bone under low stress will be carved away 

and at regions of high stress extra layers of lamellar bone will be laid down to 

improve the strength of the bone (20).  In children the process of remodelling is often 

so efficient that eventually signs of the site of fracture are no longer visible on X-ray 

whilst in adults remodelling is not so efficient and the site of fracture is often marked 

by an area of thickened bone (21).   

 

Fracture union describes the callus formation stage of the healing process.  Although 

the bone ends have united and calcification of the callus can been seen on X-ray the 

repair process is not yet complete.  The mechanical strength of the bone is often 

insufficient to cope with the demands placed upon it, particularly weight bearing in 

the lower limb bones (12).  There is no set method of determining how long it will 

take for a fracture to unite and consolidate.  Estimated timelines have been published, 

however, it is very much patient specific and is dependent on a variety of different 

factors (12, 21, 22).  To reach the consolidation stage of the healing process can take 

4 - 6 weeks in children whereas in adults it can take up to 12-14 weeks (20).    In 

adults, age is not such a major factor, whereas, good health, sufficient immobilisation 

of the bone fragments and a good blood supply to the fracture site are more 

influential in terms of an improved rate of healing (24). 
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Successful bony union and consolidation is determined by physical assessment of the 

fracture, which involves testing the mobility of the fracture, and should be supported 

by radiological findings (19).  If consolidation has occurred there should be no 

mobility at the point of fracture and the patient should experience no pain or 

discomfort when the affected site is stressed or when gentle pressure is applied to the 

site of injury (21).  If union has occurred but consolidation is only just underway the 

fracture site will still be tender, particularly when angulation across the injury is 

attempted (20, 25). 

 

A small minority of fractures will not proceed to union and consolidation as expected 

and complications may arise.  Complications may be directly related to the bony 

injury itself or may be a result of an associated injury such as nerve or blood vessel 

damage, compartment syndrome or tendon injury (9, 21).  Directly related 

complications are those linked to the healing process of the bone and include delayed 

union, mal-union, non-union, shortening and bone infection.  Bone infection can 

occur in the early stages of healing while delayed union, non-union and mal-union 

occur in the later stages (20).  The bones of interest in this study are the long bones 

of the leg: the tibia, fibula and femur.  The following discussion of complications is 

based on fractures relating to these particular bones.  

 

Infection can occur in the early stages of repair, particularly in open fractures.  In 

closed fractures infection is unlikely unless introduced during an operation to apply 

internal fixation (26).  Deep infection may require the fracture to be re-stabilised 

after the removal of necrotic bone and soft tissue at the fracture site (21). 

 

Slow healing is not uncommon as the time line given for fracture repair is very 

general and patient specific factors such as smoking, alcohol intake, physical health 

and mobility have an affect on the rate of repair (12, 21, 27).  Delayed union is a 

delay beyond the normal time it takes for the fracture to reach bony union (28).  

There can be many reasons for this: poor revascularisation, too much mobility at the 

fracture site due to insufficient support of the injury and also biological and patient 

factors (20).  In some cases of delayed union there is a small region visible on X-ray 
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where very poor quality callus has formed.  Absorption of the bone at the fracture 

site then amplifies the appearance of the fracture gap on the radiograph.  Initial 

treatment is to wait and see if union occurs after a prolonged period of up to 6 

months, after which surgical intervention may be sought. 

 

If a fracture fails to heal it is termed a non-union.  Non-union becomes apparent on 

X-ray due to changes in the appearance of the broken ends of the bone.  Non-unions 

are frequently classified into two types hypertrophoic and atrophic. In hypertrophic 

non-union the bone ends appear flared out increasing the diameter of the bone 

beyond its normal width at the fracture site.  This flaring of the bone ends defines 

and highlights the fracture gap on X-ray.  In atrophic non-union the broken ends of 

the bone appear sclerotic on X-ray and are rounded in shape causing the fracture gap 

to be clearly visibly.  Once a fracture has been determined to be a non-union various 

therapeutic interventions can be utilised such as bone grafting, Ultrasound and 

electromagnetic fields to stimulate healing (20, 28). 

 

Mal-union is a term that describes fractures where the bone ends have become 

angulated or rotated with respect to one another as the repair process has progressed.  

This can cause deformity of the limb resulting in shortening of the bone.  In the case 

of severe angulation the bone ends may be overlapping after fracture and heal along 

the edge of the opposite bone fragment rather than end on end as expected (18).  

 

Limb lengthening procedures are carried out as a result of mal-union and bone loss 

and are also performed to correct for growth defects resulting from diverse causes 

(11).  Lengthening of a bone is initiated by surgically inducing a fracture, a process 

known as osteotomy, in the effected bone(s).  An external fixation device such as an 

Ilizarov frame or unilateral fixator, see figure 2-3(A), is fitted in order to stabilise the 

fracture site and provide a means of correcting the deformity of the bone by a process 

of gradual distraction (21).  Alternatively, an internal fixation device such as an 

ISKD (Intramedullary Skeletal Kinetic Distractor) nail may be used, see figure 2-

3(B).   
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Figure 2-3: (A) Unilateral external fixation device used to stabilise a fracture (20) and (B) an 

ISKD nail1 used to carryout lengthening. 

 

 

The response of bone to osteotomy is the same as the healing process described 

previously for factures.  It is during the second stage of fracture repair, when cellular 

proliferation is occurring, that lengthening is carried out.  The length of the external 

fixation devices or ISKD nail is increased daily at a predetermined rate until the 

required additional length between the bone ends has been achieved.  Typically, the 

rate of lengthening is usually around 1mm per day (12). It is important to establish 

the correct rate of lengthening; if the bone ends are pulled apart to quickly callus will 

                                                 
1 www.ISKD.com 
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stop forming.  Callus at the osteotomy site may bridge the gap if the lengthening rate 

is too slow in which case the bone cannot be lengthened further unless it is re-

broken.  Once the correct length is reached the healing process is allowed to progress 

to the final stages.  As with fracture repair the progress of limb lengthening is 

monitored using X-ray and by physical assessment.   

 

 

2.2.2. Imaging Fracture Repair  

X-ray is the standard method used to image fractures from the point where a fracture 

is suspected until consolidation of the callus is reached.  It is the calcium present in 

bone which gives the bright white appearance on radiographs (12).  Healthy mature 

bone appears in clear detail on X-ray and any disruptions to the smooth surface of a 

bone or breaks can be detected relatively easily by visual inspection.  X-ray is cost 

effective and relatively quick to use with digital X-rays taking only a matter of 

minutes to be developed.   

 

Despite the clear images that X-ray generates there are drawbacks to using 

radiographs to detect fractures as well as to monitor the healing process.  X-ray 

provides a 2D projection of the bone meaning details of depth and the surface 

features of the bone are lost.  When confirming the presence of a fracture and 

assessing its severity it is vital to gain two orthogonal radiographs.  This is because 

what looks like a simple fracture in one plane may in fact be a severely displaced 

fracture when viewed in the orthogonal plane, see figure 2-4.   
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Figure 2-4:  Two X-ray views of the same femoral fracture (12). 

 

 

In some cases the haematoma present at the first stage of fracture healing may be 

detected on X-ray, however, it is far from being clearly visible.  In addition, X-ray is 

unable to image the changes within the haematoma that occur during the second 

stage of healing.  If complications have arisen which delay the second stage or halt it 

altogether it can be a number of weeks before this is confirmed by lack of callus on 

an X-ray.   

 

As the fracture callus matures the visible fracture line on X-ray will begin to be 

obscured.  The bridging callus has to be sufficiently dense with calcium to become 

visible on X-ray and for an adult this can take around 6-8 weeks.  Due to the 

projection nature of X-ray images and the variability in the amount of calcification 
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throughout the callus it can be difficult to estimate the true callus volume accurately.   

Callus will appear as a “fluffy” region extending across and bridging the fracture gap 

and then blending with the bone ends when union has occurred (20).  When a rigid 

internal fixation device such as a plate is used to stabilise a fracture the amount of 

callus generated is less because the callus is not required to provide stability (28).  

When the consolidation phase of the repair process is reached the fracture line will 

be almost invisible on X-ray concealed by the presence of a well defined callus 

surrounding the fracture site.   

 

The stability and mechanical strength of a healing fracture cannot be judged from X-

ray.  When consolidation of the fracture is visible on radiographs the repair process is 

deemed to be complete and normal use of the limb is usually prescribed (20, 29).  If 

the decision to remove the cast or fixation device is made and sound bony union has 

not been achieved the bone may re-fracture.  There are no validated methods or 

marker scales against which the appearance of fracture repair on X-ray can be 

graded.  The decision to remove a cast or fixation device is down to the individual 

clinician.  It has been found that there is wide variation in the methods used to assess 

fracture healing on X-ray and the conclusions drawn about the state of healing (30, 

31).  This is discussed further in Chapter 6. 

 

Patients undergoing limb lengthening are followed up regularly during the 

lengthening phase of treatment and require more X-rays than a simple tibial fracture 

patient, thus, they are exposed to greater hazard from an increased dose of radiation.  

Cysts can form within the distraction site during the healing process and these can be 

difficult to detect using X-ray.  There are additional soft tissue complications which 

can arise during limb lengthening such as infection which can sets in around the 

tensioned wires and pins of the external fixation device which pass through the bone.   

 

As previously mentioned complications may be indicated by the change in shape of 

the bone ends at the fracture sites, however, not all complications can be imaged 

sufficiently using X-ray.  US can be used to image the surrounding soft tissues and 

to check for damage to the vascular network as well as provide images of the 
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surface of the bone.  It is widely available in hospitals and is comparable to X-ray 

in terms of both cost and imaging time.  There is minimal hazard to the patient 

from US, therefore, regular imaging of the fracture site can be undertaken without 

additional risk to the patient.   

 

 

2.3. 2D Ultrasound 

The term US refers to sounds which have a frequency above the audible range of 

human hearing, i.e. above 20 kHz (32).  For diagnostic medical applications US 

frequencies within the range of 2-15 MHz are most commonly used, however, there 

are no naturally occurring sources of US (33).  US waves are produced through the 

use of piezoelectric transducers which convert electrical wave energy into 

mechanical energy and vice versa.  In other words, the transducer material is excited 

by the applied electrical signal causing it to expand and contract, thus, producing 

pressure waves within the medium which is in contact with the transducer; this is the 

inverse piezoelectric effect.  The piezoelectric effect is the converse of this where a 

pressure wave impinging on the transducer causes an electrical signal to be produced 

see figure 2-5.  A deformable elastic medium such as air or water is required to allow 

the pressure waves to propagate (34).   
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Figure 2-5: (A) the piezoelectric effect and (B) the reverse piezoelectric effect (33). 

 

 

Both the piezoelectric effect and the reverse piezoelectric effect are used in US 

imaging.  There are naturally occurring piezoelectric crystalline materials such as 

quartz, however, these are not very efficient (35).  Lead-zicrconate-titanium (PZT) is 

a purpose grown piezoelectric crystal specifically conditioned for use in US probes 

(36).  Figure 2-6 shows the basic construction of a single transducer US probe where 

a narrow rectangular piece of piezoelectric crystal is housed within a plastic casing.  
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The backing material behind the crystal is designed to dampen the oscillation of the 

crystal in order to produce the short pulses of waves required for US imaging.  The 

chosen material will be impedance matched closely to the properties of the crystal so 

that the pulse length is restricted to only 2 or 3 wavelengths (32).  The large 

difference in impedance between the crystal and patient tissue is overcome by 

placing a series of very thin matching layers of epoxy resin in front of the crystal to 

decrease the difference in impedance gradually (37).   

 

 

 
Figure 2-6: Basic internal structure of a pulse-echo single element transducer (33). 

 

 

There are a variety of US probe types: linear, curvilinear, phased and mechanical 

(38).  Their names relate to the arrangement of the transducer material within the 

probe housing.  Only linear probes are considered here as this was the only type of 

probe used during the study.  The term transducer specifically refers to the piece of 

piezoelectric material; though is also commonly used to refer to the probe as a whole.   

 

A linear probe contains an array of narrow rectangular pieces of piezoelectric 

crystals acting as individual transducers where an array can contain between 64-600 

elements and may be 3-20 cm in width depending on the intended application (32-

34).  The individual transducers in the array are fired in groups to produce a series of 
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small US beams.  There is a short delay after firing to allow the reflected US pulses 

to be detected by the transducers before the next US pulse is fired.   

 

The 2D greyscale images widely used in medical imaging are produced using B-

mode imaging where the B refers to brightness in reference to how the images are 

displayed in varying brightness of greyscale.  The images are often referred to as B-

scan images.  Figure 2-7 shows a B-scan image through the calf muscle; the different 

anatomical structures are labelled.  There are three other types of US imaging: A-

mode, M-mode and Doppler, the following references contain details of these (32, 

35, 36, 38, 39).   

 

 

 
Figure 2-7:  A B-scan image through the calf muscle where the different tissue layers have been 

labelled. 

 

 

B-mode images are produced as a result of interactions of the US pulses with each of 

the tissues the US beam encounters.  The transmission of an US pulse through a 
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medium is dependent on the acoustic impedance (Z) of that material where acoustic 

impedance is determined by the density (ρ) and speed of sound (υ), 

 

Z = ρυ.     (2.1) 

 

When the US pulse reaches a boundary between tissue types it is the difference in the 

acoustic impedance between the tissues which gives rise to the echoes visible on the 

image.  The percentage of the US pulse which is reflected (R) from a tissue boundary 

is dependent upon the acoustic impedances (Z1 and Z2) of the two tissues at the 

boundary as given by,  

 

100
2

12

12 ×








+
−

=
ZZ
ZZ

R
.   (2.2) 

 

The bigger the difference in the acoustic impedance between the two materials less 

of the US pulse will be transmitted and more will be reflected (39).  An US pulse 

travels through human tissue at an average speed of approximately 1540 m/s.  The 

speed of sound in blood, fat and water are all quite close to the average speed in 

tissue, however, for bone the speed of sound is much higher at 3500 m/s resulting in 

high reflection at the soft tissue-bone boundary (32). At each boundary part of the 

US beam will be transmitted and part of the beam will be reflected.  Using the 

average speed of sound in tissue and the time between transmission and detection of 

the reflected pulse, the depth of the object causing the reflection can be calculated 

allowing it to be displayed at the appropriate position in the image.   

 

Equation (2.2) used to determine the percentage of the US beam which is reflected 

assumes that the US pulse has a 90° angle of incidence at the tissue boundary (34).  

If the US pulse is incident at an angle of more that ±3º from the perpendicular very 

little of the reflected US pulse will be detected at the transducer (35). 
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As the US pulse travels through the body it is attenuated due to reflection, refraction, 

scattering and absorption (33).  The random interference of returning reflections 

causes the background speckle present in the image (35).  Attenuation increases as 

the frequency of the US pulse increases resulting in less depth penetration at higher 

frequencies.  This has lead to the production of US probes at different frequencies (or 

frequency ranges) for imaging specific body parts dependent on their depth within 

the body.   

 

As a result of attenuation the returning US pulse received by the transducer array is 

considerably weaker than the original transmitted pulse and the electrical signals 

generated by the transducer array have a wide range of amplitudes dependent on the 

intensity of the reflections (32, 33, 36, 38).  The electrical signals are of Radio 

Frequency (RF) and are referred to as the RF signal.  A set amount of gain is applied 

to amplify the RF signal this is termed the Received Gain (Rx) and is controlled by 

the scanner operator.  The signals originating from deeper in the body are 

considerably weaker than those received at the surface.  To allow reflections of equal 

intensity originating from different depths in the body to be displayed on the US 

image using the same intensity scale different amounts of amplification have to be 

applied to the signals.  This is achieved using Time Gain Compensation (TGC) 

where the gain applied is dependent on the time taken for the signal to return to the 

transducer from inside the body.  TGC is set by the scanner operator using a series of 

slider controls that relate to different depths as the amount of gain required is often 

dependent on the type of tissue being imaged.  Next, the RF signal is demodulated, 

undergoing rectification and envelope detection to produce a video signal.  Figure 2-

8 shows this process.  During analogue to digital conversion the amplitude of the 

video signal is sampled at regular intervals and values are assigned to a digital 

memory matrix according to their position in the original signal.  Each amplitude 

value is assigned a corresponding greyscale intensity for display on the US image.  

After digital to analogue conversion the image information is displayed on the 

monitor of the US machine.     
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Figure 2-8:  Demodulation process for the RF signal.  (A) the RF signal. (B) RF signal after 

rectification. (C) RF signal component is removed leaving the signal envelope (32). 
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2.4.  Musculoskeletal Imaging  

A review article by Kaplan et al. described details of all aspects of musculoskeletal 

imaging, from the different US scanners used, to the various injuries and disorders that 

could be examined (40).  In their paper it was stated that MR may provide images that 

are easier to interpret, however, this should not necessarily mean it is instantly the first 

choice of imaging modality.  The least invasive and least expensive imaging technique 

should be considered, whenever possible, to confirm a diagnosis before requesting 

further detailed and often more resource intensive imaging studies.    

 

Sonography has been employed to evaluate complications that have occurred with 

orthopaedic implants as well as to investigate the causes of anterior knee pain (41).  Lin 

et al. imaged soft tissues defects and disease using 2D US (42).  The imaging of bone 

and bone related disease using Sonography has been considered by Cho et al (43). 

Comparative X-ray, MR and US images are shown for a number of musculoskeletal 

complaints with US being promoted as the best modality for musculoskeletal imaging.  

The highly reflective nature of bone made US ideal for evaluating the bone surface 

which can be advantageous when investigating the presence of a fracture.  Disruption to 

the smooth contour of the bone and the presence of a haematoma are clearly visible on 

US and are indicative of a fracture.   

 

US has been compared with X-ray, CT and MR for the detection of fractures of the ribs 

and sternum (44-46).  It was found that US could differentiate between old and fresh 

fractures from the presence of a haematoma; signs of fracture healing and bone 

remodelling could also be detected with US.  Furthermore, the costal cartilage can be 

checked for signs of trauma.  Despite these advantages it was concluded that X-ray was 

still the preferred method as the extent of the injury was indicated by the depth of 

dislocation and this was not as clearly visible on US.  Also, scanning can be time 

consuming as well as difficult in obese, unconscious or uncooperative patients. 

 

One of the main limitations of US is the need for the operator to interpret the series 

of 2D images viewed during scanning to form a diagnosis. There can be inter-

operator dependency in the interpretation of the images which could lead to 

differences in patient management (3).  Additionally, in cases that require follow up 
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with repeated measurements to be made of a specific part of the anatomy, it is almost 

impossible to find the same angle and transducer position that will provide the exact 

same view as in subsequent scans.  Anatomical volume measurements are similarly 

very operator dependent.  Two measurements are made with the transducer in one 

plane before it is moved to a perpendicular plane to obtain the third measurement in 

order to calculate a volume.  The development of 3D US has helped address a 

number of the limitations of conventional 2D US in particular, obtaining accurate 

length and volume measurements, this is discussed further in Chapter 3. 

 

 

2.4.1. Ultrasound for Monitoring Fracture Repair 

The limitations of X-ray imaging and clinical assessment for monitoring facture 

healing are a long held concern.  In 1958 Siegel et al. stated that the use of X-ray and 

physical assessment to monitor fracture repair was subject to error and that the 

volume of callus observed on X-ray did not correlate well with the true state of 

healing nor the clinical estimate of bony union (47).  In a bid to reduce the error 

margins involved in callus assessment, investigations were carried out to measure how 

the change in speed of an US pulse passed across a fracture site related to the state of 

fracture healing.  This technique was based upon long established methods for material 

testing.  The aim was to provide an accurate method of assessing the degree of healing at 

any stage in the repair process as well as providing a means of identifying delayed 

healing or non-union earlier.  Their method used separate transmitter and receiver probes 

placed above the bone to either side of the fracture site.  A short sound pulse was 

transmitted and the time it took for the pulse to travel from transmitter to receiver was 

used to calculate the velocity of the sound across the fracture site.  Velocity of sound 

travelling through a material is a property of its density and elasticity.  By observing the 

change in velocity of the pulse as it travelled through the damaged bone the change in 

elasticity of the callus could be monitored.  The tibia was studied in both human and 

animals as its close proximity to the skin and the flattened bone surface presented at the 

shin provided good testing conditions for the technique.  The transmission of the sound 

pulse through the layers of skin and subcutaneous tissue were found to have no effect on 

the velocity of the sound pulse.  In the animal study, changes were noted in the velocity 
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of sound and these were later identified, from the excised bones, as corresponding to 

different stages of the healing process.  When calcification of the callus was underway 

the velocity of sound across the fracture began to increase and return towards that of 

normal bone.  In the study monitoring healing in human tibial fractures, decreased sound 

velocity across the site indicated a non healed fracture. 

 

The B-mode of US provides a method of imaging the changes occurring within the 

fracture site and at the bone ends as well as damage to the surrounding soft tissues.  One 

of the first US imaging studies to investigate fracture healing, carried out by Riccardi et 

al., was designed to determine whether US could image the presence of periosteal callus 

before it became visible on X-ray (48).  US was used to follow-up patients who had 

sustained a long bone fracture that had been stabilised using a mono-lateral external 

fixation device.  At 7-11 days, the US images showed the fracture gap in detail, in 

particular, the sharp edges of the bone and the haematoma which was seen to extend 

over the edges of the gap.  Two hyperechogenic collars of material became visible at 10-

16 days post op extending from the periosteal region of the bone ends.  The formation of 

collars starting to bridge the fracture gap coincided with the second stage of fracture 

healing as described in section 2.2.1.  No signs of healing were yet visible on X-ray.   

Initial calcification of the hyperechogenic collars was signalled at 20-35 days by an 

increased brightness of echo.  Small regions of callus started to become visible on X-ray 

at this stage.  The appearance and echo of the bridging material became more uniform as 

calcification continued.  US could no longer penetrate into the fracture gap at 35-50 

days, and the bridging callus was now clearly visible on X-ray.  At 50-90 days, the 

appearance of the callus on X-ray remained unchanged, however, on US the callus 

became sharper and the surface more clearly defined.  The volume of the bridging callus 

was seen to reduce between 90 and 140 days as remodelling started to take place.  No 

obvious change in the appearance of the callus was evident on X-ray.   

 

A similar study comparing X-ray with US was carried out monitoring patients with 

long bone fractures for up to 1 year after discharge from hospital (49).  The results of 

this study confirmed the observations of Ricciardi et al. and agreed with the accepted 

histology of fracture healing.  Results of an MR study of fracture repair were 
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mentioned as detecting a similar healing pattern to US but no images or descriptions 

were included for direct comparison.   

 

Two studies that have investigated the use of MR for monitoring fracture healing 

both identified a similar pattern of events during healing, which showed agreement 

with histology and US (50, 51).  In addition, early signs of calcification of the callus 

were visible on MR before X-ray.  However, no mention was made of the limiting 

factors of this imaging modality such as patient exclusion criteria (i.e. pacemakers), 

long waiting times for scans and also cost. 

 

There are a number of papers discussing the role of US in limb lengthening procedures 

(11, 52-56).  All agreed that US was superior to X-ray when looking for the first 

indications of bone re-growth, however, in terms of clinical use it was only a 

complimentary measure to X-ray and not a suitable replacement.   

 

Maffulli et al. provided a thorough description of what can be seen on the US image  

between 0 and 8 weeks after the osteotomy operation (55).  The value of US during the 

early stage of healing was recognised; more regular imaging of the lengthening site can 

be carried out without increased risk to the patient.  The rate of growth and quality of 

ossification of the callus can be monitored effectively.   

 

US has been used to evaluate the rate of new bone production during lengthening which 

has direct bearing on the rate at which the distraction process is carried out (11).  Twelve 

patients were examined weekly using US along with standard X-ray starting at either 7 

or 14 days post-surgery.  In every case US detected new bone growth weeks before X-

ray, bone formation was not visible on X-ray until 2-5 months after surgery.  Signs of 

new bone formation on the sonograms were observed at 1-3 weeks in ten of the patients 

and in the remaining two patients it was 16 weeks before new bone formation was 

detected.  Cysts of 1.5-2 cm were identified within the distraction sites for two of the 

patients using US but were not visible on X-ray.  A disadvantage when using US for 

Ilizarov procedures was that during the initial stages of lengthening the rings on the 

frame may be very close together and it can be difficult, sometimes impossible, to scan 

the distraction site.   
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In a further study examining limb lengthening the size of the distraction gap measured 

on US images was compared with that measured from X-ray (52).  In the early stages of 

bone re-growth the difference in width between the distraction gap visible on US 

compared to X-ray was taken to indicate the amount of new bone formation.  Serial US 

examinations provided a quick and relatively accurate method of measuring the quantity 

and quality of mature callus laid down during the early stages of healing.  US was found 

to complement radiography by reducing the number of X-rays required.  It also provided 

a method of detecting cysts forming in the osteotomy gap and allowed the rate of callus 

growth to be monitored during the early stages of lengthening.  In a similar study by 

Malde et al., US was found to be better than X-ray for detecting new bone growth, 

however, measurements of actual length gained during a limb lengthening process were 

found to be more accurate on X-ray (53).   

 

US has also been employed to monitor the progress of fractures repaired by interlocking 

tibial nails  (57).  It was concluded that good fracture healing was underway when the 

nail was no longer visible on the US image due to substantial callus formation.  Healing 

was still verified by radiograph, where 50% bridging callus visible on both the AP and 

Lateral X-rays was taken to be indicative of successful healing.  Further work by the 

same group involved a pre-clinical study to determine the histological composition of the 

tissue, presumed to be callus on the US images, by using US guided needle biopsies 

(58).  100% correlation was found between the appearance of hyperechogenic regions on 

the US images and the presence of fibrous callus material in the biopsies.  A clinical trial 

based upon this finding looked at forty-seven patients who had sustained a tibial shaft 

fracture which was stabilised using an interlocking tibial nail, the patients were followed 

up using both X-ray and US  (59).  Fractures were imaged at six weeks and nine weeks 

post op.  The fracture site was imaged through three portals cut into the supporting cast 

which were equally spaced around the 270° visible surface of the tibia.  The indication 

that healing was underway was that the nail was no longer visible through one of the 

three imaging portals.  Bridging callus visible in at least two of the four views imaged by 

radiographs was taken to indicate fracture healing.  US was found to have a positive 

predictor value of 97%; the average time to healing determined by US was 6.5 weeks 

compared with 19 weeks when using radiographs.  It was recommended that US be used 

at six and nine weeks post fracture to assess the state of healing and to identify any 
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complications that may require surgical intervention.  US examinations could identify 

when there was enough callus present around the implant to allow weight bearing and 

this was often weeks before signs of healing were evident on X-ray.  However, the 

drawback that only 270° of the surface of the tibia was visible using US.   

 

Additional advantages of US over other modalities include the ability to image  the soft 

tissues surrounding metalware which is used to stabilise fractures (60).  Both CT 

scanning and MR are affected by the presence of metal.  In a CT scan metal will cause 

localised scattering of the X-rays producing streaks in the scan data.  For MR, metal 

implants will cause distortion of the image around the implant and localised heating of 

the tissue and not all implants are suitable for scanning (36). Twenty one patients who 

suffered persistent symptoms following long bone fracture repaired using an internal 

fixation device were examined in the study using US and X-ray.  Complications such as 

screw loosening, adjacent tissue infection, muscle impingement by metalware, and 

metalware loosening could all be identified on the US images as well as the radiographs.  

In the case of infection, US could be further employed to provide an accurate method of 

needle guidance for aspiration.  Despite describing all these advantages, US was still 

only recommended as a useful adjunct to clinical assessment and radiology. 

 

3D US has the potential to overcome the limitations of 2D US which have caused it 

to be relegated to a useful additional imaging tool to X-ray rather than a viable 

alternative.  With 3D US the position of the probe is tracked and all the images 

viewed during the scan are recorded.  By matching up positions and images a 3D 

dataset can be constructed which can be reviewed at any future date.  Different 

imaging tools can be applied to the 3D dataset to make it easier to interpret the 

anatomy and also allow accurate volume and repeated length measurements to be 

made.  To date no papers have been found that report on the use of 3D US for 

monitoring and assessing the process of fracture healing.    
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2.5. Imaging Muscle Volumes 

The accurate volume measurements and extended field of view that 3D US can 

provide have potential application for measuring changes in skeletal muscle volumes.  

Change in muscle volume is an important biomarker in medical research, it can 

indicate progression of disease, signal response to treatment, and help predict 

recovery of muscle function after surgical repair. Furthermore, it can be used to 

measure the effects of specific physical training regimes and to quantify the changes 

in muscle due to the ageing process.  Detailed and comprehensive studies of skeletal 

muscle are becoming more widespread in particular for studying the age related 

changes to muscles.  With an increasing over seventy fives population more 

information about the changes to skeletal muscle after this age needs to be obtained 

(61).  For example, we need to increase knowledge about the effects of training 

regimes to help maintain muscle function as we get older.  Damage to muscles due to 

trauma or disease and wasting due to disuse will affect function and thus the ability 

to contribute effectively to the movement of the body. 

 

The key to research in these areas is the ability to measure muscle volumes 

accurately and precisely.  Muscle volume relates to muscle mass, strength, cross-

sectional area (CSA), and power output as described by equation (2.3).  Any change 

in the volume of the muscle will affect the strength and power as well as its overall 

mass.  The power output of a muscle is a measure of the force that can be exerted 

when it is recruited for use, the greater a force a muscle can generate over a finite 

time interval the more powerful it is, 

 

Volume
Power

CSA
Strength

Mass == .    (2.3) 
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2.5.1. Skeletal Muscle 

Skeletal muscles are attached to bones, either directly or via tendons, and are the 

only type of muscle which is voluntarily controlled through the nervous system.  

Groups of muscles work together in different arrangements in order to move the 

bones and joints of the skeleton to facilitate motion such as walking or rising from a 

chair (62).    

 

Muscles only have the ability to pull by means of a contractile process.  Muscular 

contraction occurs on a macroscopic scale, however, it originates from microscopic 

motion which is controlled by events at a molecular level (63).  Scaling up the affect 

of multiple microscopic contractions to the macroscopic level throughout the whole 

volume of the muscle gives rise to a strong overall contraction.  The volume of the 

muscle remains the same during contraction while the girth of the muscle increases 

to compensate (64).  The pulling force, i.e. strength, which can be generated, is in 

proportion to the CSA of that muscle.  However, the power output of a muscle is a 

product of both its length and CSA, i.e. its volume.  The quicker the muscle fibre 

contractions can be engaged and the more fibres a muscle has the more power it will 

be able to generate when recruited for use.  As power is dependent on volume a short 

fat muscle will have the same power output as a long lean muscle if both muscles 

have the same overall volume (65). 

 

The quality and quantity of an individual’s skeletal muscle changes considerably 

throughout their life time and this is a reflection of the type and volume of physical 

activity which is undertaken.  Skeletal muscle is composed of two main types of 

fibres: type I and type II (1, 62, 66).  Type I fibres are slow acting and recruited 

predominantly for endurance tasks where long lasting muscle contraction is required 

such as maintaining an upright posture.  Type II fibres are fast acting and are 

involved in rapid contractions such as those in the muscles of the leg which control 

the foot and ankle during walking and running.  Peak muscle strength is reached 

between the ages of twenty and thirty years after which muscle mass and strength 

begins to decline slowly at a rate of 1% per annum.  After the age of fifty a more 

marked decrease in the strength and mass of muscle occurs (65).  The consequences 
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of the menopause mean that these changes are more notable in woman than men.  By 

the age of ninety years both men and women may have lost approximately 30% of 

their peak muscle mass.  Specific training techniques can be employed by an 

individual to enhance the performance of the different muscle fibres which will lead 

to an increase in the size of that type of fibre.  This is known as hypertrophy.  Sprint 

training will increase the size of the type II fibres whereas marathon training will 

increase the size of the type I fibres.  Previous studies have shown that muscle 

training undertaken by adults at any stage in life can increase the volume and 

performance of muscle (13, 67).  Muscle fibres can be increased in size by regular 

exercise, however, they will decrease in size and waste away when no longer used, 

this is known as muscle atrophy.  Fast type II fibres diminish rapidly after the age of 

seventy compared to the gradual decline of slow type I fibres.  Muscles require a 

good network of blood capillaries and nerves to maintain muscle health, but, the 

progression of ageing results in denervation of the muscle which leads to atrophy and 

a permanent degeneration of muscle fibres.  (1).   

 

 

2.5.2. Methods of Determining Muscle Volume 

Muscle volume can be measured directly or estimated from measurements of CSA.  

MR, CT and US imaging along with anthropometric measurements techniques have 

been used to obtain muscle volumes and CSA measurements.  There are many forms 

of anthropometric measurements including limb girth, biometric impedance and skin 

fold pinch measurements used to estimate body fat percentage and muscle volume 

(1).   

 

Despite having different methods of determining muscle volume there was no agreed 

validated standard against which each technique could be compared.  The need for a 

validated ‘gold standard’ was recognised by Mitsiopoulos et al. (14) who used two 

phantoms to evaluate the accuracy of volume measurement obtained from MR.  

Volume measurements derived from MR were found to be within ±3% of the 

measured volume of the phantoms.  In further investigations CT and MR imaging 
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were performed on a cadaver arm and leg, both limbs were then frozen and cross-

sectioned at their mid point to provide comparative cross-sections.  Both MR and CT 

were found to differ by ±1.3% from the actual muscle of volumes of the cadaver 

limbs calculated from the CSA measurements (14).  It was concluded that MR and 

CT provided results which were a suitable standard against which other body 

composition measures could be calibrated.  However, CT was not quantified using 

phantoms and was also found to underestimate absolute skeletal muscle area in the 

lower leg when the muscle CSA was less than 15cm².   

 

A similar study of five healthy volunteers was carried out using MR and CT to 

measure the volumes of adipose tissue, muscle, skin, and bone (68).  Compared to 

CT, MR was found to overestimate the volume of muscle, skin and also adipose 

tissue but underestimate the volume of bone.  It was concluded that MR was suitable 

for making measurements of adipose tissue as the variation from CT was only 1-8%.  

However, it was not stated why CT was used as the reference measure nor if it was 

validated.   

 

Validation studies frequently involve cadavers to compare volume measurements 

derived from MR with the measured volume of dissected muscles (69, 70).  Using 10 

cadaver shoulders, MR derived volume measurements were validated against water 

displacement volumes for a number of different muscles(70).  This study was carried 

out on the basis that atrophy is a common occurrence after rotator cuff tears and will 

have a direct impact on patient recovery.  MR was investigated as a means of 

providing pre-operative information to predict post-operative outcome and was 

validated using cadavers as a reference method against which anthropometric 

measurements could be compared.  Significant correlation of r²=0.98 was found 

between the water displacement derived volumes and MR for all rotator cuff 

muscles.  None of the anthropometric measurements were found to be suitable 

predictors of post-operative outcome.  It was concluded that MR could provide 

accurate information about muscle volumes pre-operative, however, cost and time 

were limitations of this technique. 
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MR is often used as the ‘gold standard’ reference when investigating anthropometric 

measurements.  Change in muscle volume of the thigh is often taken as an indication 

of functional fitness, however, determining muscle volume requires an accurate 

estimation of the adipose tissue present (71).  MR was the reference method for a 

validation study of anthropometric measurements used to predict the volumes of both 

the muscle and adipose tissue present in the thighs of nineteen healthy volunteers.  It 

was assumed that the thigh could be modelled as a set of concentric circles 

representing bone, muscle, adipose tissue and skin.  Anthropometric measurements 

of ten of the leanest volunteers were used to predict muscle and adipose tissue 

volumes.  The assumed concentric circular model of the thigh was found to be valid, 

however, skin fold measurements used to predict volume of adipose tissue showed 

poor agreement with MR results.  Predicted values of muscle volumes using 

anthropometric measures were found to be overestimated by 30% in the leanest 

volunteers compared to volume measurements from MR.   

 

Anthropometric estimations of CSA have been used to quantify muscle mass in 

healthy volunteers and patients suffering from chronic obstructive pulmonary disease 

(COPD) (17).  The ability to determine the extent of muscle atrophy is an essential 

part of a physical therapy assessment of these patients.  Anthropometric 

measurements were found to overestimate the CSA at the mid thigh level in the 

COPD patients compared to MR.  For the healthy volunteers, the anthropometric 

techniques were found to be insufficiently sensitive to distinguish between patients 

who were healthy and those suffering from COPD. 

 

MR is described as being the most useful and safest non invasive imaging device to 

estimate human muscle volumes in vivo; the observable contrast between fat, muscle 

and bone gives clear distinction between tissue types (16).  Eng et al. carried out a 

study to determine suitability of MR for accurately measuring the volume and size of 

specific muscles (72).  Measurements of individual muscle dimensions would 

improve the predictive power of biomechanical models of the musculoskeletal 

system and aid understanding of muscle recovery after trauma and muscle atrophy 

due to aging and disease.  Eng et al. criticised previously published MR validation 
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studies for not establishing the accuracy of serial volumetric measurements under 

realistic conditions.  Their criticisms included grouping muscles without well defined 

bony compartments into a single set for volume measurement (69).  Potential sources 

of error when measuring volumes from MR data are the field of view (FOV) chosen 

for scanning, spatial distortions caused by inhomogeneities in the magnetic field, and 

limitations of resolution and segmentation.  Scans of phantom objects revealed that 

errors on linear measurements made in the acquisition plane were small, 

approximately 4%, however, out of the image plane these errors were significantly 

larger at approximately 25%.  Seventeen cadaver forearms were scanned using MR 

before dissection to determine actual muscle volume.  The large errors found to 

effect out of plane linear measurements were not considered to have as great an 

effect on the individual muscles of the forearm as they spanned a range of horizontal 

distances within the FOV.  When comparing specific muscles, good agreement was 

found between the MR measured volumes and the volumes of the dissected muscles.  

There was a range of agreement, with a difference of 7-21% between MR and 

dissection measurements.  Muscles with a high surface area to volume ratio were 

concluded to be effected to a greater extent by errors in segmentation resulting in the 

larger differences in volume.      

 

Despite the variations in the MR findings for obtaining muscle volumes and CSA’s, 

it is considered one of the best available imaging methods.  There is no dose of 

radiation involved unlike with CT, muscle boundaries are clearly identifiable, and 

adipose tissue and bone can also be clearly seen.  Muscle volume and CSA’s derived 

from MR scans have been shown to be far more accurate than conventional 

anthropometric measurements.  However, there are disadvantages to the use of MR: 

it is not possible to scan patients fitted with pace makers, metal surgical clips or 

some orthopaedic implants.  During an MR scan patients are required to lay still for a 

prolonged period of time and some patients may find it an uncomfortable or 

claustrophobic experience.  Post scan image processing required to remove motion 

artefacts can sometimes be time consuming and means results are not real time.   
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Access to both MR and CT scanners for research purposes can often be limited.  

Further to this it can be difficult to justify exposing healthy volunteers to the ionising 

radiation used to conduct a CT scan.  With the increasing number of investigations 

into the effects of training, disuse and aging on muscle there is an increasing need to 

find an alternative imaging method.  US has been proposed as it has the advantages 

of being portable, widely available, relatively inexpensive and there are few 

exclusion criteria for patients.  There is good definition between muscle boundaries 

on US and it is possible to differentiate between bone, muscle, fat, tendons and 

connective tissue (15, 73).   

 

US has been used to measure the volume of the tibialis anterior muscle in vivo in 

healthy volunteers (73).  The measurements derived from US were validated against 

MR.  Using a standard US machine, 11 axial scan images were recorded at equally 

spaced intervals along the length of the tibialis anterior muscle belly.  The CSA of 

the muscle was measured on each axial scan and the volume of each scan section was 

calculated by treating the muscle as a series of truncated cones.  By summing the 

volumes of each section the full muscle volume was determined.  Comparison with 

muscle volumes determined from MR showed a difference in volume measurements 

of 0.20-6.86cm³.  Concerns were raised about how errors in the positioning of the 

probe would effect volume measurement.  It was found that if the transducer was 

held at an angle of between 10-20º to the skin, instead of perpendicular to the 

surface, this could introduce an error in the volume measurement of between 2-6.5%.  

Further concerns included the time it took to undertake the US scan (45 minutes as 

apposed to 20 minutes for MR) as well as the limited field of view.  Finally, US was 

restricted to imaging only superficial muscles where delineation of muscle 

boundaries was clearest.  Taking these factors into consideration US was still 

concluded to be a valid and reproducible method for measuring muscle volumes in 

vivo. 

 

An alternative method of obtaining CSA from 2D US scans was developed be 

Reeves et al. whereby a series of overlapping panoramic US images of the vastus 

lateralis muscle were acquired (15).  The US transducer was placed on the anterior 
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surface of the mid thigh perpendicular to the length of the muscle and moved slowly 

round to the posterior of the thigh.  US images were captured at 30 mm intervals on 

the sweep round the thigh.  Contour matching was used to line up and overlay the 

series of US images and produce a panoramic cross-sectional view of the muscle.  

The CSA was determined from the US images and compared to MR.  A mean 

difference of ±1.7% was found.  US was deemed to be a reliable and valid method 

for determining the CSA of the large muscles of the human body.  However, the 

process of capturing the US images took more than three times longer than the MR 

scan.  Concern was also raised about the contact pressure with which the transducer 

was held against the skin.  Minimal pressure should be used to maintain contact so as 

to limit deformation of the underlying tissue which could cause errors in CSA 

measurements (15). 

 

2D US has shown potential for acquiring muscle volume and CSA measurements.  

However, the approximations used to measure the volume of the tibialis anterior 

muscle would not give good enough accuracy to monitor the changes in muscle 

volume.  The method developed by Reeves et al. to overcome the limited field of 

view of 2D US and obtain accurate CSA measurements was effectively a crude form 

of 3D US, however, it was time consuming to carry out.  3D US could potentially 

provide a means of obtaining accurate CSA’s much quicker with less post scan 

processing and provide accurate volume measurements without the need for 

approximations.   

 

 

2.6. Summary 

Imaging of the musculoskeletal system has been shown to be an important means of 

assessing injury, the affects of disease and ageing as well as the progress of 

rehabilitation.  The process of fracture repair and how to determine muscle volume 

measurements have been described further highlighting the need for an imaging 

technique that is easily accessible, suitable for imaging both bone and soft tissue, and 

which is not resource intensive.  The currently available techniques of MR, CT, X-
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ray and US have all been shown to have advantages in set fields as well as 

disadvantages which limit their usefulness.   

 

MR and US showed the most promise as both could provide images of bone and soft 

tissue and could detect earlier signs of fracture repair than X-ray and CT.  Despite 

being well suited for both roles MR has a number of disadvantages which limit its 

use: cost, scanning time, location restricted (i.e. not portable) and waiting times for 

non urgent cases can be long.  Further to this patients with pace-makers and certain 

types of metal implants are not suitable for scanning.  These disadvantages make MR 

impractical for the frequent monitoring required for fracture repair and mean it is 

costly method for assessing changes in muscle volume. 

 

When used for monitoring fracture repair 2D US was found to be able to image the 

haematoma formed during the first stage of repair and could detect the first signs of 

callus development during the second stage of the healing process.  As this is a non-

invasive and non-ionising modality, monitoring of fracture repair could be carried 

out frequently with no risk to patients.  US also offers a non-invasive, relatively 

inexpensive and flexible method of imaging muscle CSA and volume which had 

fewer exclusion criteria than MR. 

 

Unfortunately the high operator dependency that occurs in scan interpretation, 

repeated length measurements and volume measurements has limited the use of 2D 

US.  For monitoring fracture repair it has only ever been concluded to be a useful 

additional imaging tool to X-ray not a suitable alternative.  The approximations 

required when making volume measurements mean it cannot provide highly accurate 

volume measurements.  However, the development of 3D US has overcome many of 

the limitations of 2D US. 

 

The focus of this work is to establish a 3D US system which is suitable for 

musculoskeletal imaging and trial this system in a clinical setting for monitoring 

fracture repair and measuring muscle volumes in vivo.  The next Chapter introduces 

the field of 3D US and its development.  
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3. Electromagnetically Tracked Freehand Three-

Dimensional Ultrasound  

 

 

3.1. Introduction 

Freehand 3D US has greatly reduced the operator dependency limitations of 2D US 

and has potential for imaging the musculoskeletal system.  In this Chapter the 

development of 3D US is outlined with specific emphasis on the StradX software 

based sequential freehand 3D US system.  This system is used in conjunction with an 

electromagnetic tracking system to investigate its potential for musculoskeletal 

imaging. It is referred to as the electromagnetic freehand 3D US (EM 3D US) 

system.  An evaluation of this system using a series of phantom experiments and a 

healthy volunteer study is presented. 

 

3.2. Development of 3D Ultrasound  

3D US has the potential to overcome a number of the limitations of 2D US as well as 

the ability to expand and promote the use of US as an imaging tool in a variety of 

fields  (4, 74, 75).  The concept of 3D US is to record and “stack up” all the 2D US 

B-scan images viewed during a scan to build a 3D dataset which can then be 

manipulated and reviewed.  The 3D aspect comes from knowing the position and 

orientation of the US probe during the scan and using this information to arrange the 

B-scan images into 3D space.  There are a number of ways that this information can 

be obtained; these involve the use of tracking systems for the probe, specialist 

volume scanning probes, and also mechanical scanning arms.  Advancements in 

technology over the past two decades have lead to the construction of a variety of 3D 

US systems.   
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The main components of a 3D US system are an US machine, a tracking system and 

specialised software.  There are US machines such as the GE Voluson 7302 that have 

3D US software installed and use specialist motorised 3D US probes to record a 

volume of images, thus negating the need for external tracking.  Other 3D US 

systems require the main components to be brought together separately.  Freehand 

3D US covers systems which use external tracking devices to monitor the position of 

the US probe.  The key to freehand 3D US is that the motion of the US probe is not 

restricted, allowing a series of images to be obtained in any scan pattern.  The use of 

a volume probe or a mechanical scanning arm is not freehand as the motion of the 

probe is restricted.  Volume probes and mechanical scanning arms are suitable for 

scanning objects below a flat surface but would not be practical for scanning around 

a limb or across a shoulder.  Freehand scanning allows the operator maximum 

flexibility in dictating the motion of the probe.  

 

The review papers written by Fenster and Downey provide a comprehensive 

introduction to the field of 3D US (3, 4, 74, 76, 77).  One of the main issues in 

freehand 3D US is the process by which the recorded image and position data is 

reconstructed into a 3D dataset.  The most common method is to use a voxel array, 

similar to the process used to handle CT and MR images (78).  The position data 

obtained during the scan is used to orientate the series of B-scan images into a 3D 

voxel array while the greyscale intensities from those images are used to assign voxel 

intensities, see figures 3-1and 3-2 (79).  Not all of the voxels will be intersected by 

an US image and conversely some voxels may be intersected by more than one 

image.  An interpolation algorithm is used determine voxel intensities once the US 

data has been placed in the array.  This helps to offsets the effects of more than one 

US image intersecting a single voxel and also provides good approximations for 

filling in empty voxel array elements (78) .    

 

 

                                                 
2 http://www.gehealthcare.com/usen/ultrasound/genimg/products/voluson730/index.html 
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Figure 3-1: Constructing a voxel array from 3D Ultrasound data.  Not all voxels will be 

intersected by an Ultrasound image and some voxels may be intersected by more than one (79). 

 

 

 
Figure 3-2: Interpolation for freehand 3D Ultrasound.  The Ultrasound beam (a) has a finite 

thickness so each pixel in the B-scan samples a region of space which extends some distance 

normal to the B-scan.  The interpolation kernel (b) should resemble this sampling function.  

Each B-scan pixel influences the contents of voxels lying within its interpolation kernel (79). 

 

 

After constructing the 3D dataset a method to visualise the data is required.  

Common methods include: 2D any plane slicing, volume rendering and surface 

fitting.  ‘Any plane slicing’ allows the operator to view a 2D slice through the 3D 

data at any point and in any orientation, this can provide views of anatomy which 

would otherwise be unobtainable using conventional US.  Surface fitting and volume 
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rendering are both methods of producing 3D images from the dataset.  A surface can 

be fitted to an object of interest such as a bone surface once it has been highlighted, 

through a segmentation process, to produce a 3D model.  Surface rendering can also 

be used to highlight an object of interest by making use of differences in voxel 

intensities between objects in the US images.  For example, surface rendering can be 

used to highlight the foetal skeleton by exploiting the difference in intensity of 

voxels showing the skeleton and those showing the soft tissues (3) .   

 

 

The StradX software (Medical Imaging Group, Engineering Department, University 

of Cambridge) was developed as part of a sequential freehand 3D Ultrasound system 

devised to provide an accurate method of freehand 3D US (78, 79).  The 

requirements for their system and software were established by carrying out  a 

systematic review of all the aspects of freehand 3D US scanning (80).  This review 

took into account the problems that arose during 2D US imaging and considered how 

those issues would affect a 3D US system.  The effects of imaging artefacts such as 

speckle, refraction, shadowing and contrast resolution had to be taken into account 

when considering the image capture process and how best to display those images 

within a 3D dataset.  StradX has a number of advantages over the software used by 

other freehand systems.  The most prominent is the way in which it reconstructs the 

position and image data into a 3D dataset without the use of a voxel array.  

Removing the voxel array step reduces the time it takes to build the dataset and 

removes a stage of image processing that could otherwise introduce significant 

anomalies to the image data.  Voxel arrays are ideal for CT or MR data where all the 

recorded images are parallel to one another but with freehand 3D US the B-scan 

images are seldom orientated in this way and placing non-parallel US images into a 

voxel array can lead to significant image artefacts (79).  Instead, a method was 

devised whereby the properties of the B-scan images were used to generate the 3D 

dataset, this process discussed in detail in section 3.3.2.  An advantage of this new 

technique was that only artefacts arising from the 2D scans would be present in the 

images and these should be easily identified by a trained Sonographer. 
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Calibration is a key process in setting up a freehand 3D US system for use.  It 

determines the required transforms between the coordinate systems of the US probe, 

the tracking device and the real world in order to arrange the US images in a 3D 

dataset.  Calibration also ascertains the clock drift between the images recorded from 

the US machine and the position data registered by the tracking device.  Methods of 

calibration involve the use of phantom objects that are scanned in a specific way in 

order to obtain information from the images which is then used in a calibration 

algorithm.  Common phantoms are the cross-wire phantom where the location of the 

crossed wires is used in the calibration algorithm, and single walled phantoms which 

provide a uniformly flat surface.  The latter forms the best method of calibrating a 

freehand 3D US system (81).  A series of images obtained from scanning the flat 

surface are used to establish coordinate relationships in order to construct a 3D 

dataset.   

 

Confhusius (CalibratiON for FreeHand UltraSound Imaging USage) (82) is a robust 

and fully automatic calibration procedure for freehand 3D US that is claimed to be 

more accurate than other available techniques including that employed by the StradX 

software package.  It is a single walled phantom calibration technique similar to that 

utilized by StradX.  It uses US images of a flat plane, obtained from scanning a 

Plexiglas plate phantom in a water bath, to provide the visual information required to 

run the calibration algorithm.  Both intensity and gradient information are used to 

extract points of interest from the US images which correspond to the US echo from 

the flat plane of the phantom.  Rosseau at al. found that neither the use of intensity or 

gradient information alone was sufficient to carry out accurate extraction of point of 

interest from the B-scan images to obtain the required data points for calibration.  

The validity of this new method for extracting points of interest was tested using 

both 2D and 3D data.  Tests carried out to compare the accuracy of the StradX 

calibration process with that of the Confhusius process found that the latter method 

was more accurate and reliable.  Residual mean square (RMS) errors returned from 

the final iterative process used to optimise the calibration results were 0.545 mm 

with a standard deviation of ±0.095 mm for Confhusius compared to 1.487mm with a 

standard deviation of ±0.729 mm for StradX.  Although Confhusius provided a 
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calibration algorithm which required no operator input, unlike StradX, thus removing 

operator error, it was significantly more time consuming taking twice as long to carry 

out.   

 

3D US offers a method of obtaining more accurate volume measurements than 2D 

US (4, 83).  When using conventional 2D US, organ volumes are calculated by 

approximating it to a known mathematical shape before applying correction factors.  

This process can lead to errors of more than 20% (84).  One of the earliest studies 

into the use of 3D US for volume measurements of organs used an acoustic spark gap 

tracking system to track the position of the US probe during scanning (83).  A spark 

gap tracking system consists of an array of three spark gaps mounted on the US 

probe and a series of three microphones positioned over the region of interest.  Spark 

gap systems require the operator to push a foot pedal when the position of a point of 

interest is to be recorded.  This causes the spark gaps to be fired in turn, with the time 

between the spark gap firing and the microphones detecting the noise being used to 

determine the location and orientation of the probe through a process of 

triangulation.  In vitro experiments showed the system to work well, the volumes of 

simple phantoms could be measured to within ±2% of their actual volume.  For more 

complex phantom objects the volume measurements varied from the actual 

measurements by ±6%.   

 

During the development of the StradX software two algorithms were investigated for 

displaying and calculating the volume of 3D models for a scanned object, these were 

Cubic Planimetry and Maximal-Disc Guided Shape-Based Interpolation.  Both 

techniques were subject to a series of in vitro and in vivo test scans to evaluate 

accuracy (84).  The test scans also provided a means of determining the minimum 

number of B-scan images required to produce a detailed 3D model and return 

accurate volume measurements.  Cubic Planimetry was found to give the most 

accurate measurements and as few as ten segmented B-scans could be used to 

calculate the volume of the scanned object to within ±1% of its actual volume.  The 

Maximal-Disc Guided Shape-Based Interpolation algorithm was found to be better at 

surface reconstruction of the volumes, particularly for complex shapes.  It was 
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suggested both algorithms could be utilised in turn, firstly to calculate the volume of 

the object and then to construct a precise surface model.   

 

An adapted Shape-based Interpolation algorithm improved on the abilities of the 

Maximal-Disc Guided Shape-Based Interpolation in a further development of StradX  

(85).  To test Shape-Based Interpolation it was applied to a variety of different types 

of image data including CT; MR and 3D US data along with the Maximal-Disc 

Guided Shape-Based Interpolation algorithm.  This provided a visual comparison 

between surface reconstruction methods.  The original process was limited by the 

distance between segmented contours as if adjacent contours were more than a set 

distance apart the contours could not be used to form a surface.  For the adapted 

Shape-Based Interpolation method detailed surfaces could be constructed from less 

contours than the previous method allowing quicker surface fitting.  This algorithm 

was incorporated in to StradX.   

 

There are a variety of external tracking systems that can be used for freehand 3D US.  

Electromagnetic (EM) tracking systems are commonly used for tracking the position 

and orientation of the probe.  One of the considerations when using this type of 

system is the distorting effect that metal objects or sources of other EM fields in or 

near the scanning region may have on the tracking field.  Assessment of two direct 

current (DC) systems, the Ascension Birds and Ascension Mini Bird, in comparison 

to an acoustic spark gap system has been carried out in a mock clinical environment 

(86).  Ellipsoid phantoms of known volume were used to compare the volume 

measurement accuracy of a freehand 3D US system for each of the tracking systems.  

Three experiments were carried out where the amount of ferromagnetic metal within 

the scanning environment and the proximity of the US machine (a potential source of 

additional EM fields) to the tracking system was varied.  The different scanning 

scenarios were: 

 

1. There was no ferromagnetic metal within the scanning environment and 

the US machine was not within 30 cm of the tracking system.   
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2. The phantom object and the tracking system were placed on a metal 

frame patient examination table.  The US machine remained in the same 

place. 

3. The phantom and the tracking system remained on the patient 

examination table and the US machine was brought within the field of 

the tracking system.   

 

Both of the EM tracking systems improved on the method and restrictions of the 

acoustic spark gap system.  However, it was found that both the presence of other 

EM fields and ferrous metal in the near field scanning environment caused 

underestimation of the measured volumes.  In the second experiment, both the Bird 

and Mini Bird tracking systems were found to underestimate phantom volume 

equally while during the third experiment the Bird system performed worse than the 

Mini Bird system.  It was noted that there were no obvious visual signs of distortion 

to 3D models constructed from the datasets of any of the experiments.  The 

conclusion was that if there was no conductive metal or other sources of EM 

radiation, such as the US machine itself, within the field of the tracking system then 

either of the DC EM field tracking systems would be suitable for clinical use.   

 

A different model of the Ascension Bird DC EM tracking system was evaluated by 

Detmer et al. using a non planar cross-wire phantom (87).  This was used to assess 

the spatial precision of the system and determine what effect the presence of the US 

machine and positioning of the receiver unit of the tracking system had on calibration 

accuracy.  This was achieved by repeatedly scanning the phantom and locating the 

point where the wires crossed whilst the US machine was operated in different 

modes.  The RMS uncertainty of the tracking system when the US machine was 

turned off was 1.2 mm and this remained the same when the US machine was 

switched on and operating in different modes.  It was concluded that the US 

machine, the metal within the probe head and also the EM fields generated within the 

probe had no detrimental affect on the tracking system.  The phantom was moved to 

different points in the tracking field to ascertain whether RMS uncertainty varied 

with location.  As the distance between the receiver and transmitter of the tracking 
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system increased there was a marginal increase in the RMS uncertainty returned by 

the calibration process.  This also increased as the distance between the receiver and 

the object being imaged increased.  It was concluded that the receiver should be 

mounted as close to the head of the probe as possible to minimise this error as for 

every 1cm away from the probe head that the receiver was mounted added 0.1 mm to 

the RMS uncertainty. 

 

Despite 3D US being around for more than 15 years, there have been no randomised 

control trials published that have compared the abilities and validity of 3D US 

systems against those of 2D US (75).  In many of the 3D US trials that have been 

conducted the problem that was examined would often be first identified using 2D 

US before further 3D US investigations took place.  In order for 3D US to be 

considered as a clinically useful and viable tool it would need to improve on the 

imaging abilities and the positive predictor value of 2D US.  Although 3D US is seen 

to be a progression over 2D US it must be remembered that 3D US is highly 

dependent on the 2D US machine and also the skill of the operator.  Manipulation of 

the 2D images by the 3D US software and image interpretation must also be taken 

into account.  Furthermore, there are artefacts that are unique to 3D US, which 

include patient motion as well as segmentation and rendering errors.  Artefacts 

carried through from the B-scan images are also a source of 3D US artefacts.  The 

potential of 3D US to be a highly accurate diagnostic tool is acknowledged 

particularly for making estimates of foetal weight (75), however, further 

investigation is required before 3D US becomes a widely accepted clinical tool. 

 

 

3.2.1. Applications of 3D Ultrasound 

Applications of 3D US are varied and wide ranging covering a number of medical fields 

including obstetrics, gynaecology, orthopaedics, cardiology and urology (5-7, 26, 88).  

The earliest reported use of 3D US imaging was in the field of Cardiology in 1974 (88, 

89).  The most familiar application is for foetal imaging where it can provide surface 

rendered 3D images that allow the whole foetus to be examined more easily, 

especially the extremities, meaning potential birth defects may be more readily 
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identified (5).  However, studies comparing 2D and 3D imaging of the foetal 

skeleton have found 3D US to be only as good as and no better than 2D US; 3D US 

simply provides easier to comprehend images (90-92).  Studies measuring foetal lung 

and heart volumes have been carried out (93-96) and 3D US has also been 

investigated as a method of identifying occurrences of cleft palate in unborn children 

(97).   

 

In urology there is particular interest in using 3D US to determine the size of, and 

monitor changes in, the prostate gland (7).  Gynaecological applications of 3D US 

include measuring the length of the cervix and determining the shape and volume of 

the uterus as well as examining the ovaries to diagnose polycystic ovary syndrome 

(6).  3D US has undergone clinical testing for the imaging of large organs (76, 98) 

and also as an alternative method to mammograms for imaging lesions and tumours 

of the breast  (99-102).   

 

The musculoskeletal system is one of the more difficult structures of the body to 

image with US as it is made up of a number of tissue components:  skin, 

subcutaneous fat, ligaments, tendons, muscles and bone.  All of these components 

have different acoustic properties which will affect how they are displayed in an US 

image, see discussion in section 2.3.1.  The advantage of a 3D US scan is that a 

greater amount of anatomy can be visualised making it easier to identify structures 

(88).  Studies looking at the detection and identification of muscle hernias and 

lesions have found 3D US to be as good as 2D US at evaluating these types of 

musculoskeletal injuries (26, 103).  For small lesions the scans provided by 3D US 

made identification easier and provided better visualisation of lesion boundaries.  In 

Chapter 7 3D US is investigated as a means of measuring muscle volume in vivo. 

 

The StradX freehand 3D US system has been trialled for carrying out examinations 

of the brachial plexus (104) and also the neonatal foot (105).  MR imaging can 

provide detailed views of the brachial plexus, however, careful positioning of a 2D 

US probe can also provide images of nerve and arterial structures allowing it to be 

used for image guided administration of anaesthesia for nerve blocking.  3D US 
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provided a map of the region around the brachial plexus.  The nerve and arterial 

structures could be identified and modelled along with the location of the first rib.  

3D US allowed scanning across the required region of the neck without any 

restriction and provided detailed models of the flattened shape of the brachial plexus 

which may be useful for diagnosing injuries and for radiotherapy planning.   

 

Abnormalities in development of the neonatal foot are normally diagnosed by 

physical assessment as conventional radiology is of limited use due to the un-ossified 

nature of infant bones (105).  Using StradX a 3D model of the deformed foot could 

be constructed which may provide a surgeon with a better understanding of the 

composition of the bones prior to surgical intervention.  Alternatively, when using 

conservative methods to treat a deformity, 3D US could provide a safe and easy way 

of monitoring the progress of treatment. 

 

Imaging of the intra-articular structure of the knee joint is possible with 3D US 

potentially offering a new imaging methodology in the field of rheumatology (106).  

The use of 3D US for imaging bone has been trialled in a few areas.  A system which 

incorporated a volume probe was used to image occurrences of hip dysplasia in 

infants (107).  Diagnosis was compared to conventional 2D US and it was found that 

3D US could provide views of the hip which were otherwise unobtainable using only 

2D US.  However, drawbacks were identified, the most notable being the time taken 

to acquire the scan as the patient must remain still for approximately five seconds to 

avoid degradation of the image data.  Also, construction of the data into a viewable 

3D dataset took up to four minutes, negating the real time benefits of US imaging.  It 

was concluded that 3D US had demonstrated potential for use in imaging dysplasia 

in the infant hip, though further development of the 3D US system was required. 

 

The feasibility of using 3D US to image bone lesions has previously been 

investigated (108).  In a study involving 40 patients 3D US scans were carried out on 

sites of confirmed bone or soft tissue lesions.  In 51% of cases the 3D US data 

enhanced the diagnostic value compared to conventional 2D US.  Additional findings 

from 3D US scans led to a change in planned treatment for ten patients.  Normally 
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radiography is used to determine the presence of a suspected bone lesion, but, 3D US 

was proposed as an alternative method.  

 

 

3.3. StradX 

StradX is a software package specifically designed for sequential freehand 3D US 

which runs on the Linux operating system (79).  The 3D US system comprised of an 

Ultrasound machine, an additional PC to run StradX and an external tracking device.  

The process of acquiring and displaying 3D US data using StradX is broken down 

into three separate stages.  First, the position and image data is acquired, then the 

data is then constructed into a 3D dataset, and finally the dataset is converted into an 

easily interpreted visual form.  It is in the second stage that StradX differs from other 

3D US software packages as it constructs the dataset without the use of a voxel array.  

Avoiding the use of a voxel array eliminates the problem of putting irregularly 

sampled data into a regular array as was discussed in section 3.2.  

 

StradX is a real time system as the process of calculating the position and orientation 

of the images and construction of the dataset is done as the data is received making it 

possible to display the dataset as it is constructed.  During scanning two acquisition 

processes are occurring simultaneously within StradX: image acquisition from the 

US machine and position data acquisition from the tracking device.  Acquired images 

and position data are both stored in circular buffers within the computers main 

memory.  Each B-scan image obtained is labelled with a time stamp and stored in 

sequence in one circular buffer.  Position readings are requested from the tracking 

device at a set rate and each time one is requested a time stamp is generated.  The 

time delay between position requests being issued and the reading being recorded is 

approximately constant and is calculated during the calibration process (79).  Adding 

this time offset to the position reading request time stamp gives the approximate time 

at which the reading was recorded.   
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The most recently acquired position reading is not simply assigned to the most 

recently acquired US image.  To ensure there is minimal error introduced into the 

dataset a more accurate approach is adopted.  The process of matching the correct 

position to a recorded B-scan image is achieved using the circular buffers in the 

computer memory.  One circular buffer contains the five most recently acquired B-

scan images while the other buffer contains the five most recently acquired position 

readings, see figure 3-3.  An age offset is built into the image sampling process 

meaning that the most recently obtained image is ignored; instead the most recently 

obtained image within the set age range of the sampling window is selected.  By 

ignoring the last recorded image and choosing a slightly older one, it is highly likely 

that there will be position readings available at time points either side of the sampled 

image.   Linear interpolation is used to determine the position of the sampled image 

from the position information available just before and just after the image was 

recorded.  To ensure an image is always available within the sampling window, the 

age range of the window is set to be approximately one and a half times that of the 

image sampling period.  The age offset of the sampling window is dependent on the 

type of tracking system used; different tracking systems have differing latencies.  

Latency is determined during the spatial calibration process which is discussed in 

section 3.3.1. 
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Figure 3-3:  Visual representation of the image sampling process used to match up image and 

position data correctly  (79). 

 

 

3.3.1. Calibration 

Two separate calibration processes must be carried out each time the 3D US system 

is switched on, Temporal Calibration and Spatial Calibration.   Temporal 

Calibration involves calculating the approximate latencies in the position sensor 

device and taking them into account during Spatial calibration if required.  Spatial 

Calibration involves determining the transformation relationships between the co-

ordinate systems of the US images, the tracking system and the real world.  The co-

ordinates of each pixel in the B-scan image are transformed into the co-ordinate 

frame of the tracking sensor using the calibration parameters.  These are then 

transformed into real world space using the tracking sensor readings.  The final part 

of the Spatial Calibration process involves an iterative algorithm to optimise the 

calibration parameters which determine the co-ordinate transform relationships.  The 

RMS error from this iterative process is returned at the end of the calibration and its 

size provides a guide as to the quality of the calibration.  An RMS error of less than 

0.06 cm is indicative of an accurate calibration (109).  Both calibration processes 

require the use of a single walled phantom in a water bath to obtain the series of US 
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images necessary to run the calibration algorithms.  Full details of the calibration 

process are given in appendix A.  It is the coordinate transform relationships 

determined during the calibration process which are used to position the recorded B-

scan image sequentially in the 3D dataset.  

 

 

3.3.2. Visualisation  

Two visualisation tools are immediately available in StradX once a scan is complete; 

Reslice and Panoramic imaging.   The immediate availability of these visualisation 

tools is down to the way in which StradX takes into account the full properties of the 

US images when constructing the 3D dataset.  Although a B-scan appears as a 2D 

image on the US machine (and within the display window in StradX) the US beam 

actually has a finite thickness of a few millimetres.  The most relevant data comes 

from the centre of the finite thickness of the image and this is what is shown on the 

screen.    By taking into account this extra dimension of the beam, StradX provides 

almost instant 3D visualisation of scan data.  Images are acquired at a sufficiently 

high frame rate during scanning so that when they are recorded, placed in the 3D 

dataset and the finite width of each B-scan is taken into account the series of images 

overlap.  The data from the centre of the B-scan is used first in the production of a 

continuous 3D dataset with any remaining gap between the adjacent images filled 

using equal amounts of image data from the finite thickness of both images.   

 

Reslice allows the operator to take a 2D slice through the 3D US dataset in any plane 

and orientation thus permitting views of the scanned object which may not normally 

be visible using ordinary 2D US.  When a Reslice is requested the point at which the 

Reslice plane intersects each B-scan in the 3D dataset forms a polygon surface 

through the width of that image.  The US greyscale intensity information from the 

polygon slice of the B-scan is transferred onto the slice plane.  Repeating this process 

for each B-scan that the Reslice plane intersects allows it to be tiled with polygons of 

greyscale intensity data, thus, producing the Reslice image.  Figure 3-4 shows an 

example Reslice image taken from a scan down the length of a calf muscle.  This 
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Reslice is taken in a plane parallel to the direction of scanning and provides an 

extended view of the calf muscle, a single image from an US probe would not be 

able to cover such a large field of view.   

 

 

 
Figure 3-4: Reslice image of the calf. 

 

 

Panoramic imaging can be used to provide a wide angled view of long structures by 

stitching together information from a series of B-scan images into one seamless 

panorama.  In order to do this the US images must have been recorded within the 

same plane, i.e. the probe is moved in a sideways motion capturing a band of images 

only one B-scan thick.  The information used to generate the Panoramic image 

comes from the centre of the finite width of the US images.  Image Registration is 

first carried out on the B-scan images to correct for small errors in position sensor 

readings and probe pressure fluctuations (110).  A rigid body transformation is then 

calculated using the position sensor readings obtained from the nth and neighbouring 
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n+1 US images.  This transform is used to map pixels present in the n+1 US image 

onto the co-ordinate system of the nth image so that both can be visualised seamlessly 

stitched together as one.  This process is repeated for the series of images making up 

the panoramic scan.  An example Panoramic image of the front of the neck is shown 

in figure 3-5. 

 

 

 
Figure 3-5:  Panoramic image obtained from a scan of the front of the neck.  Both lobes of the 

thyroid gland can be seen. 
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3.3.3. Surface Fitting, Manual Segmentation and Volume 

Measurements  

When using a standard 2D US machine, volume estimations are calculated by finding 

the best view of the object’s width and height and recording measurements before 

rotating the probe by 90° and measuring the object’s length.  Taking into 

consideration the approximate shape of the object these measurements can be used to 

estimate volume.  However, calculated volumes can be out by as much as 20% (98).  

When measuring the volume of an organ, for example, several correction factors are 

taken into account; these include the age and sex of the patient and the type of organ.  

By obtaining a 3D US scan of an organ it is possible to make an accurate volume 

measurements as its full shape can be observed.  If the organ or object of interest 

cannot be fully captured within one sweep of the US probe StradX has a Multiple 

Sweep function which allows multiple parallel scans to be stitched together into one 

3D dataset (111).    

 

Construction of a 3D model in StradX begins with Image Registration before objects 

of interest are segmented at regular intervals throughout the dataset.  Two methods of 

segmentation are available in StradX, manual segmentation carried out by hand and 

semi-automatic segmentation that requires both user input and as well as an 

automated algorithm.  Manual segmentation involves highlighting the object of 

interest on multiple B-scan images.  Normally, the first and last images which show 

the object are segmented along with a selection of images in between.  Semi-

automatic segmentation requires operator input to initially highlight the object using 

a pair of threshold controls.  Regions of the US images which have greyscale 

intensities within a set range, specified using two slider controls, are highlighted on 

screen as magenta in colour.  The interval at which the images are segmented is set 

by the operator before initiating the algorithm to carry out the automatic 

segmentation process.  The basis for the algorithm is that the structures of interest 

that have been highlighted magenta will have boundary contours plotted round them.  

Semi-automatic segmentation is most effective when there is good contrast between 

the intensity of the object and its surroundings, such as the foetus in the womb.   
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Once segmentation (manual or semi-automatic) is complete it is possible to obtain a 

volume measurement for the segmented region.  There are two ways in which StradX 

calculates volume, one method uses the Cubic Planimetry algorithm and can be 

carried out without first fitting a surface to the segmented data while the other 

method uses Shape-Based Interpolation and fits a surface to the segmented data 

before returning a volume. 

 

 

3.4. Setup of the Freehand Electromagnetic 3D US System 

This section describes the components and setup of the freehand EM 3D US system 

consisting of a Diasus US machine (Dynamic Imaging, Livingston) with two US 

probes suitable for musculoskeletal imaging (5-10 MHz and 8-16 MHz), a PC 

running the Linux operating system and StradX software (Medical Imaging Group, 

Engineering Department, Cambridge University), and a Flock of Birds (FOB) 

electromagnetic tracking system (Ascension Technology, USA).  Versions 7.2, 7.3 

and 7.4 of the StradX software were used during these investigations.   

 

The FOB is a pulsed Direct Current (DC) EM tracking system that is made up of 

three main components: a transmitter, a receiver and a control unit.  These are shown 

in figures 3-6 and 3-7.  A schematic diagram of the complete EM 3D US system is 

shown in figure 3-8. 
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Figure 3-6: Flock of Birds electromagnetic field transmitter (left), Flock of Birds control box 

(right). 

 

 

 
Figure 3-7: Flock of Birds receiver mounted on a 5-10 MHz Ultrasound probe. 
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Figure 3-8: Schematic diagram of the electromagnetic freehand 3D Ultrasound system. 

 

 

The transmitter unit generates a pulsed DC EM field extending out from the front 

half of the transmitter to a radius of 1.2 m.  The field has been evaluated by 

Ascension Technology as having a positional accuracy of 1.8 mm RMS for tracking 

between distances of 20.3-76.2 cm from the unit3.  No other details are given by the 

manufacturer as to the specification of the field.  The FOB receiver unit is attached to 

the US probe using a specialist mount purpose built to ensure the receiver unit is 

offset from the probe head, see figure 3-7, in order to minimise any interference from 

the electronics within the probe (112).  The receiver is capable of making up to one 

hundred and forty-four measurements of position and orientation per second when it 

is within the tracking field and this information is handled by the FOB control unit 

and passed to the PC using an RS232 interface.   

 

One advantage of the EM 3D US system is that tracking of the probe is not restricted 

to line-of-sight, i.e. the receiver unit does not have to remain within in direct view of 

                                                 
3 http://www.ascension-tech.com/realtime/RTflockofBIRDS.php 



Chapter 3: Electromagnetically Tracked Freehand Three Dimensional Ultrasound 

 63 

the transmitter unit during tracking.  However, there are recommendations for the 

positioning of the FOB transmitter which are restrictive.  In particular it is 

recommended that the transmitter unit is mounted on a wooden stand or platform at 

least 1 m from the floor and not near walls or the ceiling as they may contain 

unknown metal objects and electrical cabling that could interfere with the tracking 

system.  Plus, the presence of metallic objects or sources of other EM fields within or 

near to the tracking system could degrade the accuracy of the positional information.   

 

The Diasus US machine is designed for musculoskeletal use and has a standard PC 

base with an Ethernet network interface.  Image capture from the US machine is real 

time with the images being transferred from the Diasus US machine to the StradX 

software using the Ethernet connection.  The two US probes supplied were of 

frequencies 5-10 MHz and 8-16 MHz, specifications and recommended applications 

for the two probes are given in table 3-1. 

 

 

Probe 
Frequency 

(MHz) 

Available Imaging 
Depths  

(mm) 

Array Width 

(mm) 

Suitable 
Applications (not 
depth specific) 

5-10 30 

41 

61 

81 

102 

40 Shoulder 

Hip 

Knee 

Breast 

8-16 20 

30 

41 

61 

26 Elbow/Knee 

Wrist/Ankle 

Hand/Foot 

Breast 

Table 3-1: Diasus Ultrasound probe specifications. 
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3.4.1. System Arrangement 

An experimental approach was adopted to find the optimum location and 

arrangement for the FOB transmitter unit in order to avoid distortion of the EM 

tracking field.  Two outcome measures were defined as highlighting distortion and 

these were the RMS error for calibration and visual inspection of a test scan 

conducted after calibration.  StradX provides an Outline window to view a recorded 

3D US scan which shows the position of every US image within the 3D dataset as a 

white frame.  Figure 3-9 shows an example.  If there was distortion to the tracking 

field this would alter the positioning of the 2D US images warping the 3D dataset.   

 

 

 
Figure 3-9:  An example of the Outline View window in StradX.  The position of each B-scan 

image in the dataset is represented by an individual white frame (113). 

 

 

An RMS error of 0.06 cm was indicative of a good quality calibration.  A larger error 

could be a sign of poor calibration technique or a problem within the system such as 

distortion of the tracking field (109).  If a high RMS error was returned the 

calibration process was repeated.  If a similar result was then obtained a test scan 
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would be carried out of the flat bottom of the water bath (i.e. a single walled 

phantom) and the Outline view checked for signs of significant distortion that would 

indicate problems with the tracking field.  The Outline was also checked for low 

calibration errors to ensure there were no unexpected irregularities in the positioning 

of frames which may indicate a problem with the system setup or calibration 

technique. 

 

During the experimental investigations additional factors were identified that 

contributed towards achieving successful calibration and acceptable scanning: 

 

• A low sided water bath should be used to allow good angulations of the probe 

during calibration as it was this motion that was of particular importance 

when determining the coordinate transforms. 

• A 9% Glycerol solution in the water bath would give a more accurate 

calibration as the speed of sound in this solution was the same as the US 

pulse aiding impedance matching between the probe and the solution.   

• An acoustic mat in the bottom of the water bath provided a flat and highly 

reflecting surface to carry out calibration.  Roughening the surface of the 

acoustic mat provided better line definition within the calibration images. 

• A test scan should still be conducted and checked for irregularities even if a 

good RMS error was achieved at calibration  

 

It was recommended that the transmitter unit was mounted on a non-metallic stand to 

elevate it from the floor.  A wooden stand was ideal, however, the limited flexibility 

it would offer would have restricted the region where scanning could take place.  

Instead, a microphone stand was used because the flexible top section allowed the 

transmitter box to be easily manoeuvred into the best position.  To avoid distortion of 

the tracking field caused by metal in the microphone stand, the transmitter box was 

mounted on a wooden plate which was offset forward from the main body of the 

stand, this can be seen in figure 3-11.  
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An arrangement of the EM 3D US system was established which returned an RMS 

calibration error of 0.06 cm and showed no sign of visible distortion of the 3D 

dataset for the test scan, see figure 3-10.  The microphone stand was not used and the 

region for scanning was limited to the area immediately surrounding the water bath.  

This set up was ideal for scanning small objects in the water bath but was not 

suitable for general scanning use. 

 

 

 
Figure 3-10: Initial setup of EM 3D US system which enabled accurate EM tracking. 

 

 

The microphone stand was introduced to the setup in place of the chair and the 

Perspex box, used previously to elevate the transmitter, to assess the affect of the 

metal stand on the calibration.  The calibration error increased to 0.09 cm, however, 

there was no visible signs of distortion to a test scan.     

 

A proposed clinical setup to provide the means to conduct a wide variety of patient 

scans included a metal frame patient examination table.  This setup, shown in figure 

3-11, returned a RMS error for calibration of 0.97 cm.     
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Figure 3-11: Proposed setup of the EM 3D US system for clinical scanning. 

 

 

3.5. System Evaluation  

A series of phantom experiments were devised to evaluate the EM freehand system 

and determine its suitability for imaging the musculoskeletal system in a clinical 

environment. 

 

3.5.1. Probe Resolution  

3.5.1.1. Methods 

The resolution of the two probes (5-10 MHz and 8-16 MHz) was assessed to check 

that they could image objects with a diameter of the order of 1 mm.  This diameter 

was chosen so as to determine whether small changes in fracture gap size and callus 

growth would be detectable for the proposed clinical application of monitoring 

fracture repair.  To carry out these assessments a phantom object was created from a 

Perspex rod.  A series of ten grooves of known width were cut into it, the first was 10 

mm wide with each successive grove decreasing in diameter by 1 mm so that the last 

groove was 1 mm in diameter.  The Perspex rod was set into a small box and 

surrounded by tissue mimicking material (TMM).  TMM has the same speed of US 

propagation as the average speed of US in human tissue, 1540 m/s (32) and provided 



Chapter 3: Electromagnetically Tracked Freehand Three Dimensional Ultrasound 

 68 

impedance matching with the US probe.  Both the 5-10 MHz and the 8-16 MHz US 

probes were used to scan the rod.  A series of scans were conducted perpendicular to 

the length of the rod to obtain images showing the changing widths of the sets of 

grooves.   

 

 

3.5.1.2. Results 

Figure 3-12 shows the 2D US image of the smallest three grooves taken using the 5-

10 MHz probe.  Figure 3-13 shows the 2D US image of the smallest two grooves 

taken using the 8-16 MHz probe.  

 

 

Perspex Rod

Tissue Mimicking Material

1mm Groove

2mm Groove

3mm Groove

 

Figure 3-12: Ultrasound image recorded using the 5-10 MHz probe across the width of the three 

smallest grooves cut into the Perspex rod.  The lengths indicated show the width of the grooves 

and were measured using vernier callipers.  Depth scale of the image is 4 cm 
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Tissue Mimicking Material

Perspex Rod

2mm Groove 1mm Groove

 

Figure 3-13: Ultrasound image recorded using the 8-16 MHz probe across the width of the two 

smallest grooves cut into the Perspex rod. The lengths indicated show the width of the grooves 

and were measured using vernier callipers.  Depth scale of the image is 4 cm 

 

 

As can be seen from the two figures both US probes could image the 1 mm groove.  

Although, for both probe frequencies it was noted that refraction around the edges of 

the 1 mm groove made it appear narrower at the top; this was not the case for the 2 

mm groove.  Refraction may be a result of the difference in acoustic impedance 

between the Perspex rod and the TMM.   

 

 

3.5.2. FOB EM Tracking Field Assessment 

3.5.2.1. Methods 

To gain a better understanding of the FOB tracking system (i.e the shape, size, and 

strength of the pulsed DC field) an investigation was carried out to map the 

transmitted field by measuring its strength at different points.  The FOB technical 

guide state that the pulsed DC EM field extended out to 1.2 m in all directions 
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around the transmitter box and that the field had been verified as accurate for 

tracking between the region 20.3-76.2 cm from the front half of transmitter (114).  

No indication as to how the field was mapped or the strength of the field were given, 

it was only stated that when the receiver was further than 9 inches from the 

transmitter unit the pulsed DC field would be at maximum strength. 

 

During this investigation the setup shown in figure 3-10 was used as it had been 

previously established that it did not suffer interference from other EM field sources 

or metal objects.  Minor modifications were made to the setup the water bath was 

removed and the US probe was placed within the tracking field.  The distance 

between the transmitter and receiver was 53.4 cm, this was beyond the 9 inch 

separation to ensure the transmitter was operating at full power, if the transmitter and 

receiver are within 9 inches the strength of the transmitted field is reduced 

proportional to the separation of the receiver and transmitter. 

 

A Hall probe was used to measure field strength.  Before the FOB system was 

switched on the Hall probe was calibrated in the area where measurements were to 

be taken.  This allowed the size of the background EM field in the laboratory to be 

established and this was found to be 0.35 Gauss (G).  The field was sampled at 

regular intervals over a volume of 75000 cm3.  The centre of the transmitter unit was 

taken to be the origin of a coordinate system used for plotting the field.  Figure 3-14 

shows a side view diagram of the setup and region sampled, while figure 3-15 shows 

the plan view. 
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Figure 3-14: Side view diagram of the sample region for investigating the pulsed DC field. 

 

 

 
Figure 3-15: Plan view  diagram of the sample region for investigating the pulsed DC field. 
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3.5.2.2. Results 

Figure 3-16 shows the shape and strength of the field measured where red represents 

the strongest part and dark blue the weakest.  The results show that the strongest field 

was found at the surface of the transmitter box and that the field strength decayed 

rapidly across a short distance.  Field measurements made on the right hand side of 

the box were found to be slightly higher than those made on the left.  Further 

investigation around the right side of the setup, conducted when the transmitter was 

switched off, identified an additional EM field of approximately 1.2 G emanating 

from the floor which would be adding to the measured field from the box.  

Measurements of field strength at 50 cm from the transmitter were comparable in 

size to that of the measured background field.  No significant field could be detected 

beyond 50 cm from the transmitter.  At 30 cm from the transmitter only tiny 

fluctuations in the strength above the measured background could be detected.   

 

 

 

Figure 3-16: The measured EM field transmitted by the FOB system.  The centre of the 

transmitter box is located at (35, 35, 35).  
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3.5.3. Accuracy   

3.5.3.1. Methods 

Within the clinical environment there can be limited control over the close proximity 

of other equipment in examination rooms or being used in adjoining rooms.  In small 

rooms it may not be possible to avoid being close to walls where there may be 

enclosed metal structures and electrical cabling.  The EM 3D US system was 

assessed to determine how accurately the 3D datasets were being constructed in 

StradX and what effect the introduction of the microphone stand and patient 

examination table, as required for the clinical setup, would have on dataset 

construction.  There are three ways to test the accuracy of a 3D US system: 

 

1. Make repeat measurements of a point in space and check for variation in the 

coordinates. 

2. Use a pin phantom or an object of known dimensions and compare it with a 

measurement derived from a 3D US scan. 

3. Scan an object of known volume and compare its measured volume with the 

volume returned by the 3D US software.   

 

Any distortion to the positions of the US frames in the 3D dataset will be carried 

though to 3D models constructed and will also effect volume measurements.  Thus, 

the third method of assessing accuracy was chosen.   

 

The phantom was a small rectangular object made of rubber.  It could be scanned 

completely within one sweep of the 5-10 MHz US probe, was easy to construct into a 

3D model and its dimensions could be measured accurately using digital vernier 

callipers (RS, Corby, UK).  The volume of the phantom was calculated to be 14.24 ± 

0.04 ml for measurements obtained from a vernier callipers.  Four different scanning 

scenarios were used in the assessment: 

 

1. The same setup as shown previously in figure 3-10 was used as this 

arrangement appeared to be unaffected by additional metal objects or EM 
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fields.  This would give a direct comparison between the volume 

measurements returned by StradX and the actual volume of the phantom.  The 

RMS calibration error for this setup was 0.06 cm. 

2. The FOB transmitter was mounted on the microphone stand in place of the 

chair and Perspex box used previously, the rest of the setup remained 

unchanged.  This would indicate the extent of distortion to the tracking field 

caused by the stand.  This scenario had an RMS calibration error of 0.09 cm.   

3. The microphone stand was removed and a patient examination table added to 

the setup to determine what effect the metal frame of the table would have.   

The transmitter box was returned to its original position on the Perspex box 

on the chair.  Scenario 3 had an RMS calibration error of 0.107 cm.   

4. A proposed clinical setup using both the microphone stand and patient 

examination.  The calibration RMS error returned for was 0.137 cm.  

 

For each scenario the phantom was scanned five times in a water bath containing 9% 

Glycerol solution using the 5-10 MHz probe.   

 

One of the intended uses for the EM 3D US system was to scan patients with lower 

limb fractures who may have been treated using a metal fixation such as an IM nail 

or an Ilizarov frame.  In order to gauge the effect of the presence of metalware an 

Ilizarov external fixation frame was added to each scenario and the phantom was 

scanned a further five times.  In each case the Ilizarov frame was placed in the water 

bath surrounding the phantom, see figure 3-17, to mimic the clinical situation of the 

Ilizarov frame being fitted around a limb.    
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Figure 3-17: Ilizarov frame and phantom in the water bath. 

 

 

3.5.3.2. Results 

Figure 3-18 shows the mean difference of the 3D US and vernier callipers derived 

volumes of the phantom without the Ilizarov frame present.  Figure 3-19 shows the 

mean difference in volume measurements derived when the Ilizarov frame was 

present compared to the vernier calliper measured volume. 
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Figure 3-18: Mean 3D US derived volume minus the vernier calliper measured volume for the 

phantom scans without the Ilizarov frame present.  Error bars indicate 95% confidence 

intervals. 
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Figure 3-19: Mean 3D US derived volumes minus the vernier calliper measured volumes for the 

phantom scans with the Ilizarov frame present.  Error bars indicate 95% confidence intervals. 
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When taking into account the properties of the phantom it was expected that the 3D 

US scans would show a slight underestimation of volume.  The speed of sound in 

rubber is around 1600 m/s, compared to 1540 m/s in the Glycerol solution.  Rubber 

has a slightly lower acoustic impendence than the Glycerol solution resulting in only 

a small percentage (0.05%) of the US pulse being reflected at the solution - rubber 

boundary.  Despite the majority of the incident US pulse being transmitted into the 

phantom the high attenuation property of rubber caused most of the US pulse to be 

absorbed, resulting in the black appearance of the inside of the phantom.  Only the 

sides and top surface of the phantom were visible which is where the US pulse was 

reflected.  There was no visible bottom edge of the phantom; the reflection from the 

acoustic mat visible on either side was used as a guide to the position of its base for 

the segmentation process.   

 

The mean value for the volume of the phantom measured from the 3D models 

obtained in scenario 1 was 14.33 ± 0.61 ml.  This was within confidence intervals of 

the volume of the phantom measured using the vernier callipers and no obvious 

distortion of the model was visible.  Variation in size of the five models constructed 

was due to operator dependency in the segmentation of the data and slight 

angulations of the probe during scanning which lead to the ends of the phantom 

appearing in more than one US image.  

 

For scenario 2, the average volume of the phantom determined form 3D US was 

13.93 ± 0.74 ml which was an underestimation of the vernier calliper measured 

volume of 2.2%.  The 3D US measurements of the phantom varied between -6.25-

0.42% of the actual phantom volume.  These result showed agreement with the 

findings of King, that the introduction of additional metal into the near field scanning 

environment causes a decrease in the volume accuracy of models constructed from 

that data (86).  When inspecting the Outline view for this scan it was noted that the 

US frames appeared ‘squashed’ together along the long horizontal axis of the 

phantom.    
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It was expected that the volume underestimation would be greater in scenario 3 due 

to the presence of the metal frame of the patient examination table directly within the 

tracking field.  Instead, the volume of the phantom was overestimated at 14.60 ± 0.57 

ml.  On inspection of the Outline and the constructed models it was found that 

‘squashing’ together of US frames along one axis was still occurring.  However, 

frames were now also being displaced slightly upwards and outwards causing 

warping of the model.  The degree of warping can be seen when comparing figures 

3-20 and 3-21 which show the 3D models constructed from the scan data using 

StradX, both figures are shown oriented along the same axis.  The ‘squashing’ 

together of the US frames resulted in volume underestimation, but the upwards 

displacement of the frames compensated by increasing the distance between adjacent 

frames. 

 

 

 
Figure 3-20: 3D model constructed from a scan of scenario 1 without the Ilizarov frame present. 
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Figure 3-21: 3D model constructed from a scans of scenario 3 without the Ilizarov frame 

present.  This figure is orientated along the same horizontal axis as figure 3-20. 

 

 

A similar volume overestimation was observed in the models constructed from the 

scans from scenario 4.  Given the size of the calibration errors for scenarios 3 and 4 it 

would seem likely that the volume underestimation was still occurring.  However, 

the warping of the dataset was, in a negative way, compensating for this by causing a 

volume over estimation.   

 

Figure 3-19 shows the results of the phantom scans when the Ilizarov frame was 

present in the water bath.  Introducing the Ilizarov frame into scenarios 1 and 2 

affected the EM tracking field to such a degree that it caused underestimation of the 

phantom volume of between 12-23% in both cases.  In scenario 3 the volume 

underestimation was between 5-19% and for scenario 4 the presence of the frame 

caused an underestimation of between 13-20%.  Both the ‘squashing’ together and 

displacement upwards of the US frames were visible in the Outline view windows 

for all the scans.  

 

The results of the study by King showed a decrease in volume measurements as 

increasing amounts of metal were introduced to the near field environment of the 

tracking system (86).  This was not found to be the case in this investigation.  The 

calibration errors quoted for each setup gradually increased as was expected, 

however, the volume measurements of the phantom were overestimate for scenarios 
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3 and 4 (both with and without the Ilizarov frame present) rather than underestimated 

as found by King.     

 

 

3.5.4. Healthy Volunteer Study 

3.5.4.1. Methods 

In order to assess the clinical potential of 3D US for musculoskeletal imaging a 

healthy volunteer study was carried out.  The aim of this study was to image a 

section of the lower leg and construct 3D models of the surface of the tibia and 

surrounding soft tissues.  Fifteen healthy volunteers (9 males, 6 females, age range 

18-62 years) were recruited through informed consent; ethical approval for the study 

was given by Lothian Local Research Ethics Committee and Lothian Research and 

Development Management.  Each participant underwent two scans around the 

midpoint of the left shin with the 5-10 MHz probe.  This probe was chosen as it 

allowed the largest volume to be scanned with one sweep.  A silicon stand-off pad 

aided scanning by improving probe contact at the apex of the shin.  The clinical setup  

incorporating the patient examination table and microphone stand was used for 

scanning the volunteers.  

 

 

3.5.4.2. Results  

For each participant, the Outline view and series of recorded 2D US images were 

reviewed to identify problems that may effect model construction.  Eight of the  

thirty datasets were not suitable for model construction: six due to image artefacts 

and two due to poor image quality throughout the scan.  The artefacts that occurred 

were the result of loss of contact either through tilting of the probe or insufficient gel 

for coupling.  Due to the angle of the probe as it was moved across the apex of the 

tibia there were small discontinuities at this point in some of the models. 
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Figure 3-22 shows one of the 2D images recorded during a scan; each structure of 

interest that was segmented to build the 3D model has been labelled.  The black band 

at the top of the image was caused by the silicon stand off.  A 3D model showing the 

surface of the tibia is shown in figure 3-23 while a full 3D model of both bone and 

soft tissue is shown in figure 3-24.   

 

 

  
Figure 3-22: A 2D Ultrasound frame from a healthy volunteer scan, each anatomical feature of 

interest has been labelled.  The depth scale of the image is 3 cm. 
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Figure 3-23: 3D model of the surface of the tibia. 

 

 

 
Figure 3-24:  3D model of the surface of the tibia and surrounding soft tissue.  Surface of the 

tibia - cyan, tibialis anterior muscle - red, digitorum longus muscle - purple, subcutaneous layer 

–dark blue and the skin – green. 

 

 

3D models were fully rotatable in any orientation within StradX.  Any segmented 

section of the model could be removed or added depending on visualisation 

requirements.  The Reslice facility provided additional views of the anatomy which 
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may not otherwise have been possible with 2D US.  Figure 3-25 shows a reslice 

through a healthy volunteer scan; the triangular shape of the mid shaft tibia is visible. 

 

 

 
Figure 3-25: A Reslice through a scan dataset showing the triangular shape of the tibia and the 

surrounding soft tissues. 

 

 

3.6. Discussion 

The development of 3D US has overcome a number of the operator dependent 

limitations of 2D US (3).  The datasets constructed from 3D US scans provide an 

easier means of interpreting the scanned anatomy, views of the anatomy which 

would otherwise by unobtainable with US, and accurate length and volume 

measurements.  StradX offered the most accurate method of constructing 3D datasets 

and was chosen for use along with the FOB EM tracking system to form the EM 

freehand 3D US system.   
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EM tracking offered the best flexibility for freehand scanning as there were no 

restrictions on the range of motion that could be tracked.  This was ideal for 

musculoskeletal scanning as it would allow the operator to move the probe around 

the circumference of a limb unhindered.  For the intended clinical applications of 

monitoring fracture repair and measuring muscle volumes this was advantageous. 

However, the recommendations for the positioning of the FOB transmitter, to avoid 

distortion of the tracking field, were restrictive.   

 

Distortion to the tracking field was highlighted by the size of the calibration errors 

returned when trialling different equipment setups.  Through the use of a phantom 

object, the extent of distortion caused by the microphone stand and metal framed 

patient examination table, which were incorporated into the proposed clinical setup, 

revealed significant warping of tracking field.  This had a resultant effect on dataset 

construction and thus the accuracy of volume measurements.  Introducing the 

Ilizarov frame to the setup, to simulate a likely patient situation, worsened the 

distortion.  An investigation into the magnitude and shape of the tracking field was 

inconclusive.  The field plot obtained was very different from that described by the 

manufacturer and no field above that of the background could be detected beyond 50 

cm from the transmitter unit.   

 

Previous investigations of similar EM tracking systems by King (86) identified the 

effects of volume underestimation due to tracking field distortion but made no 

mention of the second warping effect noted here which resulted in volume 

overestimation.  In another study, it was found that the effects of EM fields and metal 

within the probe head itself caused no distortion to the tracking field and that the 

presence of the US machine had a negligible effect on calibration accuracy (87)  In 

early clinical scanning work carried out using the StradX system Treece et al. 

mounted the FOB transmitter on a stand with an arm that allowed it to be positioned 

centrally above the region, and facing, the area to be scanned (98).  The design 

ensured the tracking field was away from walls and ceilings and equipment which 

may be sources of other EM fields.  It is not stated what material the stand was made 
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of, a non metallic frame would be ideal, however, the weight of the transmitter unit 

would put considerable stress on the frame. 

 

Electromagnetic field tracking systems have been used successfully in 3D US 

research studies, although, details are not always given about the issues considered 

here (77, 95, 115).  Wooden examination tables have been suggested as a means of 

minimising distortion of the tracking field, but they do not offer the same flexibility 

for positioning patients (77, 87, 116).  Even if a non-metallic stand and wooden 

examination table were incorporated the problem of distortion caused by 

ferromagnetic material present in metalware used to stabilise fractures remains. 

 

Despite the problems of EM tracking the 3D US scans obtained from the healthy 

volunteer study provided views of the anatomy that would be unavailable with 

conventional 2D US or X-ray.  Scan data was available near real time for 

examination unlike with MR.  Overall, this study was successful in demonstrating 

the potential of 3D US for musculoskeletal imaging.  However, the results of the 

system evaluation ruled out the use of EM tracking for further clinical scanning as it 

did not provide a suitably accurate and reliable method of obtaining probe positions.  

To overcome the limitations encountered the use of an alternative optical tracking 

system is considered in Chapter 4. 
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4. Optically Tracked Freehand Three Dimensional 

Ultrasound 

 

 

4.1. Introduction 

Optical tracking systems do not suffer the same limitations of EM tracking systems, 

i.e. interference from the presence of metal objects or other EM fields within the 

scanning region.  In order to use an optical tracking system components of the 

previously used EM 3D US system had to be upgraded.  Alterations were made to 

the US machine to improve image capture and the 3D US software package was 

upgraded from StradX to StradWin.  This new system is referred to as the Optical 3D 

US system.  This Chapter introduces the StradWin software and covers the 

evaluation of the Optical 3D US system using a series of phantom based 

experiments.   

 

 

4.2. The Optical Freehand 3D Ultrasound System 

StradWin (MIG, Engineering Department, Cambridge University) is the freehand 3D 

US software designed to supersede StradX.  Both StradX and StradWin only support 

two specific optical tracking systems and these are the Ascension LaserBird and the 

Northern Digital Inc. (NDI) Polaris.  Technical specifications for the LaserBird quote 

a tracking accuracy of 0.70 mm RMS4 while specifications for the Polaris state a 

tracking accuracy of 0.35 mm RMS5, i.e. half that of the LaserBird.  In comparison, 

the FOB EM tracking device had an accuracy of only 1.8 mm RMS6.  Based on these 

                                                 
4 http://www.ascension-tech.com/products/laserbird2.pdf 
5 http://www.ndigital.com/medical/polarisoriginal-techspecs.php 
6 http://www.ascension-tech.com/realtime/RTflockofBIRDS.php 
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specifications and the need to obtain accurate length and volume measurements over 

a small scale the NDI Polaris system was selected for this study.   

 

The Polaris system consisted of the position sensor unit, figure 4-1, and the tool 

docking station, figure 4-2, and required a further tracking tool that is attached to the 

US probe.  The position sensor unit has two sensors each consisting of a central lens 

containing Infrared (IR) detectors that is surrounded by a ring of IR emitters.  The 

position sensor unit can act as both a transmitter and a receiver for optical tracking 

dependent on the type of tracking tool used.  Tracking tools that have a series of IR 

light emitting diodes (LED’s) built into them emit IR light that is detected by the 

lenses of the position sensor unit.  Triangulation of the detected IR light is used to 

establish the position and orientation of the tool and thus the US probe which it is 

mounted on.  This process is known as active tracking.  Alternatively, the ring of IR 

emitters on the position sensor unit can be used to flood a set volume of space with 

pulses of IR light.  In this case the tracking tool used will have a series of IR 

reflective marker spheres mounted on it.  The IR light reflected by the marker 

spheres that is detected by the lenses is used to triangulate the position of the tool and 

US probe.  This process is known as passive tracking.  The optical tracking unit has a 

set volume within which the position of the tracking tool can be accurately detected 

and this is referred to as the measurement volume.  To gain flexibility in the 

positioning of the measurement volume the tracking unit was mounted on a monopod 

stand which was easy to move and occupied minimal space. 
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Figure 4-1: The position sensing unit of the NDI Polaris optical tracking unit mounted on a 

monopod stand. 

 

 

 
Figure 4-2:  Tool docking system for the NDI Polaris optical tracking system. 
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StradWin requires active tracking.  The multi-faced active tracking tool 

recommended for freehand scanning by the MIG was the Adaptrax tool (Traxtal, 

Toronoto, Canada) and this is shown in figure 4-3 mounted on the 5-10 MHz US 

probe.  The Adaptrax tool has fifteen IR LED’s built into it in a configuration that 

allows the tool to be tracked with six degrees of freedom.  Mounting the Adaptrax 

tool directly onto the US probe allows the probe position to be tracked.  Specialised 

mounts were made for each of the US probes and the mount for the 5-10 MHz probe 

is visible in figure 4-3.  Both mounts consists of a split plastic collar where the two 

parts of the collar are fitted round the narrow top part of the probe before being 

secured in place by two fastening screws. 

 

 

 
Figure 4-3: Traxtal Adaptrax IR active tracking tool mounted on the 5-10 MHz Ultrasound 

probe. 
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To operate StradWin a PC with an NVIDIA G-FORCE graphics cards, increased 

memory capacity and a faster processor were used (Pentium 4, 3.60 GHz PC running 

Microsoft Windows XP).  StradWin does not accept an Ethernet connection as was 

used previously to obtain the images from the US machine.  Image acquisition can 

only be carried out using either video capture cards or by directly intercepting the 

raw Radio Frequency (RF) signal from within the Diasus machine.   

 

To conduct novel image analysis of recorded US data (see Chapter 6) it is necessary 

to obtain the images before they undergo unknown post-scan processing by the 

Diasus scanner.  This occurs before the images are displayed on the US machine.  

Video capture does not allow acquisition before post-scan processing as it captures 

the US images after they have undergone digital to analogue (DA) conversion 

required for screen on display. RF capture, on the other hand, provides a method of 

acquiring the images before they undergo the series of post-scan processing steps.  

Full details of the RF capture process are covered in section 4.3.1.  Figure 4-4 shows 

a schematic diagram of the Optical 3D US system while figure 4-5 shows the system 

setup for clinical scanning.   
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Figure 4-4: Schematic diagram of the Optical 3D Ultrasound system. 

 

 

 
Figure 4-5: The Optical 3D Ultrasound system set up for clinical use. 
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4.3. StradWin 

StradWin is heavily based on StradX but has the added advantage that it is 

compatible with both the Linux and Windows computer operating systems.  Versions 

3.1, 3.2, 3.3, 3.4, and 3.5 were used during these investigations.  StradWin uses the 

same image and position data acquisition processes as described for StradX in 

section 3.3.  Image and position data acquisition happens simultaneously, with 

position data being stored in one circular buffer within the computers memory and 

the image data being stored in another.  When using RF capture, there are preceding 

processes required to obtain the RF signal relating to one complete US image and 

then import that data into the computer’s circular memory buffer for use in dataset 

construction. 

 

 

4.3.1. RF Capture 

The required modifications to the Diasus were carried out by Dynamic Imaging to 

give access to the necessary RF signals after receive focusing and TGC have been 

applied but before log compression and envelope detection, see section 2.3.  A two 

channel digital acquisition board (CompuScope 14200-128M, Gage, USA), referred 

to as the Gage card, is used to sample the RF signals.      

 

Modification of the Diasus gave access to the four signals required by StradWin to 

conduct RF capture.  These were:  a once per frame sync signal (SC_SYNC),  a 

signal which is high when the RF data is valid (Tx_FIRE), the focused RF signal 

after TGC had been applied (RF_TGC) and finally the 66.67 MHz external clock 

signal from the Diasus.  RF capture is possible using only the first three signals if a 

50 MHz or 100 MHz signal sampling rate is being used.  However, the addition of 

the 66.67 MHz external clock rate allows the RF signal to be sampled in sync with 

the Diasus internal clock.  Sampling at this frequency has been found to reduce phase 

mismatch between sampled sections of the signal when it is reconstructed into an 

image (117) and so was adopted for this study.   
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Figure 4-6 illustrates how the acquired RF signal is converted into an RF vector 

which makes up one section of the final B-scan image.  The vector shown overlain 

on the section of the US image it makes up, this is indicated by the arrow in figure 4-

6, is made up from three separate segments of the RF signal in this case.  These 

segments arise as there were three points of focus used when conducting the US 

scan.  With a single point of focus the RF vector is made up from a single segment of 

the RF signal.  If multiple points of focus are used, the vector is made up from 

multiple segments of the RF signal where each segment is assumed by StradWin to 

be of increasing focal depth.  Best practice is to use a single point of focus as this 

removes the additional processing involved in stitching together multiple signal 

segments.   

 

 

 
Figure 4-6: The process of reconstructing the required RF signals to build one complete RF 

vector.  The arrow indicates one of the 127 RF vectors that make up one B-scan image (118). 
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B-scan images from both the 5-10 MHz and the 8-16 MHz probes are constructed 

from a series of 127 RF vectors.  During RF capture all the vectors are stored in 

sequential order on the Gage card to generate one complete US image and when the 

group of vectors is complete it is transferred across to the PC’s memory.  Each group 

of vectors making up one image has a time stamp associated with it which is used in 

the circular buffer for dataset construction.  The same process as described for 

StradX in section 3.3 is used to determine the correct position and orientation of the 

images by taking into account latencies in the position reading process.  This data is 

then used to sequentially orientate the US images in a volume of free space governed 

by the real world co-ordinate system to produce a 3D dataset.   

 

To convert the RF data into a series of B-scan images for display in StradWin 

requires the use of Probe Configuration Files.  These files contain details about the 

size, frequency and points of focus for the probe used during scanning as well as the 

number and sizes of the vectors which make up an US image.  Further to this, they 

contain details of the sampling rate used to collect the RF data and the filters which 

should be applied to it in order to convert it into B-scan image format.  Each US 

probe requires a separate Probe Configuration File.  The files used for the 5-10 MHz 

and 8-16 MHz probes were supplied by Dr Graham Treece of the MIG.   

 

 

4.3.2. Calibration  

The calibration process for StradWin is very similar to that of StradX.  The same 

Spatial Calibration process, with a predefined set of probe movements to record a 

series of US images of a flat surface within a water bath, is used to determine the 

transform relationships between the co-ordinate systems of the optical tracking unit, 

the US images and the real world.  As part of the calibration process the appropriate 

probe frequency and corresponding Probe Configuration File must be selected in the 

Image Source Configuration menu in StradWin in order to convert the RF vectors 

into US images. In addition to the RMS error returned from the calibration process as 
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an indicator of the quality of the calibration carried out, it is also possible to verify a 

calibration using a tracked pointer.  Full details of the calibration process and the 

tracked pointer verification process are provided in appendix B.   

 

With StradWin it is possible to carry out a calibration for a particular probe 

frequency, depth setting and point of focus, and to save the result and settings as a 

calibration template file.  This template can then be reloaded at a later date for 

scanning resetting the parameters of the 3D US system to those resulting from the 

original calibration.  The advantage of templates is that they remove the need to 

calibrate the system each time it is switched on, a template file can be loaded instead 

reducing the time to setup the system for scanning.  When using calibration 

templates there is the restriction that the optical tracking tool must remain, or be re-

mounted, in the same position and orientation on the US probe as when the 

calibration was originally carried out.  Also, the settings of depth and point of focus 

must be the same as when the calibration was originally conducted.  Failure to do 

this will result in errors in position tracking and in the reconstruction of the RF 

vectors into B-scan images.   

 

Thirty calibration templates were created, fifteen for each of the two US probes in 

order to give a variety of depths and point of focus settings and allow quick change 

over between probe types and settings.  Each template was named according to the 

probe frequency, depth and point of focus setting.  The 5-10 MHz probe was 

designated T and the 8-16 MHz probe was designated U.  For example, the 

calibration template for the 5-10 MHz probe with a depth setting of 81 mm and point 

of focus of 74 mm has been named T8174.  For the 8-16 MHz probe a template with 

a depth setting of 41 mm and point of focus of 17 mm was named U4117.  Appendix 

C contains details of the thirty calibration templates created.  Calibration templates 

can be kept long term, however, they must be periodically checked using the tracked 

pointer verification to ensure they are still consistent and accurate.   
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4.3.2.1. Visualisation  

The 3D dataset can be viewed in a number of ways.  The Reslice, Outline and 

Panorama displays described for StradX have been incorporated into StradWin.  

Additional display options include:  Ortho, Isocentre and RF Oscilloscope.  The 

Ortho display provides two orthogonal Reslice views through the 3D dataset and is 

centred on the 2D US slice which is being viewed when the option is selected.  

Isocentre displays a Reslice image aligned with a predefined external co-ordinate 

system.  The RF Oscilloscope feature enables the operator to examine the RF signals 

for the series of RF vectors making up each B-scan image.  Further details about 

these display methods can be found in the StradWin user guide7. 

 

3D models and volume measurements are obtained by manually segmenting objects 

of interest at small intervals throughout the dataset.  StradWin fits a surface to the set 

of contours and returns a volume measurement.  As well as being able to see the 

region segmented on the selected 2D US images, the surface fitting process generates 

dashed line contours showing the interpolated surface on all intervening images.  

Displaying these additional contours allows the operator to judge if further 

segmentations are required to enhance the surface fit or 3D model.  Additional 

measurement can be made in StradWin using Landmarks which can be placed on B-

scan, Panoramic or Reslice images to measures lengths and angles.    

 

Within StradX, the Image Registration tool could be used to correct for small 

variations in the position sensor readings and contact pressure between the skin and 

the US transducer.  StradWin offers a similar tool called Pressure, however, it is only 

applicable to data which has been recorded in B-scan format and not RF.  The format 

in which data is recorded is one of the specifications which must be set before 

recording a scan and will have been specified when creating a calibration template.  

The RF format has the advantage that the way in which the image information is 

displayed post-scan can be altered.  It can be displayed in envelope format which is 

the conventional B-scan display of log-weighted RF signal envelope, phase format 

which displays the phase of the RF signal from 0º to 360º mapped onto a black and 

                                                 
7 http://mi.eng.cam.ac.uk/~rwp/stradwin/ 
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white image, or strain format where two adjacent images are compared in order to 

highlight areas in the image which are harder or softer than the surrounding tissues.  

 

 

4.4. System Evaluation 

The system was evaluated using a series of phantom based experiments.  The first 

experiment was designed to assess accuracy and to establish an error margin for 

distance measurements made from the 3D US data.  Further experiments investigated 

the effect of remounting the tracking tool on calibration accuracy, the process of 

constructing the 3D datasets and also the ability of StradWin to model small fracture 

gaps.   

 

4.4.1. Accuracy Assessment 

4.4.1.1. Methods  

In section 3.5.3, three methods of assessing the accuracy of a 3D US system were 

described.  To evaluate the accuracy of the optical tracking system and the 

calibration templates created, the method of comparing a known distance measured 

directly from a phantom against the same measurement obtained from a scan of that 

phantom was used.  This indicated how accurately the 3D datasets were being 

constructed as well as established the error value in distance measurements. 

 

Each of the calibration templates created for this project had an RMS error of less 

than 0.06 cm indicating that the system as a whole had been accurately calibrated for 

each templates.  The quality of each template was further verified using the tracked 

pointer method described in appendix B.  No problems were identified with any of 

the calibration templates.  

 

A pin phantom was constructed to provide a separation measurement and allow the 

precision and accuracy to be determined.  This phantom consisted of a rectangular 
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rubber base with two flat topped pins secured collinearly within the base, see figure 

4-7.  The separation between the centres of the two pin heads was measured five 

times using a vernier callipers and the mean separation was found to be 19.72 ± 0.04 

mm.  The pin phantom was placed in a water bath containing 9% glycerol solution 

for 3D US scans.  Five scans of the phantom were recorded for each of the 

calibration templates created for the two US probes.  Separation between the central 

points of the pins was measured in StradWin and the mean values calculated for each 

of templates.   

 

 

 
Figure 4-7: (A) Side view and (B) plan view of the pin phantom. 

 

 

4.4.1.2. Results 

The flat tops of the pins took on a mushroom type appearance in the 2D US image.  

Figure 4-8 shows a Reslice image obtained taken through the midline of the 

phantom, parallel to the direction of scanning.  Moving the US probe over the 

phantom at a slow scanning speed meant that more than one US image was recorded 

over the site of each pin.  The width of each US image used to construct one of the 

datasets can be seen in the Reslice shown in figure 4-8, with the finite width of the 

three US frames obtained over the two pin sites causing the pins to appear smeared.  

The US images which corresponded to the centre of the pin heads were the ones 

where the reflection from the pin was brightest.  When reviewing the series of 2D US 
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images from a scan in StradWin only the information from the centre of the US beam 

width is displayed.   Having identified these frames the separation between the two 

pin heads was measured on the 2D US images, rather than on the Reslice image, 

using the Landmarks tool in StradWin.  Making the measurements on the 2D US 

images allowed the Landmarks to be positioned more accurately.   

 

 

 
Figure 4-8: Reslice image taken through the pin phantom parallel to the direction of the scan.  

The arrow indicates the separation measured. 

 

 

Figure 4-9 shows the results from the phantom scans with the calibration templates 

for the 5-10 MHz probe.  For each of the templates the mean measurement from 3D 

US minus the calliper measurement of pin separation are plotted along with error 

bars indicating the 95% confidence intervals.   
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Figure 4-9: Results for pin phantom scans using the 5-10 MHz calibration templates.  The mean 

3D US minus the vernier calliper measured separations are plotted.  The error bars indicate the 

95% confidence intervals. 

 

 

Each template for the 5-10 MHz probe had an RMS calibration error of less than 

0.04 cm.  Comparisons were drawn between the magnitude of the RMS errors for 

each calibration template and the magnitude of the corresponding pin phantom scan 

result.  No obvious link was found, indicating that all the calibration templates 

created for the 5-10 MHz US probe were accurate and reliable for use.     

 

All 3D US measurements were within ±0.25 mm of the measured separation of the 

pins obtained using the vernier callipers.  Variation between the 3D US derived 

separations compared with the vernier calliper measurement was the result of three 

main factors.  The speed at which the probe was scanned across the phantom, the rate 

at which StradWin acquired the US frames and the identification of measurement 

points by the operator.  The speed of scanning and frame acquisition rate affected 

how many images of the phantom were captured during a scan.  Ideally, when 
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measuring the separation between the two pins an image should be captured over the 

central point of each pin.  However, the finite width of the US beam means that the 

image of the pin appeared smeared throughout the width of an US image.  To decide 

upon the centre points of the two pins, both the series of 2D images and Reslice 

images were examined.  In the 2D images the centre of the pin head was taken as the 

brightest reflection, however, depending on the number of images recorded this only 

indicated the image closest to the centre of the pin.  By reviewing both the 2D US 

images and the Reslice image, the operator dependency for image selection should 

have been minimised.  These results showed that for the 5-10 MHz calibration 

templates the Optical 3D US system could return distance measurements to within 

±0.25 mm.   

 

Results of the series of scans of the pin phantom using the 8-16 MHz probe and 

calibration templates are plotted on the figure 4-10.  Comparing between figures 4-9 

and 4-10 it was observed that the pin separation measurement results for the 8-16 

MHz calibration templates were of higher accuracy than for those for the 5-10 MHz 

templates.  All the calibration templates gave separation measurements that were 

within an error bound of ±0.1 mm.   
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Figure 4-10: Results for the pin phantom scans using the 8-16 MHz calibration templates.  The 

mean 3D US minus the vernier calliper measured separations are plotted.  The error bars 

indicate the 95% confidence intervals. 

 

 

The smaller error bounds may result from more detailed datasets being obtained.  

This could be due to the operator scanning at a slower rate despite trying to maintain 

a consistent scanning speed through out (frame acquisition rate was kept the 

consistent).  It is also likely that the finite beam width of the 8-16 MHz probe is 

smaller than that of the 5-10 MHz probe which would have contributed towards more 

detailed 3D datasets.  As the separation measurements were obtained from the 2D 

US images, the beam width of each US image used to make up the 3D dataset 

becomes a source of error.  The more overlap between adjacent US images in the 

dataset, the less of the beam width of each image is required to build the dataset and 

the smaller this error will be.  Comparing between the size of the RMS calibration 

errors and the results for the separation measurements showed no linked trend for the 

8-16 MHz probe.  It was concluded that the 8-16 MHz calibration templates were 

accurate and reliable for use. 
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If the system was calibrated improperly or there were unknown sources of error 

present it would be expected that the pin separation measurements from the scans 

results would have had much larger errors.  It was concluded that both probes could 

return separation measurements to within an error bound of ±0.25 mm, with the main 

factors affecting the accuracy being the scanning speed and the frame acquisition 

rate. 

 

 

4.4.2. Remounting the Tracking Tool  

4.4.2.1. Methods 

The MIG assessed whether removing and remounting the tracking tool, as would be 

done when changing from one US probe to another, would affect calibration 

accuracy (119).  To test this they used a phantom object containing a series of beads 

set in predetermined locations.  The phantom was scanned before and after the probe 

was removed and remounted. An iterative process was applied to the images to 

determine the locations of the spheres in comparison to there actual measured 

locations, this returned an RMS error similar to that for the calibration process.    

Before removing the tracking tool the RMS error returned for locating the beads was 

0.26 mm, after removing and remounting the tracking tool it was 0.35 mm.  It was 

concluded that remounting the tracking tool did cause a slight degradation to the 

accuracy of the 3D US system but given the high overall degree of accuracy this was 

not a significant affect.   

 

To confirm this result for the Optical 3D US system a further series of scans of the 

previously used pin phantom were conducted.  A random selection of calibration 

templates were sampled to check the effect of remounting the tracking tool at 

different depth settings and points of focus.  For the 5-10 MHz probe templates 

T8174, T6141 and T4118 were used and for the 8-16 MHz probe calibration 

templates U6123, U3015 and U2008 were used (see Appendix C).  The tracking tool 

was removed and remounted in the same position on the US probe before each scan 

of the phantom was carried out.  Five scans of the phantom were conducted for each 
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template and the pin separations were measured in StradWin and compared to the 

vernier calliper measurement.  

 

 

4.4.2.2. Results 

The mean pin separation measurements determined from the 3D US scans minus the 

vernier callpier measured separation are plotted in figure 4-11, the error bars indicate 

the 95% confidence intervals.  Remounting the tracking tool on the probe appeared 

to have no significant affect on the overall accuracy of the calibration templates.  The 

Optical 3D US system was still capable of making separation measurements to 

within an error bound of ±0.25 mm.   

   

 

 
Figure 4-11: Results from pin phantom scans to assess the affect of remounting the tracking 

tool.  Mean 3DUS minus the  vernier calliper measured separations are plotted.  The error bars 

indicate the 95% confidence intervals. 
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4.4.3. Image Acquisition Rate 

4.4.3.1. Methods 

Assessment of the optical tracking system using the pin phantom identified that 

scanning speed and frame acquisition rate effected how many US images were 

captured during a scan.  This influences the level of detail contained within the 3D 

dataset and effects the accuracy of separation measurements.  To obtain a continuous 

and detailed 3D dataset the US images should be recorded using a frame acquisition 

rate and scanning speed that will cause the finite width of each US image to overlap 

when placed in the dataset.  When this occurs the information from the centre of the 

of the US image width is used first to fill in the dataset with the gaps between frames 

being filled in equally using the remaining US image beam width from adjacent 

images.  The more adjacent images over lap the less of the beam width has to be 

taken into account giving more image detail and reducing the error on the length 

measurements caused by beam width.   

 

Within StradWin there are a six pre-determined frame rates at which the US images 

can be captured: 5 fps, 10 fps, 15 fps, 20 fps, 25 fps and full speed (fps = frames per 

second), where full speed gives the maximum available frame rate which, depending 

on the demands on the PC’s processor, may be above the fastest set rate of 25 fps.  

However, running the live image display in StradWin (this allows the US images 

captured to be viewed during scanning) whilst recording a 3D US scan causes extra 

demands on the processor reducing the rate at which frames are recorded.  For 

example, a frame rate of 25 fps may be selected but a frame rate varying between 11-

20 fps is actually achieved.   

 

Speed of scanning is an operator dependent variable.  To determine the best 

combinations of scanning speed and frame rate that will provide detailed 3D US 

datasets, a series of test scans of a phantom object were carried out.  The phantom 

was a metal plate with a circular hole in its centre, a diagram of which shown in 

figure 4-12.  The metal plate was chosen as its surface was easily identifiable on US 

images and its design offered both a simple separation measurement in the form of 
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the diameter of the plate, and a more complex measure of the diameter of the hole.  

The diameter of the plate was termed measurement (1) and the diameter of the hole 

was measurement (2).  Using the vernier callipers measurement (1) was determined 

to be 90 ± 0.04 mm and measurement (2) was 50 ± 0.04 mm.  The metal plate was 

placed in a water bath containing 9% Glycerol solution for scanning.   

 

 

 
Figure 4-12: Diagram of the metal phantom used to determine the optimum scanning speed and 

frame rate to obtain detailed 3D US datasets. 

 

 

Three different scanning speeds were established by the operator:  ‘fast’; ‘normal’ 

and ‘slow’.  The phantom was scanned at each speed five times to obtain average 

scanning speeds, a ‘fast’ scan was 1.20 ± 0.04 s, a ‘normal’ scan was 6.30  ± 0.31 s 

and a ‘slow’ scan took 12.91 ± 0.55 s.  For each of the six frame rates, five phantom 

scans were conducted at each of the three scanning speeds and the mean separation 

measurements calculated.  The same calibration template was used throughout the 

series of scans, template U3015. 

 

Measurements (1) and (2) were made from the 3D US scans using the Landmarks 

tool in StradWin.  The points between which to make measurements (1) and (2) were 
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identified by reviewing both the 2D US images and the Reslice image from each 

scan.   Measurement (1) was made between the centres of the first and last US 

images containing a complete echo from the surface of the metal plate.  

Measurement (2) was made between the centre of the first US image indicating the 

hole to the centre of the last image indicating the hole.  The hole appeared gradually 

on the scans starting off as a small dip in the centre of the reflection from the surface 

of the plate which quickly increased in width and depth until it filled the full view of 

the probe.  As the other side of the hole was reached this appearance was reversed.     

 

4.4.3.2. Results 

The results of measurement (1) determined from the mean 3D US scans 

measurements minus the calliper measured separation are shown in figure 4-13.  

Comparative results for measurement (2) are presented in figure 4-14.  Table 4-1 

provides the mean separation measurement results and details of which combination 

of scanning speed and frame rate relates to the scan numbers for both graphs. 
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Scan Frame 

Rate 

(fps) 

Scan 

Speed 
3D US 

Measurement 

1 (mm) 

Standard 

Deviation 

(mm) 

3D US 

Measurement 

2 (mm) 

Standard 

Deviation 

(mm) 

1 5 Fast - - - - 

2 10 Fast - - - - 

3 15 Fast 85.87 2.13 46.65 0.85 

4 20 Fast 84.23 1.01 46.09 1.37 

5 25 Fast 85.2 2.51 - - 

6 Full 

Speed 

Fast 

84.65 1.49 48.02 1.76 

7 5 Normal  85.46 2.9 47.71 1.55 

8 10 Normal  88.49 1.41 47.97 0.98 

9 15 Normal  89.28 0.38 49.94 0.44 

10 20 Normal  88.26 0.97 50.06 0.59 

11 25 Normal  88.84 0.87 50.11 0.45 

12 Full 

Speed 

Normal  

88.09 0.68 50.12 0.66 

13 5 Slow 87.64 1.52 49.64 0.62 

14 10 Slow 88.03 0.63 49.64 0.68 

15 15 Slow 89.66 0.43 50.16 0.32 

16 20 Slow 89.31 0.73 50.25 0.38 

17 25 Slow 89.27 0.44 50.15 0.24 

18 Full 

Speed 

Slow 

88.71 0.27 50.37 0.43 

Table 4-1: Details of frame rate and scanning speed combinations and the results and errors for 

measurements (1) and (2).   
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Figure 4-13: The results for measurement (1).  Mean 3D US minus the vernier calliper 

measured separation for various frame rate and scanning speed combinations, the error bars 

indicate the 95% confidence intervals. 
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Figure 4-14: The results for measurement (2).  Mean 3D US – veriner rule measured separation 

for various frame rate and scanning speed combinations, the error bars indicate the 95% 

confidence intervals. 
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At the slower frame rates of 5 fps and 10 fps it was not possible to obtain sufficient 

images of the phantom when using the ‘fast’ scanning speed to make either 

measurements.  Even at faster frame rates of 15 fps and above it was difficult to 

obtain scans where the datasets contained enough detail to make measurements.  

Figure 4-15 shows the Reslice images acquired using the 15 fps frame rate and the 

‘fast’ scanning speed.  Each Reslice was obtained through the centre of the dataset 

parallel to the direction of scanning.  The construction of the dataset using the beam 

width of each US images can be clearly seen.  When there were no adjacent or 

overlapping frames the full width of the US image was displayed.  In scan 1, the 

dataset was complete and each US image overlaps the previous image. For the other 

four Reslice images there were gaps in the datasets and in many places the full beam 

width of the US frames had been used when constructing the dataset.  Despite this, 

the speed of scanning did not allow enough US images to be recorded to produce a 

continuous dataset.  From this series of 3D US scans measurement (1) could be 

determined from all the dataset, however, only datasets one contained points between 

which to make measurement (2).  For comparison, figure 4-16 shows the Reslice 

images for the scans of the phantom using a frame rate of 25 fps at the ‘normal’ 

scanning speed.  For that combination all of the 3D datasets were complete and the 

degree of overlap between adjacent images meant that considerably less information 

was required from the beam width of each US image to construct the datasets.  
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Figure 4-15: Reslice images from the five scans of the phantom at 15 fps for the ‘fast’ scanning 

speed.  Reslices were taken through the middle of the datasets parallel to the direction of 

scanning. 
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Figure 4-16: Reslice images from the five scans of the phantom at 25 fps for the ‘normal’ 

scanning speed.  Reslices were taken through the middle of the datasets parallel to the direction 

of scanning. 
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From both the results shown on figure 4-15 and 4-16 and visual examination of the 

Reslice images in figure 4-15 it was clear that the ‘fast’ scan speed, especially at 

lower frame rates, was not suitable for detailed scanning.  Also, the spread of results 

for frame rates 5 fps and 10 fps indicated that neither rate, regardless of scanning 

speed, was suitable for use.   

 

The frame rate and scan speed combination of 15 fps ‘slow’ gave the best results for 

measurement (1) and the frame rate and scan speed combinations of 20 fps ‘slow’ 

gave the best results for measurement (2).  The frame acquisition rate did not stay 

steady during scanning but varied dependent on the available processor power of the 

PC available during the scan.  For the frame rate of 15 fps, found to give the best 

results for measurement (1), it was recommended that scanning be conducted at a 

higher frame rate to limit the occurrence of the frame rate dropping below 15 fps. 

 

 

4.4.4. Probe Resolution Assessment 

4.4.4.1. Methods 

Previous assessment of the resolution of the US probes, using the Perspex rod 

phantom, had shown both to be able to resolve objects down to 1 mm in width, see 

section 3.5.1.  A second set of probe resolution assessments were carried out to build 

on these results using a phantom that offered a closer model to real life.  This 

phantom allowed a sub-millimetre wide fracture gaps to be created and could also 

simulate a crack in the bone.  The phantom was constructed from a SawBones Tibia 

(SawBones Worldwide) which had been cut in two at the mid-shaft to simulate a 

fracture.  The two sections were reunited using a unilateral external fixator (Orthofix) 

as shown figure 4-17.  As well as examining the 2D US images of the simulated 

fractures recorded in StradWin, 3D models would be constructed using StradWin to 

establish if the small simulated fracture gaps could be adequately modelled using the 

segmentation process or would poor resolution render them invisible in the 3D 

models.     
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Figure 4-17: Fracture gap phantom constructed from a SawBones tibia and an Orthofix 

external fixator.  The three points at which the width of the simulated fracture gap was 

measured are indicated. 

 

 

The fixator was attached to the bone sections in a way that ensured one of the flat 

faces of the tibia was presented uppermost for scanning when the phantom was 

placed in the water bath.  By making small adjustments to the external fixator it was 

possible to change the separation between bone ends to simulate fracture gaps of 

varying size.  The process of sawing the bone in half to create the fracture resulted in 

a small section of the bone being lost meaning that when the bone ends were brought 

back together they were no longer a perfect fit and there was a visible step in the 

surface of the bone.  This also meant that any gap simulated was not completely 

uniform in width.  To overcome this problem the width of any simulated fracture gap 

was measured at three points as indicated in figure 4-17.  Four different scenarios 

were simulated using the phantom.   
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1. Bone ends pushed together to simulate a crack in the bone 

2. A fracture gap of less than 1 mm 

3. A fracture gap of approximately 2 mm 

4. A fracture gap of approximately 3 mm 

 

When setting the size of the fracture gap the bone ends were moved into place and 

the external fixator tightened before a the vernier calliper was used to measure the 

width of the simulated gap at the three points across the face of the tibia.  Table 4-2 

gives the details of the fracture gap measurements determined using the callipers.  

The phantom was placed in a water bath containing 9% Glycerol solution and was 

scanned using both US probes for each scenario.  The probe was held a short 

distance above the bone surface, centred over and perpendicular to, the simulated 

fracture and then swept over the bone.   

 

 

Scenario Measurement Site Gap Measurement (mm) 

1 1 0±0.02 

 2 0±0.02 

 3 0±0.02 

2 1 0.79±0.02 

 2 0.8±0.02 

 3 0.85±0.02 

3 1 1.96±0.02 

 2 1.82±0.02 

 3 1.74±0.02 

4 1 3.13±0.02 

 2 3.06±0.02 

 3 2.93±0.02 

Table 4-2:  Details of each fracture gap scenario set using the SawBones phantom.  

Measurements of the gap were made using the vernier callipers. 
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4.4.4.2. Results 

A 3D model of the phantom was constructed in StradWin for each scan and an US 

image extracted from each dataset to show the appearance of the fracture gap.  Figure 

4-18 shows the models and images obtained for scenario 1. 

 

 

 
Figure 4-18: Scenario 1, no gap.  (A) 3D model and (B) 2D US image from the 5-10 MHz scan.  

(C) 3D model and (D) 2D US image from the 8-16 MHz scan.  The arrows indicate the location 

of the gap. 
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In the 5-10 MHz scan of scenario 1 a small discontinuity was visible in the 2D US 

image figure 4-18(A) but was not evident in the 3D US model, figure 4-18(B).  

Similarly a small discontinuity could be seen in the smooth surface of the phantom 

obtained with the 8-16 MHz probe, figure 4-18(D) indicating the presence of the 

crack, however, was not visible in the 3D model, figure 4-18(C). 

 

 

 
Figure 4-19: Scenario 2, a gap of less than 1 mm.  (A) 3D model and (B) 2D US image from the 

5-10 MHz scan.  (C) 3D model and (D) 2D US image from the 8-16 MHz scan.  The arrows 

indicate the location of the gap.  
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In scenario 2 a fracture gap of approximately 0.8 mm was simulated.  This gap was 

visible on both the 2D US images and 3D models, see figure 4-19.  The 8-16 MHz 

2D US image of the gap gave a clearer view of the width of the gap than the 5-10 

MHz scan.  The cause in the difference in appearance of the gap is likely to be down 

to angualtion of the US probe during scanning.  One of the bone ends appears to be 

elevated relative to the other, see figure 4-19(B) causing refraction of the US beam 

around the elevated edge.   

 

 

 
Figure 4-20: Scenario 3, a gap of 2 mm.  (A) 3D model and (B) 2D US image from the 5-10 MHz 

scan.  (C) 3D model and (D) 2D US image from the 8-16 MHz scan.  The arrows indicate the 

location of the gap.  
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A fracture gap of approximately 2 mm in width was simulated for scenario 3.  In the 

5-10 MHz 2D US image, figure 4-20(B), the fracture gap was clearly visible.  In the 

2D US image from the 8-16 MHz scan, figure 4-20(D) the surface reflection from the 

SawBone protruded into the gap making it appear smaller than it actually was, this 

may have been due to refraction of the US beam at the edges of the gap.  

 

 

 
Figure 4-21: Scenario 4, a gap of 3 mm.  (A) 3D model and (B) 2D US image from the 5-10 MHz 

scan.  (C) 3D model and (D) 2D US image from the 8-16 MHz scan.  The arrows indicate the 

location of the gap. 
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The final scenario simulated a fracture gap of approximately 3 mm in width.  The 

protrusion of the surface reflection into the gap was again seen in the 8-16 MHz 

scan, figure 4-21, and the corresponding 3D model appeared narrower than that of 

the 5-10 MHz scan.  Refraction and angulation of the US probe during scanning 

remain likely causes for the difference in size of the gap seen.  The difference in 

acoustic properties of the phantom compared to the Glycerol solution will have been 

a factor. 

 

 

4.5. Discussion 

The Polaris optical tracking unit offered a higher degree of positional accuracy for 

tracking objects than the previously used FOB EM system.  Furthermore, the optical 

tracking system did not suffer from interference when used in close proximity to EM 

field sources and metal objects.  Capturing the image data in raw RF format meant  

that the 2D US images underwent less processing before being displayed in StradWin 

and would also be suitable for later use in novel image processing and analysis 

techniques.   

 

One of the major advantages of the StradWin software was the ability to create 

calibration templates for a specific probe, depth setting and point of focus.  These 

could be loaded to reset the system to the results of a previous calibration, thus, 

removing the need to calibrate the system each time it was switched on or when any 

of the system settings were changed.   

 

The pin phantom assessment of the system and calibration templates verified that the 

3D datasets were being constructed accurately and reliably and that each calibration 

template created was suitable for use.  The results of this assessment showed that 

there were no signs of interference affecting the tracking system and also allowed the 

associated error for separation measurements to be determined, this was found to be 

±0.25 mm.  Further use of the pin phantom to test the effect of removing and 
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remounting the tracking tool showed that this had no significant effect on the 

accuracy of the calibration templates.   

 

The biggest factors identified as influencing dataset construction and, thus, 

separation measurement accuracy, were the US frame acquisition rate and scanning 

speed.   The more adjacent US images overlapped in the 3D dataset the less 

information from the finite width of the US beam was required for construction and 

the greater the detail obtained.  Using a second phantom the different combinations 

of frame rate and scanning speed were tested to find which would produce detailed 

dataset.  From these results it was concluded that a ‘slow’ or ‘normal’ scanning speed 

in combination with a frame rate of 20 fps or above would provide detailed 3D 

datasets from which accurate measurements could be made.   

 

A phantom simulating a fractured bone was used to determine whether the US probes 

could resolve small gaps as may be required when imaging fracture repair.  This 

series of phantom scans showed both US probes were able to resolve fracture gaps of 

less than 1 mm.  When the bone ends were pushed together to simulate a crack in the 

bone this was detectable on the 2D images, though when modelled into 3D the small 

discontinuity in the surface of the bone was no longer visible.  In a clinical situation 

an un-displaced fracture resulting in a crack in the bone would also cause a 

haematoma to forms which would draw attention to the presence of the crack on a 

3D US scan.   

 

The evaluation of the Optical 3D US system has shown it can provide an accurate 

and reliable means of conducting 3D US scans that is suitable for clinical use.  This 

system has been adopted for the clinical application of monitoring fracture repair, see 

Chapter 5, and is trialled as a means of measuring muscle volumes in vivo, see 

Chapter 7.  
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5. Monitoring Fracture Repair using Freehand 3D 

Ultrasound 

 

 

5.1. Introduction 

Riccardi et al. found that Ultrasound could image the earliest stages of the fracture 

repair process often detecting signs of healing weeks before they were evident on X-

ray (48).  However, the operator dependency of image interpretation and problems of 

making accurate repeat measurements led to the conclusion that 2D US was not a 

viable alternative to X-ray for monitoring fracture repair.  The development of 3D 

US has greatly reduced operator dependency.  The 3D datasets that it creates can be 

used to construct models of objects of interest as well as provide additional views of 

the anatomy which are not available using X-ray or 2D US.  3D US could be used to 

monitor the healing process, as frequently as required, without hazard to the patient.  

The ability to image the initial stages of healing would allow for earlier detection of 

complications.  It was hypothesised that 3D US could provide a more effective 

alternative imaging tool than X-ray for monitoring fracture repair and limb 

lengthening.   

 

To establish whether 3D US could provide a suitable alternative to X-ray for 

monitoring fracture repair a clinical study was carried out.  Patients who had 

sustained a long bone fracture of the lower limb or who were undergoing a limb 

lengthening procedure were followed up using both modalities.  Comparisons were 

drawn between what could be detected and at each follow-up appointment. 
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5.2. Methods 

Inclusion criteria for participants were that they were healthy, skeletally mature 

males and non-pregnant females who had sustained a closed fracture to one of the 

long bones of the lower limb or who were undergoing limb lengthening.  Patients 

being treated conservatively using a plaster cast were excluded as a window would 

have had to have been cut in the cast to allow scanning.  Approval for the study was 

granted by Lothian Research Ethics Committee and NHS Lothian Research and 

Development Management.    

 

Suitable patients were approached whilst on the ward, shortly after fracture had 

occurred, and were recruited through informed consent.  Patients were followed up 

from their first attendance at the out patients fracture clinic at the Edinburgh Royal 

Infirmary until their consultant deemed full weight bearing could be resumed or until 

the occurrence of complications had been identified.  Seven participants were 

recruited to the study, however, two had to be withdrawn due to complications 

arising during the healing process.  Thus, 5 patients (age range 17-38 years, median 

age 30 years) participated.  Three patients had sustained tibial fractures which were 

stabilised using an IM nail.  One patient had a fractured femur that was stabilised 

using a unilateral external fixation device and the remaining participant was 

undergoing tibial lengthening using an Ilizarov frame.   

 

Of the two withdrawn participants, one was withdrawn after an initial set of scans 

identified complications the other was withdrawn before any scans could be 

recorded.  The participant who was withdrawn after scanning was undergoing limb 

lengthening through the use of an ISKD nail.  This patient was recruited after 

lengthening had been started in order to determine what differences would be seen 

during healing compared to the Ilizarov patient.  It was thought that the presence of 

the nail would result in a reduction in the amount of callus produced compared to the 

Ilizarov patient.  However, the first scan of this patient revealed complications in the 

form of a cyst within the lengthening gap.  The patient was withdrawn from the study 

and no further scans were carried out.  Results from that scan have been included in 
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this study as they demonstrated how well the complication was picked up on the 3D 

US scans.  The other participant who was withdrawn had sustained a tibial fracture 

which was stabilised using an IM nail.  This patient developed fracture blisters early 

on which were dressed to such an extent that scanning was not possible.  More than 

two months post fracture the blisters were still being treated and scanning was still 

not possible.  By this point signs of callus were visible on X-ray and as the patient 

was not due to return to clinic for a number of weeks they were withdrawn from the 

study.   

 

On attendance at the outpatients fracture clinic, for routine assessment, each patient 

underwent a series of 3D US scans.  Standard procedure was to obtain four 3D US 

scans at each clinic appointment.  Two scans were recorded using the 5-10 MHz 

probe, the first was taken with the probe positioned over the fracture site, held 

parallel to the length of the leg and swept around the circumference of the limb over 

the fracture site.  This was referred to as a “width” scan.  The second scan was 

recorded with the probe held perpendicular to the length of the limb and was swept 

along the length of the leg to incorporate sections of healthy bone either side of the 

fracture gap.  This was referred to as a “length” scan.  These scans were then 

repeated using the 8-16MHz probe.   For each scan the series of 2D US images 

recorded and the series of Reslice images perpendicular to the original scan direction 

were reviewed in order to interpret the fracture site anatomy.  If a significant change 

was noted in the fracture site anatomy a 3D model was constructed from that dataset. 

 

The tibial fracture patients were followed up at 2 weeks, 6 weeks and 3 months as 

per the standard clinical protocol.  The follow-up appointments for the femoral 

fracture patient and tibial lengthening patient were more frequent and were dictated 

by the attending consultant.  All patients were followed up until full weight bearing 

was resumed.  On the first attendance at clinic the depth, point of focus and received 

gain settings for both probes were set to give an optimised image of the fracture site 

for each patient.  These settings were noted for each probe and used for each 

subsequent scan of that particular patient.  The set up of the Optical 3D US system 

shown previously in figure 4-5 was used to scan the lengthening patient and tibial 
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fracture patients.  In order to scan the femoral fracture patient the position of the 

examination table had to be reversed.  The corresponding X-rays, taken as part of 

routine care for each participant, were obtained from Radiology after the clinic 

appointment.  It should be noted that these were not used as a guide for interpreting 

the 3D US data.   

 

 

5.3. Results 

Results are presented for each case in turn before being summarised in table 5-1 to 

highlight the difference in time scale between the signs of healing detected using 3D 

US compared to X-ray.  The original X-ray images and the annotated X-ray images 

used in this chapter have been included on a DVD at the end of the thesis for 

reference if required. 

 

5.3.1. Case 1   

Spiral fracture of the left distal tibia stabilised using an IM tibial nail.   

On the first attendance to clinic, 2 weeks post fracture, the patient was scanned using 

both frequencies of US probe, however, the site of fracture could not be located.  On 

reviewing the X-rays the fracture was found to be more distal than had been 

indicated in the patient’s notes thus the wrong portion of the leg was scanned at the 

first follow up.  There were no signs of callus on the X-rays obtained at 2 weeks as 

can be seen in figure 5-1.  The spiral nature of the fracture was visible in the anterior-

posterior (AP) view, however, was not as apparent in the lateral view. 

 

At the 6 week follow-up, the location of the fracture was identified using 3D US, 

however, the close proximity of the fracture to the ankle joint made it difficult to 

maintain skin contact with the probe allowing only a short section of the bone to be 

scanned.  Despite this limited scan region, the 3D model constructed from the data, 

see figure 5-2(A), was able to show the spiral pattern of the break.  Areas where the 

first signs of healing were detected, in the form of echogenic deposits, have been 
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highlighted in yellow on the model.  Material could be seen on the 3D US scans 

filling in the fracture gap as well as extending from the periosteal surface of the 

bone.  There were still no signs of callus on the corresponding X-rays.   

 

The third follow-up was at 19 weeks post fracture at which point the patient was 

encouraged to resume normal weight bearing.  On the 3D US scans an increase in the 

volume of callus was seen when comparing the 3D models built at 6 weeks and 19 

weeks, see figure 5-2.  Bridging of the fracture had occurred at some points.  The 

appearance of the callus material was brighter in greyscale intensity on the US 

images indicating that the callus was maturing.  On X-ray, bridging callus could be 

seen extending across the fracture gap on both sides of the tibia as viewed on the AP 

X-ray, see figure 5-3(A & C) and parts of the original fracture line had become 

obscured.  The most substantial area of callus on the lateral X-ray (figure 5-3(B & 

D)) was on the posterior aspect of the tibia.  In neither view did the callus appear to 

have fully united the fracture.  The patient was due to attend a 6 month follow-up 

appointment to ensure the fracture had reach consolidation satisfactorily but did not 

attend.   

 

 



Chapter 5: Monitoring Fracture Repair using Three Dimensional Ultrasound 

 127 

 
Figure 5-1:  (A) AP and (B) lateral X-rays of the spiral tibial fracture taken at 2 weeks follow-

up.  The location of the fracture is indicated by the arrows. (C) and (D) show close ups of the 

fracture site on the AP and lateral X-rays respectively. 
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Figure 5-2:  3D models of the tibial fracture at (A) 6 weeks and (B) 19 weeks post fracture.  Both 

models orientated to show the anterior surface uppermost.  The spiral nature of the break can 

be seen and the increase in the region of forming callus, shown in yellow, is also notable. (P) 

proximal, (D) distal. 
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Figure 5-3:  (A) AP and (B) lateral X-rays taken at 19 weeks post fracture.  Callus can be clearly 

seen on the AP X-ray this is indicated on the close up views of the (C) AP and (D) lateral X-rays.  

Although callus is present it does not appear to bridge the fracture. 

 

 

5.3.2. Case 2  

Midshaft fracture of the right tibia stabilised using an IM tibial nail. 

The first 3D US scans were taken 2 weeks post fracture.  The edges of the fracture 

gap appeared well defined and echogenic deposits could be seen between the bone 

ends indicating healing was underway.  These deposits are thought to show the 
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fibrous material and mineral deposits laid down in the early stages of callus 

formation (58).  The regions of early callus formation have been highlighted on the 

Reslice image, see figure 5-4. Swelling of the tissue above the fracture was observed 

along with a faint outline showing the initial extent of the haematoma.  On the 5-10 

MHz scans it was noted that there was a repeated bone surface artefact under the 

sections of normal bone on the Reslice image, however, this was not visible below 

the fracture site.  It was hypothesised that this repeated surface artefact may relate to 

the higher density of the normal bone which was why it was not present below the 

fracture site.  There were no X-rays obtained at the first follow-up visit for 

comparison to the 3D US findings. 

 

In the 3D US scans obtained at 7 weeks post fracture, substantial regions of callus 

were visible within the fracture gap and forming on the periosteal surface of the bone 

ends, but, bridging had not yet occurred.  Figures 5-5(A) and 5-5(B) show Reslice 

images from the 5-10 MHz scan along the length of the bone and around the width of 

the bone, the regions of callus have been indicated.  On the AP X-ray, see figure 5-

6(B & D), there was a large volume of callus visible across the fracture site, 

however, it was not clear whether this was periosteal bridging callus or callus 

material within the gap.  The edges of the break still appeared well defined in the 

lateral X-ray, see figure 5-6(A & C), though, a region of periosteal callus was visible 

on the front face of the tibia that was seen to extend a good distance above and below 

the fracture line.   

 

After 16 weeks bridging callus was visible at all points across the fracture gap on the 

3D US scans.  In places the callus had a greyscale intensity comparable to the 

adjacent normal bone indicating that it was maturing and returning to a pre-fracture 

state.  Figure 5-7 shows a series of 3D models constructed from the scans of the 

anterior-medial face of the tibia as healing progressed, the regions of callus 

formation are shown in yellow.  Initially, only a small area of echogenic material was 

detected, however, at 7 weeks regions of periosteal callus as well as callus material 

deposited within the fracture gap were observed.  At 16 weeks the callus had fully 

bridged the gap and there was a notable difference in shape and volume of the callus.  
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The callus at the edges of the break had matured taking on a similar appearance to 

the patient’s healthy bone.  It should be noted that when constructing the 3D model it 

is not possible to seamlessly move from one object of interest to another i.e. from 

bone to callus making the callus appear separate from the bone ends rather than 

extending from it.   

 

The original line of fracture was only faintly visible on the AP X-ray, see figure 5-8 

(A & C), as it was obscured by an increasingly calcified region of bridging callus 

identified in the previous AP X-ray.  In this view the fracture appeared to have united 

and was close to reaching full consolidation.  On the lateral X-ray, the fracture line 

was no longer visible indicating successful consolidation of the fracture (20).  

However, it must be kept in mind that the appearance of the fracture line will be 

subject to inter-observer variability and may also be dependent on the angle at which 

the X-ray was obtained (10, 31). 

 

 

 
Figure 5-4:  Reslice from the 5-10 MHz length scan of the bone at 2 weeks post fracture 

captured through the anterior race of the tibia.  The red arrows indicate the initial extent of the 

haematoma.  
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Figure 5-5: Reslice images from the 5-10 MHz (A) length scan (through the anterior-medial 

bone surface) and (B) width scan (captured perpendicular to the anterior surface) at 7 weeks.  

The regions of callus growth have been indicated. (P) proximal, (D) distal, (M) medial, (L) 

lateral 
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Figure 5-6: (A) Lateral (B) AP X-rays obtained at 7 weeks post fracture the regions of callus 

growth are indicated by the arrows on the close up (C) lateral and (D) AP views. 
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Figure 5-7:  Series of 3D models constructed from the (A) 2 week, (B) 7 week and (C) 16 week 

scans showing the anterior medial face of the tibia. (P) proximal, (D) distal. 
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Figure 5-8:  (A) AP and (B) lateral X-rays obtained at 16 weeks post fracture.  The arrows in the 

close up (C) AP and (D) lateral views indicate the location of the original fracture. 

 

 

5.3.3. Case 3 

Spiral fracture of the midshaft of the right tibia stabilised using an IM nail. 

The first follow-up was at 3 weeks post fracture and already on the 3D US scans a 

significant amount of callus material was observed.  On the distal side of the break 
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callus was forming on the periosteal surface of the bone and extending into the 

fracture gap.  This can be seen in the Reslice image figure 5-9.  No periosteal callus 

was evident on the proximal side of the fracture, however, large deposits of fibrous 

callus material were visible within the fracture gap and these have been indicated on 

the Reslice image.  These deposits were more substantial on the lateral side of the 

break.   

 

The spiral nature of the fracture resulted in a butterfly fragment of bone extending 

from the distal side of the break that was displaced slightly outwards from the main 

body of the tibia at its tip.  The spiral pattern of the fracture and the presence of the 

bone fragment were clear on the AP X-ray, see figure 5-10(A & C).  The fracture gap 

was less well defined on the lateral X-ray, see figure 5-10(B & D), as this view was 

not in the direction of the fracture plane.  No signs of callus were visible on either X-

ray. 

 

The second follow-up was at 8 weeks post fracture and on the 3D US scans callus 

could be seen bridging the fracture gap at all points except for a small region on the 

medial side of the break.  The collars of periosteal callus were less substantial in 

appearance on the lateral side of the break, however, there were areas of echogenic 

material filling in the gap.  In comparison, there was very little callus visible on X-

ray, see figure 5-11.  On the AP X-ray small patches of callus had formed on the 

edges of the butterfly bone fragment at the lateral side of the fracture.  No signs of 

callus were visible on the lateral X-ray. 

 

After 17 weeks periosteal callus had completely bridged the fracture site as viewed 

on the 3D US scans.  A small section of callus on the lateral side of the break 

remained less substantial than the main body of callus, but, had matured significantly 

compared to the previous scan.  The change in the shape and greyscale intensity of 

the callus region was apparent when comparing Reslice images taken at 8 weeks and 

17 weeks, see figures 5-12.  The greyscale intensity of the callus had become 

brighter and more uniform in appearance.  There was no longer a dip where the 

callus was less mature and the length of bone over which the callus had formed was 
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almost double at 17 weeks compared to 8 weeks.  The change in size and shape of 

the callus could also be seen when comparing the series of 3D models constructed 

from the scans at 3 weeks, 8 weeks and 17 weeks., see figure 5-13. 

 

On the corresponding X-rays, the fracture gap was still well defined, see figure 5-14.  

The AP X-ray showed periosteal callus had formed on the medial side of the gap 

obscuring the fracture line.  More extensive callus was visible on the lateral side of 

the break and had formed between the butterfly fragment of bone and the main shaft 

of the tibia, though, this did not completely bridge the gap.  The edges of the break 

had been smoothed over and in some places obscured by the presence of callus as 

seen on the lateral X-ray.  It remained difficult to quantify the amount of callus 

present at the anterior side of the break, as viewed on the lateral X-ray, due to the 

location of the bone fragment. 

 

 

 
Figure 5-9:  Reslice image obtained at 3 weeks post fracture through the anterior face of the 

tibia, the two regions of callus growth are indicated.  (P) proximal, (D) distal. 
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Figure 5-10:  (A) AP and (B) lateral  X-rays taken at 3 weeks post fracture. The location of the 

bone fragment is indicated by the arrows.  (C) AP and (D) lateral X-rays shown close up. 
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Figure 5-11: (A) AP and (B) lateral X-rays taken at 8 weeks post fracture.  The fracture shown 

in close up from the (C) AP and (D) lateral X-rays.  The region of callus growth is indicated by 

the arrow. 
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Figure 5-12:  Reslice images showing the change in the callus appearance at (A) 8 weeks 

compared to (B) 17 weeks post fracture.  Both images are through the anterior face of the tibia 

at approximately the same point. (P) proximal, (D) distal. 
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Figure 5-13:  Series of 3D models showing the anterior face of the tibia constructed from scans 

taken at (A) 3 weeks, (B) 8 weeks and (C) 17 weeks post fracture.   (P) proximal, (D) distal. 
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Figure 5-14:  (A) AP and (B) lateral X-rays obtained at 17 weeks post fracture.  The fracture 

line remained well defined and only small regions of callus were visible as can be seen in the 

close up (C) AP and (D) lateral X-ray images. 

 

 

5.3.4. Case 4 

Fracture of the left distal femur stabilised using an external fixation device. 
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Approximately 6 weeks after the femoral fracture was sustained complications arose 

in the healing process due to bone infection.  The infected regions of bone were 

surgically removed and an external fixation device was used to stabilise the fracture.  

This patient was recruited after the surgery to remove the infected bone, however, all 

follow-up dates are taken from the initial injury date when the fracture repair process 

would have been initiated. 

 

Due to the depth of the femur within the thigh it was only possible to obtain clear 

images of the fracture site using the 5-10 MHz probe.  The first set of 3D US scans 

were obtained 8 weeks post fracture and a large region of callus was already visible 

extending across the fracture site, this has been highlighted in the Reslice image 

shown in figure 5-15.  On the corresponding X-rays, small cloudy regions of callus 

were visible blurring the line of the fracture and these have been indicated in figure 

5-16.   

 

At 11 weeks post injury it was noted on the 3D US scans that the section of bone just 

above the fracture site had changed from having a smooth surface to becoming 

bulbous in nature.  This can be seen in the 3D model shown in figure 5-17 and was a 

result of diffuse callus forming above the fracture site.  Signs of this change to the 

bone were not detected on X-ray until 28 weeks post fracture, see figure 5-20.  The 

section of callus previously seen on the 3D US images to be extending across the 

break had now bridged the fracture gap on the medial side, see figure 5-17.  More 

echogenic deposits were also visible within the fracture site.    No X-rays were 

obtained during the third clinic visit.     

 

The callus material within the gap had increased in echogenicy on the 3D US scans 

at 15 weeks post fracture, however, there were still areas across the fracture site 

where no callus formation was evident.  On the corresponding X-rays shown in 

figure 5-18 the increasing bulk of the callus could be seen in both views.  On the 

lateral X-ray there was a small area on the anterior face of the femur where there was 

less callus and the edges of the break remained well defined.  At all other points on 

the lateral X-ray and the AP X-ray, the fracture line had become blurred and in some 
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places obscured by the presences of callus.  This indicated that union was close to 

being achieved.   

 

After 19 weeks the 3D US scans showed that the amount of callus within the fracture 

gap was still increasing and the section of bridging callus had also expanded.  The 

greyscale intensity of the bridging callus had increased with the callus on the 

proximal side of the break now comparable in greyscale intensity to the patient’s 

normal bone.  On both the AP and lateral X-rays the main body of the callus now 

obscured the fracture line completely indicating that the fracture had reached 

consolidation.  Further to this, above and below the fracture site callus could be seen 

stretching out along the surface of the bone. 

 

The external fixation device had been removed and conservative use of the leg had 

resumed when the patient attended clinic at 28 weeks post fracture.  The callus 

bridging the fracture gap had greyscale intensity comparable to the patient’s normal 

bone, as seen on the 3D US scans, indicating that it had become mature.  The callus 

was bulbous in appearance on the medial side where bridging had occurred.  On the 

lateral side of the break there was a dip in the callus which can be seen on the 3D 

model, see figure 5-19.  At this point callus forming inside the fracture gap was 

beginning to bridge the break rather than periosteal callus.   

 

On the lateral side of the femur as viewed on the AP X-ray, see figure 5-20(A & C), 

the dip in the shape of the callus was pronounced.  The overall shape of the callus 

across the rest of the fracture site had become smoother and less bulbous in shape 

indicating that remodelling was under way.  The previously noted callus forming and 

stretching out above and below the fracture site along the bone surface, had also 

increased in size, see (figure 5-20(B & D)).  The change in shape of the section of 

bone above the fracture site, noted on the 3D US scans at 11 weeks post fracture, was 

now visible on X-ray.   

 

In the final series of 3D US scans at 44 weeks post fracture, the dip in the callus on 

the lateral side of the fracture was still visible, but, was reduced in size.  This can be 
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seen when comparing the 3D models constructed at 28 weeks and 44 weeks, see 

figure 5-21.  When comparing the Reslice images at 28 weeks and 44 weeks, see 

figures 5-22, the callus which was extending to bridge the gap (point 1) had 

increased in greyscale intensity indicating increased density.  At point 2 on the 

Reslice image, where bridging was yet to occur at 28 weeks, callus had now bridged 

the fracture, however, this section of callus still lagged behind in terms of greyscale 

intensity.   

 

Remodelling of the medullary canal could be seen on the lateral X-ray as shown in 

figure 5-23(B & D), but, was not evident on the AP X-ray, see figure 5-23(A & C).  

The dip in the callus remained visible on the lateral side of the femur as viewed on 

the AP X-ray.  No signs of the original fracture line were visible in either X-ray 

indicating that consolidation of the fracture had been reached, although, the bone still 

looked thin in places particularly in the lateral view.   

 

 

 
Figure 5-15: A Reslice image obtained at 8 weeks post fracture through the anterior face of the 

femur.  A large region of callus could be seen forming. (P) proximal, (D) distal. 
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Figure 5-16:  (A) AP and (B) lateral X-rays obtained at 8 weeks post fracture.  Small regions of 

callus were already visible, these are indicated by the arrows. (C) AP and (D) lateral X-rays 

shown in close up. 
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Figure 5-17:  3D model constructed from the scan data at 11 weeks post fracture showing the 

anterior face of the femur. The section of bridging callus and area of bulbous bone are 

indicated. (P) proximal, (D) distal. 
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Figure 5-18: (A) AP and (B) lateral X-rays obtained at 15 weeks post fracture.  The original 

fracture lines were no longer clearly visible and substantial regions of callus were visible in both 

views indicated by the arrows in the close up (C) AP and (D) lateral X-ray views. 

 

 



Chapter 5: Monitoring Fracture Repair using Three Dimensional Ultrasound 

 149 

 
Figure 5-19:  Lateral view of a 3D model of the femur constructed from a 3D US scan taken at 

28 weeks.  A dip in the callus was present on the lateral side.  (M) medial, (L) lateral, (P) 

proximal and (D) distal. 
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Figure 5-20: (A) AP and (B) lateral X-rays obtained at 28 weeks post fracture and close up (C) 

AP and (D) lateral views of the fracture site.  Substantial regions of callus are visible on both the 

lateral and AP views as indicated by the orange arrows .  The dip in the callus is indicated by 

the red arrows. 
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Figure 5-21: 3D models constructed from the 3D US scans at (A) 28 weeks and (B) 44 weeks post 

fracture showing the anterior face of the femur.  The region of callus has increased in size and 

the bone on the proximal side of the break has been remodelled, however, a dip remained in the 

lateral side of the callus.  (P) proximal and (D) distal. 
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Figure 5-22: Reslice images obtained at the(A)  28 weeks and (B) 44 weeks post fracture showing 

a slice through the middle of the anterior face of the femur. There has been a significant 

increase in the greyscale intensity of the callus particularly at regions 1 and 2 indicated on both 

images. 
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Figure 5-23:  (A) AP and (B) lateral X-rays obtained at 44 weeks post fracture.   The arrows 

indicate the remaining dip in the callus. (C) and (D) show a close up view of the AP and lateral 

X-rays respectively. 

 

 

5.3.5. Case 5 

Lengthening of the left tibia using an Ilizarov frame. 
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The osteotomy site was just below the proximal diaphysis of the tibia.  The 

positioning and construction of the Ilizarov frame gave a small scanning window 

over the anterior part of the leg which has been highlighted in figure 5-24(A).   The 

proximity of the two ring sections of the frame, positioned either side of the 

osteotomy site, did not restrict 3D US scanning.   

 

The first 3D US scans were recorded at 1 week post op and revealed that the 

osteotomy had fragmented edges causing the two sections of bone to appear to 

overlap in places on the 5-10 MHz images, see figure 5-25(A).  The gap appeared 

clearer in images obtained using the 8-16MHz probe, see figure 5-25(B), this probe 

had better resolution at this depth.  Overlapping of bone ends visible in the 5-10 

MHz scan may have been due to a refraction artefact which was identified previously 

in the phantom work investigating the resolution of the US probes, see 3.5.1 and 

4.4.4.  The fragmented nature of the osteotomy site was confirmed on inspection of 

the corresponding X-rays shown previously in figure 5-24(C & D).  There were no 

sign of callus on the 3D US scans or the X-rays at this stage.  The repeated bone 

surface artefact noted in previous Reslice images cases was again visible in the  

Reslice  images obtained for this case. 

 

At 4 weeks post op, lengthening was underway with a distraction of approximately 7 

mm already achieved.  This increase in distance between the bone ends was observed 

on the Reslice image, see figure 5-26.  Also of interest on the Reslice image was the 

substantial amount of echogenic material within the gap.  From the 3D model 

constructed from the 5-10 MHz length scan, as shown in figure 5-27, the extent and 

depth of the echogenic material within the gap could be seen.  In some regions the 

material was only visible deep within the gap while in others it appeared to be filling 

in the gap almost to the level of the bone surface.   

 

On X-ray much smaller “fluffy” regions of early callus could be seen.  These were 

present on the medial and lateral sides of the gap as viewed on the AP X-ray, see 

figure 5-28(A & C), and on the posterior part of the tibia as viewed on the lateral X-

ray, see figure 5-28(B & D).  There did not appear to be any callus forming on the 
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anterior face of the tibia at this stage.  The presence of small but much higher density 

regions within the gap visible in figure 5-28(C) are thought to be bony fragments 

from the osteotomy rather than callus. 

 

At 6 weeks post op, the depth of penetration of the US beam into the lengthening gap 

was almost half that seen on the previous scans.  This could be seen when comparing 

the Reslice images shown in figures 5-26 and 5-29.  Echogenic material had filled in 

the gap to the level of the normal bone surface at all points visible in the 3D US 

scans.  In some places small sections of periosteal callus, indicated on figure 5-29, 

had formed and started to extend across the gap making it difficult to depict the 

original edges of the lengthening gap.   

 

The edges of the osteotomy site were also less well defined on X-ray, see figure 5-

30.  On the AP X-ray it was observed that the lateral and central regions of the gap 

contained immature callus material, however, it was not possible to tell at what depth 

within the gap this material was located.  On the lateral side of the tibia callus 

material could be seen extending across the gap, but, on the medial side there was an 

absence of callus.  On the lateral X-ray, at the posterior of the tibia, a substantial 

region of callus was forming and beginning to obscure the edges of the gap and at the 

midpoint of the break small columns of callus could be seen reaching across the gap.  

On the anterior surface of the bone the regions of periosteal callus visible on the 3D 

US scans were not visible on the lateral X-ray.   

 

As lengthening continued more echogenic material became visible deep within the 

centre of the gap on the 3D US images.  The regions of periosteal callus continued to 

extend further across the gap and the sections of periosteal callus adjacent to the 

patient’s normal bone increased in greyscale intensity.  The lengthening process was 

complete by 9 weeks post op.   

 

On a Reslice image obtained at 9 weeks from the 3D US scans, see figure 5-31, it 

could be seen that the regions of periosteal callus closest to the bone ends had a 

greyscale intensity comparable to the patient’s normal bone.  The volume of callus 
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material continued to increase on X-ray as seen in figure 5-32 and the edges of the 

break had been smoothed over in appearance by the presence of callus.  On the 

anterior face of the tibia, callus could be seen stretching out from both sections of 

bone, but, it had not yet bridged the gap.  From X-ray it was difficult to determine 

whether the material clouding the gap was callus forming internally or the projection 

of callus forming on the opposite face of the bone.  Callus formation on the medial 

side of the gap, as viewed on the AP X-ray, lagged in development. 

 

The frame was still in place after 16 weeks, but, now that lengthening had been 

completed the healing process had advanced.  The frame remained in place to allow 

the callus to mature and become strong enough to support full weight bearing 

without risk of re-fracture.  The portion of the lengthening gap visible on the 3D US 

scans was completely bridged and the callus had become smoother in appearance as 

can be seen from the 3D model in figure 5-33.  This indicated that remodelling was 

underway.  When comparing the Reslice image with previous ones it was observed 

that the repeated surface artefact, first noted in case 2, was visible underneath this 

patient’s normal bone but not below the lengthening site.  As the callus matured and 

became denser the artefact began to appear faintly underneath the callus on the 5-10 

MHz Reslice image as indicated in figure 5-34.   

 

The edges of the bone sections were completely obscured by callus on the AP X-ray, 

see figure 5-35(A & C), with large regions of callus visibly extending across the gap 

and bridging at many points.  Callus formation on the anterior face of the tibia was 

still markedly behind that on the posterior face as can be seen on the lateral X-ray in 

figure 5-35(B & D).   

 

The final 3D US scans were acquired at 30 weeks post op when the frame had been 

removed and the patient was being encouraged to resume normal weight bearing.  

The repeated artefact noted on the previous Reslice image was now visible at all 

points underneath the bone surface, see figure 5-36, and the location of the 

lengthening site was no longer distinguishable on the Reslice image or the 3D model, 

see figure 5-37.  On X-ray the bulbous shape of the callus and the area of increased 
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calcification on the AP view, see figure 5-38(A & C), indicated the lengthening site.  

On the lateral X-ray in figure 5-38(B & D) substantial callus was now present at both 

the anterior and posterior faces of the tibia. 

 

 

 
Figure 5-24:  (A) AP and (B) lateral X-rays taken at 1 week post op.  The site of the osteotomy is 

indicated by the arrows, the edges of the break were fragmented in appearance.  The region 

where 3D US scanning was carried out is highlighted on the AP view. (C) and (D) show close up 

views of the AP and lateral X-rays respectively.  
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Figure 5-25:  Reslice images obtained through the anterior face of the tibia from the (A) 5-10 

MHz and (B) 8-16 MHz 3D US scans at 1 week post op.  The fragmented nature of the bone ends 

caused them to appear to overlap in the 5-10 MHz Reslice, this is indicated by the arrow.   (P) 

proximal, (D) distal. 
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Figure 5-26: Reslice image from the 5-10 MHz length scan at 4 weeks post op taken through the 

anterior face of the tibia.  The changing size of the break due to lengthening can be seen.  A 

substantial amount of fibrous material has been deposited within the gap.  (P) proximal, (D) 

distal. 
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Figure 5-27:  3D Model constructed from the 5-10 MHz scan at 4 weeks post op.  (A) view of the 

anterior face of the tibia.  (B) 3D model rotated to show the lateral side of the tibia where the 

depth of the fibrous material deposited within the gap can be seen.   (P) proximal, (D) distal. 
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Figure 5-28: (A) AP and (B) lateral X-rays taken at 4 weeks post op.  Regions of callus growth 

are indicated by arrows in the close up (C) AP and (B) lateral views.   
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Figure 5-29: Reslice image through the anterior face of the tibia from the 5-10 MHz length scan 

at 6 weeks post op.  Fibrous material has filled in the lengthening gap and periosteal callus has 

started to extend across the gap.  (P) proximal, (D) distal. 
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Figure 5-30: (A) AP and (B) lateral X-rays taken at 6 weeks post op. (C) and (D) show close up 

views of the lengthening site on the AP and lateral X-rays respectively. 
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Figure 5-31:  Reslice from 5-10 MHz scan at 9 weeks post op through the anterior face of the 

tibia.  The periosteal callus extending across the gap has increased in greyscale intensity.  (P) 

proximal, (D) distal. 
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Figure 5-32: (A) AP and (B) lateral X-rays taken at 9 weeks post op.   The amount of visible 

callus had increased as can be seen in the close up (C) AP and (D) lateral views and could now 

also be seen forming on the anterior face of the tibia. 

  

 



Chapter 5: Monitoring Fracture Repair using Three Dimensional Ultrasound 

 166 

 
Figure 5-33:  (A) anterior view and (B) medial view of the 3D model constructed from the scans 

taken at 16 weeks post op.  The gap was now fully bridged by periosteal callus.  In addition, the 

callus was smoother in appearance indicating remodelling was underway.  (P) proximal, (D) 

distal. 
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Figure 5-34: Reslice image obtained at 16 weeks post op through the anterior face of the tibia.  A 

faint repeated bone surface artefact, highlighted by the red arrow, can be seen below the callus 

region which indicated that it was maturing and gaining the same properties as normal bone.  

The black arrows indicate the fracture callus and the orange arrows indicate the repeated bone 

surface artefact under the normal bone.  (P) proximal, (D) distal. 
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Figure 5-35: (A) AP and (B) lateral X-rays taken at 16 weeks post op.   The original edges of the 

break are completely obscured as can be seen in the close up (C) AP and (D) lateral views and 

large regions of callus can be seen extending across and bridging the gap. 

 

 



Chapter 5: Monitoring Fracture Repair using Three Dimensional Ultrasound 

 169 

 
Figure 5-36: Reslice image obtained at 30 weeks post op through the anterior face of the tibia.  

The region where lengthening was undertaken was no longer distinguishable.  The repeated 

surface artefact could be seen under the whole bone suface.  (P) proximal, (D) distal. 

 

 

 
Figure 5-37:  (A) anterior and (B) medial views of the 3D model constructed from the scans at 

30 weeks post op.  The site of lengthening was no longer identifiable.  (P) proximal, (D) distal. 
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Figure 5-38: (A) AP and (B) lateral X-rays taken at 30 weeks post op.  In (C) the close up view of 

AP X-ray the callus appears uniform in density, however in the (D) close up lateral view this is 

not the case.   

 

 

As the bone was lengthened, the width of the gap between the bone ends, as visible 

on X-ray, increased.  On 3D US, as the bone was lengthened periosteal callus began 

to form on each side of the gap making it difficult to detect the location of the 

original bone ends.  Subtracting the width of the lengthening gap measured using 3D 

US from the width of the gap measured using X-ray gave the amount of new 

periosteal callus growth.  Plotting the amount of periosteal callus growth against 

time, see figure 5-39, allowed the rate of new callus formation to be monitored.  
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Although only six post op scans are discussed his patient attended clinic more 

frequently during the lengthening phase of treatment.  At each appointment scans 

were obtained and the size of the lengthening gap measured on the 3D US scans and 

corresponding X-rays, thus, there additional time points and measurements on the 

graph.   For this patient the rate of periosteal callus formation paralleled the rate of 

lengthening seen on X-ray indicating the correct rate of lengthening was applied for 

the patient (52).  After lengthening was complete there was a marked decrease in the 

size of the gap on both the X-rays and 3D US as the amount of mature callus 

increased.   
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Figure 5-39:  Graph showing the rate of lengthening compared to the rate of callus formation. 

 

 

5.3.6. Case 6 

Lengthening of the left tibia using an ISKD nail. 

The first set of 3D US scans of this patient were obtained after 8 weeks of 

lengthening and revealed a cyst within the lengthening gap and defective callus 

formation.  On the Reslice image, see figure 5-40, the cyst can be seen within the 

lengthening gap residing on the surface of the ISKD nail.  The full extent of the cyst 



Chapter 5: Monitoring Fracture Repair using Three Dimensional Ultrasound 

 172 

(shown in red) can be seen from the two views of the 3D model shown in figure 5-

41.  Using StradWin the length of the cyst was measured to be approximately 2.5 cm 

in length.  On close inspection of the scans small areas of callus growth were 

detected at the edges of the lengthening gap and these have been shown in yellow in 

the model, while the patient’s normal bone has been shown in white.  It was possible 

to see the surface of the ISKD nail beneath the cyst and this has also been included in 

the model shown in blue.  On X-ray there were no obvious signs of problems, 

however, new bone growth was occurring slower than expected.  The identification 

of the cyst by 3D US lead to an intervention in treatment by the consultant, the 

patient was referred for to Radiology for an US scan to confirm the presence of the 

cyst and to have it aspirated.   In normal practice a 2D US scan would not have been 

requested for further weeks. 

 

 

 
Figure 5-40: Reslice image obtained after 8 weeks of lengthening showing the location of the cyst 

within the lengthening gap.  Reslice taken through the anterior face of the tibia. 
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Figure 5-41:  3D models obtained after 8 weeks of lengthening showing (A) the anterior view 

and (B) the lateral view of the tibia. The extent of the cyst (red) can be seen.  Small areas of 

callus can be seen (yellow) as well as the surface of the ISKD nail (blue).   (P) proximal, (D) 

distal. 
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5.3.7. 3D Ultrasound compared to X-ray 

Table 5-1 summarises the signs of healing detected using 3D US compared to X-ray 

at each follow-up appointment for each case.   

 

 

Case Week 3D US X-ray 

 

1 2 - No callus 

Spiral 

fracture left 

distal tibia 

6 Fibrous material filling gap No callus 

 19 Periosteal callus and partial 

bridging 

Periosteal callus and partial 

bridging 

2 2 Fibrous material No X-ray available 

Midshaft 

fracture 

right tibia 

7 Fibrous material and 

periosteal callus 

Periosteal callus visible on 

two bone cortices 

 16 Bridging Partial bridging  

3 3 Fibrous material and 

periosteal callus 

No callus 

Spiral 

fracture 

midshaft 

right tibia 

8 Fibrous material and partial 

bridging of periosteal callus 

Small regions of periosteal 

callus on lateral side as seen 

on AP X-ray.  No callus on 

the lateral X-ray 

 17 Fracture fully bridged Increased periosteal callus 

with bridging on one bone 

cortex. 

4 8 Fibrous material and early 

periosteal callus 

Small regions of callus 
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Left distal 

femoral 

fracture 

15 Periosteal callus beginning to 

bridge gap.  Increase in callus 

material 

Increase in callus material 

 19 Increase in amount of callus 

material and in the size of the 

bridged region.  Dip in callus 

beginning to be bridged by 

endosteal callus 

Bridging has occurred and 

the fracture line was 

obscured.  Dip present in the 

fracture callus 

 28 Bulbous callus with greyscale 

intensity comparable to the 

healthy bone. Dip in callus 

being filled in. 

Bulbous callus.  Dip in callus 

still present  

 44 Dip in callus reduced in size 

and remodelling evident 

Fracture line completely 

obscured.  Dip in callus still 

present with no visible 

reduction in size 

5 1 No callus No callus 

Right tibial 

lengthening 

4 Large regions of fibrous 

material  

Small regions of callus on 

two  bone cortices 

 6 Fibrous material has filled in 

lengthening gap.  Periosteal 

callus extending across gap. 

Periosteal callus visible 

extending across the gap on 

the two cortices.  No signs of 

callus on the medial or 

anterior bone cortices 

 9 Increase in periosteal callus, 

bridging almost achieved.  

Greyscale intensity of regions 

of the callus comparable to 

normal bone. 

Increase in amount of callus.  

Callus now visible on 

anterior face but no bridging.  

Delayed callus formation on 

lateral bone cortex 
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 16 Gap completely bridge. 

Callus smoother in 

appearance.  Remodelling is 

underway. 

Bridging on 3 cortices. 

Callus formation on the 

anterior cortex still markedly 

behind in development. 

 30 Lengthening site no longer 

visible.  Greyscale intensity 

of the callus reached that of 

healthy bone. 

Gap fully bridged. 

Substantial callus visible on 

all bone cortices. 

Table 5-1:  Summary of signs of healing detected using 3D US compared to X-ray for each case. 

 

 

5.4. Discussion 

3D US scanning was tolerated well by all participants.  One patient had initial 

reservations that the contact pressure of the probe would cause discomfort, however, 

this was not the case.  The probe was held in such a way as to ensure skin contact but 

minimise any pressure.   

 

Closed fracture patients were chosen for this study as the dressings covering the 

wounds of an open fracture would have restricted 3D US scanning, the presence of 

air in the bandages would have made it impossible to scan through them.  One of the 

participants withdrawn from the study had developed fracture blisters post op and 

these were bandaged in such a way that scanning was not possible.  All three of the 

tibial fracture patients had small dressings covering the incision sites created during 

the surgery to insert the IM nail.  These dressing did not inhibit scanning and had 

been removed by the second follow-up appointment.  One of the tibial fracture 

patients also had surgical staples used to close a wound above the site of fracture.  

These staples are visible in the X-rays shown in figure 5-10 but did not restrict 3D 

US scanning.   

 

The location of the fracture in case 1 restricted the area that could be scanned.  The 

flared shape of the distal end of the tibial and the close proximity of the fracture to 
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the ankle meant maintaining skin contact with the probe was difficult.  The use of a 

gel pad to offset the probe from the skin surface and provide a more even surface for 

scanning would have overcome the restrictions encountered. 

 

In a previous study using 2D US to investigate the rate of new bone production 

during lengthening it was noted that during the initial stages of lengthening the rings 

on the Ilizarov frame may be too close together to accommodate an US probe (11).  In 

case 5, the positioning of the Ilizarov frame allowed the anterior face of the tibia to 

be scanned unhindered from the first follow-up appointment, the proximity of the 

two rings was not restrictive.  In previous studies using 2D US for monitoring 

lengthening, the US probe was placed over the lengthening site and orientated 

perpendicular to the break in order to measure the width of the gap and amount of 

periosteal callus growth (52, 54).  An advantage of the 3D US system is that if the 

rings were too close together to allow the probe to be positioned perpendicular to the 

line of the break, the probe could instead be held at an angle to fit between the rings 

and moved over the break. Despite the images being obtained at an angle, the Reslice 

facility could be used to view an image slice across the lengthening site, and accurate 

length and volume measurements could still be made.  

 

The projection nature of X-ray images means that details of the bone surface and 

depth are lost and it can be difficult to determine at what depth within the fracture 

gap that callus is forming.  To image a fracture sufficiently two X-ray views are 

required AP and lateral (medial-lateral projection).  It was shown in Chapter 2 that a 

simple fracture in an AP view could actually be a displaced fracture when viewed in 

the lateral plane, see figure 2-4.  Even with two orthogonal X-rays the shape and 

appearance of the fracture is subject to inter-observer variability (10, 25, 31).  The 

spiral shape of the fracture in case 1 and the presence of the bone fragment in case 3 

meant that the fracture gap was not clearly visible.  This made it difficult to 

determine the location of the forming callus within the fracture gap.   

 

The series of 3D US scans obtained allowed the fracture pattern to be properly 

identified.  Despite the limited area that could be scanned for case 1, the spiral 
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pattern of the fracture was still clearly evident with 3D US.  A further advantage of 

3D US was the ability to determine where the callus was forming.  Fibrous callus 

material forming within the gap to stabilise the fracture could be identified along 

with the developing periosteal callus.   

 

In previous studies using 2D US to monitor fracture repair, US was able to detect 

signs of healing weeks before they were apparent on X-ray (11, 48, 49, 55).  The first 

signs of healing visible with 2D US were the appearance of echogenic areas within 

the fracture gap which appeared disorganised in nature before becoming aligned as 

the healing process progressed.  From the results of a pre-clinical study (58), this 

echogenic material was shown to be fibrous immature callus material.  As the 

healing process progressed collars of periosteal callus began to form and bridge the 

gap and the amount of echogenic material within the gap decreased.   

 

In this study it was hypothesised that signs of healing would be detected earlier using 

3D US scans compared to X-ray, and this was found to be true for cases 1, 2, and 3.  

In case 1 signs of healing were visible on the 3D US scans at 6 weeks post fracture 

but were not visible on X-ray until the follow-up appointment at 19 weeks post 

fracture.  In case 2 echogenic deposits could be seen between the bone ends at 2 

weeks post op unfortunately there were no radiographs recorded at that point to 

determine if signs of healing were visible.  Close inspection of the Reslice image 

shown in figure 5-4 revealed the faint outline of where the haematoma was before it 

was invaded by cellular material and reabsorbed.  Neither of these signs of healing 

were visible on the corresponding X-rays.  In case 3, fibrous material was detected 

within the gap and also forming as periosteal collars of material at 3 weeks post 

fracture on the 3D US scans.  On the corresponding X-rays the first signs of callus 

formation were seen at 8 weeks post fracture.  In cases 4 and 5 signs of callus 

formation were detected with 3D US and X-ray at the same time.  Despite this, there 

was still a notable lag between the amount of callus material seen on X-ray compared 

to 3D US as the healing process progressed in both cases.  This lag was even more 

prominent for the tibial fractures patients when comparing the amount of bridging 

callus visible on 3D US compared to X-ray at the three month follow-up point.  
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The ability to manipulate the models constructed from the 3D US scans provided a 

means of seeing where the callus was forming and how the location of the callus 

changed as healing progressed.  The Reslice facility could also be used to provide 

views of the fracture site in order to determine where callus was forming and to 

check for complications as well as allowed comparisons to be drawn between the 

greyscale intensity of the callus and healthy bone.  As the callus matured the 

difference between the acoustic impedance of the callus and the surrounding soft 

tissue increased causing the reflection at the soft tissue – callus boundary to intensify 

on the US image.    This change in intensity relates to the density and calcification of 

the callus (48).  The repeated surface artefact that was noted underneath the patient’s 

normal bone on the Reslice images also appeared faintly underneath the section of 

callus in the later stages of healing.  The appearance of this artefact underneath the 

callus has been found to mark an acceleration in the calcification process (48).  Strain 

gauges used to determine the mechanical properties of the callus at this stage found 

that its properties were approaching a similar state to normal bone.  Further work 

investigating a means of determining the mechanical properties of the callus directly 

from the US images obtained during 3D scanning are discussed in Chapter 6.   

 

The occurrence of complications such as mal-union, angulation of the bone and re-

fracture are stated as being better detected using X-ray rather than 2D US (53, 54).  

The limited field of view of 2D US made it difficult to detect such complications.  

3D US can overcome this problem, the incorporation of a multiple sweep function in 

StradWin allows US probe to be swept over the fracture site multiple times and the 

multiple image datasets to be stitched together.  This means it is possible to 

incorporating larger sections of bone above and below the break.  An extensive 3D 

model could be constructed to look for visible signs of angulation or the Landmarks 

tool within StradWin could be used to check the angle between the sections of bone 

above and below the break.  Further work on the line-of-sight restriction for scanning 

when using optical tracking may allow larger angle scans around the effected limb to 

be carried out.   Inspection of the 3D model could then reveal if there was angulation 

or mal-union of the fracture.   
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The ability of 3D US to detect the early signs of healing during limb lengthening and 

in particular to monitor the rate of periosteal callus growth and detect complications 

were advantages over X-ray.  Even when callus was of sufficient density to be visible 

on X-ray, the lag between what can be detected on X-ray compared to 3D US means 

complications may occur and remain undetected on X-ray for several weeks (11).  

When using 3D US, Reslice images can be used to check the width of the 

lengthening gap to ensure premature bridging has not occurred.  However, one 

limitation of 3D US is that as the newly formed periosteal callus begins to mature its 

greyscale intensity increases making it difficult to determine the position of the 

original bone ends, thus, making it difficult to determine the amount of lengthening 

achieved.  X-ray would still be required for this purpose but could be carried out less 

frequently.  Alternatively, a solution would be to insert a pair of metal marker beads 

in the patients bone each side of the break during the surgery to fit the lengthening 

device.  These beads would be easily identifiable on the US images and would 

provide a clear measure of the amount of lengthening achieved. 

 

This pilot study has consistently shown the potential of 3D US as a tool for 

monitoring fracture repair.  Initial signs that the healing process is under way can be 

detected earlier, complications have been detected that were not visible on X-ray and 

also it can be used to monitor lengthening to ensure premature bridging of the 

lengthening gap dose not occur.  There is no gold standard against which the success 

of 3D US can be compared which raises the question does it offer false hope when 

signs of healing are detected?  Although in this study only a small region of the 

fracture site could be scanned it was possible to look into the fracture gap and detect 

fibrous material deposits which indicate the fracture repair process is underway.  If 

there is a delay or halt to this process this would be visible on follow up scans, 

however, compared to X-ray this stage of the healing process cannot be detected.  

Callus formation is unlikely to occur uniformly across the fracture site, however, 

being able to detect the second stage of healing is underway is a positive indicator 

that fracture repair is underway.  If complications occur at this stage intervention can 

be taken earlier than if only X-ray images were being used.   
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From the results of this pilot study it is recommended that a further study involving a 

larger patient group is carried out examining both fracture and limb lengthening 

patients.  In both cases patients should be monitored more regularly, every 2 weeks 

for the fracture patients for the first 8 weeks, and every 2 weeks for limb lengthening 

patients during the distraction process.  Ideally larger volumes of the fracture site 

should be scanned to give a better understanding of the whole fracture site and to 

determine if 3D US is offering false hope when only a small section of the fracture 

site is scanned or whether the detection of fibrous pre-callus material in the gap is 

indicative of a successful healing outcome. 
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6. Development of a Fracture Callus Density Measure 

 

 

6.1. Introduction 

As a bone heals its mechanical properties will return to a similar state as pre-fracture.  

Methods of determining the mechanical state of the fracture callus during healing 

include physical assessment of the fracture site and indirect imaging derived 

measurements. For lower limb fractures, obtaining a quantitative measure of the 

mechanical properties of the callus would provide an accurate means of establishing 

when a patient can safely resume full weight bearing.  This Chapter covers the 

development and evaluation of a callus density measure derived from 3D US data.      

 

 

6.2. Background 

Fracture union is the stage in the healing process (described in Chapter 2) where the 

callus has formed uniting the bone fragments and stabilising the fracture.  The callus 

is sufficiently calcified at this stage to be visible on X-ray, however, it is still 

maturing into lamellar bone and does not have the mechanical strength to cope with 

the demands of full weight bearing (12, 21).  It is during the following consolidation 

stage of healing that the mechanical properties of callus should return to a similar 

state as pre-fracture; allowing normal use of the affected limb to resume (29). 

 

Successful bony union and consolidation are determined by physical assessment of 

the fracture site and should be supported by radiological findings (120).  If 

consolidation has occurred there should be no mobility of the fracture site when 

physically tested and the patient should experience no pain or discomfort when 

moderate stress and pressure are applied (20, 21).  If union has occurred but 
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consolidation is only just underway the fracture site will still be tender, in particular, 

when a bending force is applied across the fracture. 

 

Review articles which have looked at outcome measures of fracture repair studies 

have found there is no agreed standardised method for determining the point at which 

union and then consolidation have occurred and thus when full weight bearing can 

safely resume (10, 25, 31).  In a study by Morshed et al. different methods of 

assessment used by consultants to identify when weight bearing could be resumed 

ranged from full physical assessment supported by visible consolidation of the callus 

on X-ray to simply asking if the patient could weight bear and checking that there 

were signs of callus visible on X-ray (25).  In the majority of cases both clinical 

criteria and radiological evidence were used to determine if a fracture had healed.  

The lack of consensus about the time lines for delayed and non union was examined 

in a study by Bhandari et al (10).  Opinions on the definition of delayed union varied 

from 1 - 8 months and for non-union from 2 - 12 months between the 444 

Orthopaedic surgeons surveyed  

 

Neither the use of physical assessment criteria or radiology findings, whether used 

separately or combined, provide a definitive means of determining healing.  It was 

noted in the results from Chapter 5 and also in other studies that there is a lag 

between what can be observed at the fracture site using X-ray and what is actually 

occurring (11, 48, 49, 55).  This is due to the amount of calcification required for the 

callus material to become visible on X-ray.  Even with two orthogonal views of the 

fracture site, the projection nature of X-ray images can make it difficult to establish 

whether callus has formed equally well at all points around a fracture.  Callus can 

take on different patterns of bridging  dependent on whether the fracture is healing 

by endosteal, periosteal or intercortical bridging (121).  If an internal fixation device 

such as an Intramedullary (IM) nail or metal plate has been used to stabilise the 

fracture there is often less callus produced as it is not required to initially stabilise the 

fracture (120).  In theses cases there is a reduced amount of callus to monitor on X-

ray and physical assessment of the fracture will be limited by the presence of the 

device.  Although internal fixation may provide enough support to allow weight 
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bearing (as may be the case with an IM nail) it is still important to monitor these 

fractures to ensure they progress to a fully healed state without complications.  If the 

internal device loosens or fails and the callus is not sufficiently strong to withstand 

weight bearing, the bone may re-fracture.  Furthermore, too much movement at the 

fracture site can lead to delayed healing and possible non-union (21).  

 

The need for a method of obtaining information about the mechanical strength of 

callus is a long held concern.  A pre-clinical study by Siegel et al. found that X-ray 

examination often correlated poorly with the actual amount of callus formed and that 

physical assessment tests did not perform much better (47).  Early methods of 

obtaining mechanical information about the healing callus were based on principles 

that had been long established in the field of material testing.  Measuring the velocity 

of sound through a material of known density provides a measure of the elastic 

modulus that relates directly to the strength of the material.  The relationship 

between velocity, V, density, D, and Young’s modulus of elasticity, E, is,   

 

 

V = (E/D)1/2.     (6.1) 

 

By calculating the average velocity of a sound pulse transmitted across the site of a 

fracture, the elasticity and thus the strength of the forming callus can be deduced.  A 

pre-clinical study allowed measurements to be compared directly with histology and 

the known stages of fracture repair (47).  Using a separate transmitter and receiver 

placed either side of the fracture site, a series of short sound pulses were transmitted 

across the break.  By measuring the time it took to receive the pulse over a known 

distance the velocity could be calculated.  Good agreement was found between the 

velocity measurement and the actual histology as well as the accepted histology of 

healing.  When the haematoma had formed sound could travel relatively unhindered 

across the fracture site giving a measure of velocity only slightly reduced compared 

to normal bone.  As cellular proliferation started the haematoma began to become 

organised and the average velocity across the fracture site decreased significantly.  It 

is only when the collagen fibres were impregnated with calcium deposits and became 
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more rigid that the average velocity across the fracture gap gradually returned to its 

pre-fracture value.  A further pre-clinical study by Abendschein et a. using this 

technique identified different mean velocities that related to different progressions of 

healing including non union, mal-union and normal bony union (122).  One concern 

about the accuracy of this method was the value used for density in equation (6.1)  

Siegel et al. made no mention of the consideration of the effect of density, instead, 

results were based more on the measure of velocity as an indication of strength 

through the relationship with Young’s modulus.  Abendschein et al. made 

calculations of Young’s modulus of elasticity, however, the value of D was derived 

from measurements of mass and volume obtained after the bone had been excised.   

 

In another pre-clinical study looking at tibial fractures, the results of velocity 

measurements across the fracture gap during healing were compared to the results of 

3-point bending test on the excised bones (123).  The correlations between velocity 

measurement and stiffness, load at failure and elastic modulus during bending were 

not strong enough to support the use of velocity measurements as an accurate and 

useful indicator of fracture callus strength.  A bending stiffness of 15 Nm/º has been 

proposed as a reliable indicator that fracture union has occurred and that an external 

fixation device can be safely removed.   In a study assessing conservatively treated 

tibial fractures it was found that all fractures that reach a bending stiffness of 7 Nm/º 

progressed on to full healing (121).  When applying the proposed 15 Nm/º limit to 

bones other than the tibia it was found that the values of bending stiffness and the 

correlating value of bone strength varied significantly due to the differences in bone 

geometry.  The age of the patient and shape of the bone also needed to be taken into 

consideration when applying the 15 Nm/degree limit (124).  A study of clinical 

judgement requiring Orthopaedic consultants to rate the bending stiffness of mock 

tibial fractures, simulated using phantoms, found that 83% overestimated bending 

stiffness and would have recommended the removal of an external fixation device 

(125).  A reliable and accurate means of determining the mechanical properties of the 

fracture callus would provided a definitive point at which weight bearing could 

resume, reduce rates of re-fracture and also decrease rehabilitation times for patients 

where healing has occurred rapidly. 
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A measure called the Callus Index has been devised to determine the amount of new 

periosteal bone that has formed at the fracture site.  The Callus Index is defined as 

the ratio of the maximum width of callus to the diameter of the original shaft of the 

bone at the same level as measured from X-ray (126).  Measurements of Callus Index 

have been compared to the bending stiffness values obtained in the previously 

discussed study by Marsh to try and define the occurrence of union, delayed union 

and non-union (121).  No correlation was found between the Callus Index and 

bending stiffness measurements.   

 

 

6.2.1. Development of a Callus Density Measure Derived 

from Ultrasound 

The aim of this investigation was to determine whether additional information about 

the mechanical properties of the healing callus could be deduced from 3D US data.  

As explained in section 2.2 it is the difference in acoustic impedance of the two 

tissue types such as bone and muscle that give rise to the reflection of the US pulse at 

tissue boundaries.  The percentage of the US pulse reflected is dependent on the 

acoustic impedance of the materials and thus the densities of those materials, as 

described previously by equation (2.2).  Immediately after fracture when the 

haematoma forms in the fracture gap the amount of US which is reflected at the soft 

tissue - haematoma boundary is less than 0.01%.  At the start of the healing process 

the US pulse is transmitted almost completely by the haematoma and the inside of 

the fracture gap can be imaged clearly.  As the bridging callus forms the US pulse 

cannot penetrate as far into the gap.  During the calcification process the depth of US 

penetration is reduced as the percentage of US reflected increases and attenuation 

within the callus also increases. When the callus has fully matured into lamellar bone 

the amount of reflected US at the soft tissue – bone boundary is approximately 43%.  

The rate of attenuation within the healed bone means that it is no longer possible to 

image below the bone surface.  It was hypothesised that as the callus matures and the 
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percentage of reflected US increases, the density of the callus material must also be 

increasing as the soft tissue density will remain unchanged.   

 

Bone density will vary from person to person and is dependent on factors such as 

age, health, gender, diet and levels of exercise undertaken.  In order to gain the most 

detailed information about change in callus density a patient specific measure was 

developed.  This involved comparing an individual patient’s callus against their 

healthy normal bone to obtain a percentage measure that could indicate how the 

density of the callus changed during healing.  It was hypothesised that as the callus 

calcifies and formed woven and then lamellar bone, the ratio of callus density to 

healthy bone density should approach a value of 1.  On a B-scan image, the 

percentage of reflected US is indicated by the greyscale intensity representing the 

echo at the tissue - bone boundary.  It was proposed that comparing the greyscale 

intensity of a section of callus with a section of healthy bone will give an indication 

as to the density of the callus.    

 

Software was developed using Matlab (Mathworks, USA) to compare the greyscale 

intensity of a section of callus against the greyscale intensity of a section of the 

patient’s healthy bone and return a percentage measure.  Before greyscale intensity 

information could be obtained from the 3D US data the effects of image processing 

applied to the US images before they were captured in RF format had to be taken 

into account.  The B-scan image data was acquired from the Diasus in its RF format 

after received gain (Rx) and Time Gain Compensation (TGC) had been applied to the 

RF signal.  A set method of removing the effects of Rx gain from the image data was 

not required as the density measure was to be patient specific.  Instead, it was 

acceptable to establish the best setting for the Rx control to provide an optimum 

image of the patient’s fracture site during the first scan and then kept the same 

settings for each consecutive scan of that patient thus negating the effects of Rx.  The 

same approach was adopted for the power (Tx) setting.  The TGC settings were kept 

the same for each scan of every patient.  TGC was set to give a gradually increasing 

gain with depth to counter the effects of attenuation.  The position of each TGC 
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slider control was marked on the US machine to ensure they remained constant and 

these settings were checked before each scan.   

 

The rate of attenuation, α, of the US beam, a function of both depth and frequency, 

and the effect of the point of focus of the US beam also had to be taken into account.  

In order to quantify the effects of attenuation, TGC and point of focus, a phantom 

object, for which the rate of US attenuation with depth was known, was required.  By 

scanning the phantom using the same settings as the patient’s scan it would possible 

to analyse the images and remove these effects from corresponding patient’s images.  

The phantom used (CIRS 055 Phantom, Imaging Equipment, UK) had a known 

attenuation of α = −0.5 dB/cm/MHz.   

 

Only one US image of the phantom object was required to quantify these effects for 

each scan.  Before the required image analysis could be carried out the surface 

artefact present in the US image of the phantom had to be removed; this was 

achieved by a simple cropping process.   

 

Using the depth setting and frequency of the probe, the effects of attenuation were 

calculated.  For the 5-10 MHz probe a central frequency of 7.5 MHz was assumed 

while a central frequency of 12 MHz was assumed for the 8-16 MHz probe.  This 

gave attenuation of -3.75 dB/cm for the 5-10 MHz probe and -6.0 dB/cm for the 8-16 

MHz probe.  Using equation (6.2) the effects of attenuation on the intensity of the 

greyscale levels throughout the image were determined.   

 

( )1010
α

xGG s= .    (6.2) 

 

G is the value of greyscale intensity to be removed due to the effects of attenuation 

and Gs is a reference greyscale level taken at the surface of the US image so that it 

was minimally affected by attenuation.  By calculating the attenuation with depth on 

the pixel scale of the US image rather than in centimetres the effect of attenuation 
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could be removed from the greyscale intensities of the US image on pixel by pixel 

basis.     

 

Summing the greyscale intensities across each row of pixels for the phantom image 

and plotting the mean value for each row against depth provided a graph, shown in 

figure 6-1, from which TGC and point of focus effects could be obtained through a 

curve fitting process.  The point of focus effect created the peak in the graph which 

was best described by a Gaussian distribution.  TGC gave the gradually increasing 

curve making up the remainder of the plot, which was best described by a quadratic 

polynomial.  Both terms are included in equation (6.3) which was used for curve 

fitting where the coefficients a,b and c in the Gaussian term described the height, 

position and the full width at half maximum height of the peak, respectively.   The 

parameters a, b, c, p1, p2, p3 and the best fit line were found by least squares fitting. 
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Figure 6-1:  A graph showing the plot of mean greyscale level against depth for the analysis of a 

phantom image.  Curve fitting was applied (red line) using equation (6.3) to quantify the effects 

of TGC and point of focus.   
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With the effects of TGC, point of focus and attenuation of the US beam calculated 

they could be removed from patient images to allow the greyscale intensity of a 

region of callus to be compared against a region of normal bone.  Two regions for 

comparison were selected by the operator and the resulting greyscale intensity ratio 

of callus to healthy bone was given as a percentage termed the Healing Index.  This 

value should indicate how close a patients callus was to returning to normal healthy 
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bone.  An error value for the Healing Index was also provided.   As the callus 

matures and forms lamellar bone the Healing Index value should approach 100%.  

To validate the Healing Index a pre-clinical study was carried out on sections of 

sheep femur which were decalcified to different degrees to act as a simple model of 

the fracture repair process in reverse.  Decalcifying the bone samples to different 

degrees simulated fracture callus at different densities and thus different stages of 

healing. 

 

 

6.3. Methods 

Five pairs of fresh sheep femurs were obtained and two 2 cm long sections of bone 

were cut from the mid shaft of each.  The ten sections taken from the right femurs 

were used as the test bones to be decalcified and the ten sections taken from the left 

femurs were used as controls.  The controls were matched to the corresponding 

section of bone from the right femur.  Each bone sample was weighed and its volume 

measured using water displacement.  All bones samples were then fixed in 10% 

buffered Formalin solution for 24 hours to preserve them.  During this time the bones 

were kept in a cold room at 5ºC. 

 

Before decalcification all the test and control bones underwent 3D US scanning to 

check for anomalies, none were found.  Each bone was scanned down its length and 

across its width using both the 5-10 MHz probe and the 8-16 MHz probe.  For the 5-

10 MHz scans a depth setting of 30 mm and point of focus of 10 mm was used.  For 

the 8-16 MHz scans a depth setting of 20 mm with a point of focus of 8 mm was 

used.  The Rx and TGC controls were set before the first scans were recorded and 

these same settings were used for all scans throughout this investigation.   

 

The protocol for the decalcification process was adapted from a study looking at the 

effects of decalcifying feline femurs (127).  Test bones were decalcified to different 

degrees using 14% ethylene diaminetetra acetic acid (EDTA) with a pH of 7.4.  They 
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were put in individual sample bottles containing 140 ml of EDTA solution (volume 

of EDTA approximately 20 times the volume of each bone sample) and placed in a 

shaker rack within an incubator set at 37ºC; the rack was set to shake at 150 rev/min 

to assist the decalcification process.  Control bones were placed in identical sample 

bottles containing 140 ml of distilled water.  Due to limited room in the incubator the 

control bones were kept in the cold room.  Both the EDTA solution (and the distilled 

water) were changed every 24 hours to ensure the EDTA did not saturate. 

 

Test samples were removed from the EDTA at periodic intervals to achieve different 

degrees of decalcification.  Table 6-1 gives the period of decalcification for each test 

bone.  When a test bone reached the end of its allotted decalcification time it was 

removed from the EDTA solution and the corresponding control bone was removed 

from its distilled water.  Then, both the test and control bone underwent series of 3D 

US scans down the length (length scan) and across the width (width scan) of the bone 

sample using the same scan settings as previously.  The phantom object was also 

scanned.  After scanning, the bones were placed into sealed bags and refrigerated to 

maintain tissue preservation.  The images from each test bone scan were analysed 5 

times using the software to calculate the mean values of Healing Index.   
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Test Bone Days of Decalcification 
1 1 
2 2 
3 3 
4 6 
5 7 
6 10 
7 14 
8 16 
9 20 

10 22 
Table 6-1: Duration of decalcification for test bones. 

 

 

6.4. Results 

US images used to calculate the Healing Index were captured over the mid point of 

the bone sample for the length and width scans.  Figure 6-2 shows the series of US  

images obtained with the 5-10 MHz probe that were used to calculate the Healing 

Index from the length and width scans of test bone 6.  Decalcification was evident 

from the presence of the second bright surface echo from within the bone, indicated 

in figure 6-2(B) and (D).  The first surface echo marked the boundary of the water – 

decalcified region of the bone, while the second reflection marked the decalcified – 

calcified bone boundary.  In order to calculate the Healing Index a region of interest 

was selected on the test bone image incorporating the first surface echo and was 

compared to the region of interest on the control bone image that incorporated the 

single surface echo.  These regions of interest are indicated by the boxes in figure 6-

2.  The regions of interest were rectangular in shape which meant that the regions 

selected were considerably smaller for the length images than for the width images to 

ensure only the surface echoes of interest were analysed.   
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Figure 6-2:  Ultrasound images taken from the 5-10 MHz scans of test bone 6 after 10 days of 

decalcification and the corresponding control bone images.  The regions of interest used to 

calculate the Healing Index are indicated by the boxes.  (A) Length scan image of control bone 6. 

(B) Length scan image of test bone 6.  (C) Width scan image of control bone 6.  (D) Width scan 

image of test bone 6.   

 

 

The results for the mean Healing Index are given in tables 6-2 for the 5-10 MHz 

probe and table 6-3 for the 8-16 MHz probe.  Data for the 8-16 MHz US scan of test 

bone 10 was corrupted and had to be omitted from the analysis.   

 

 



Chapter 6: Development of a Fracture Callus Density Measure 

 195 

   5-10 MHz Length Scan 5-10 MHz Width Scan 

Test 
Bone  

Days of 
Decalcification 

Healing 
Index 
(%) SD  

 δ Healing 
Index 

Healing 
Index 
(%) SD  

 δ Healing 
Index 

1 1 104.31 0.60 16.06 105.56 1.46 23.50 
2 2 92.88 1.44 18.46 104.23 1.37 19.37 
3 3 93.40 1.19 24.40 88.37 1.01 19.19 
4 6 85.43 1.68 33.29 75.02 1.30 25.98 
5 7 75.77 1.60 36.08 77.71 1.56 36.48 
6 10 69.05 1.33 20.38 57.53 0.30 22.30 
7 14 52.87 1.37 22.06 51.41 1.53 34.22 
8 16 44.64 0.89 27.62 58.80 1.28 26.71 
9 20 62.21 0.89 26.91 71.99 0.32 26.19 
10 22 53.64 1.55 23.77 83.07 0.76 34.27 
Table 6-2:  Healing Index results for the length and width scans of the 10 test bones using the 5-

10 MHz probe.   

 

 

   8-16 MHz Length Scan  8-16 MHz Width Scan 

Test 
Bone  

Days of 
Decalcification 

Healing 
Index 
(%) SD  

 δ Healing 
Index 

Healing 
Index 
(%) SD  

 δ Healing 
Index 

1 1 89.02 0.39 17.59 94.12 0.34 14.68 
2 2 94.41 1.86 21.50 79.33 0.34 19.60 
3 3 80.12 1.00 21.83 92.54 1.13 20.29 
4 6 67.06 1.15 16.67 80.13 0.97 19.52 
5 7 54.06 1.10 19.66 57.61 1.26 17.85 
6 10 65.68 0.69 15.29 59.31 0.41 20.55 
7 14 48.26 0.40 22.05 34.24 0.64 13.31 
8 16 56.14 0.51 12.44 59.62 0.93 14.64 
9 20 73.79 0.74 14.95 71.74 1.41 20.00 
Table 6-3: Healing Index results for the length and width scans of the 10 test bones using the 8-

16 MHz probe.   

 

 

Results for the length and width scans using the 5-10 MHz probe are plotted in figure 

6-3 and results for the analysis of the 8-16 MHz scans are shown in figure 6-4.  For 

both graphs Healing Index is plotted against days of decalcification to illustrate the 

rate of decalcification.  It was expected that as the duration of decalcification 

increased the value of the Healing Index would decrease.   
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Figure 6-3:  Healing Index results for Ultrasound scans of the test bone samples using the 5-10 

MHz probe. 

 

 

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22

Days of Decalcification

H
ea
lin
g
 In
d
ex
 (
p
er
ce
n
ta
g
e)

8-16MHz Length Scan
8-16MHz Width Scan

 
Figure 6-4: Healing Index results for Ultrasound scans of the test bone samples for the 8-16 

MHz probe.   
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It was thought that the Healing Index would start at approximately 100% for test 

bone 1 and gradually decrease as the duration of decalcification increased.  The rate 

of decalcification was expected to be approximately linear initially, before 

decreasing in rate as the calcium content of the bone became less.  For the 5-10 MHz 

scans the expected trend in Healing Index was seen up to day 16 (test bone 8).  The 

results for test bones 9 (20 days) and test bone 10 (22 days) were larger than 

predicted.  A similar trend was seen in the Healing Index results for the 8-16 MHz 

US images.  However, the decreasing trend in the Healing Index was only evident in 

test bones 1 through 7 (decalcification durations of 1-14 days).  The Healing Index 

values for test bones 8 and 9 were larger than expected despite the increased duration 

of decalcification.  Overall, both sets of results indicated that between 50 - 60% 

decalcification of the bone samples had been achieved. 

 

 

An additional investigation was briefly carried out into the frequency dependent 

appearance of fracture callus using patient data from the clinical study (see Chapter 

5).  The aim was to determine if different frequencies of US could depict different 

densities of the fracture callus.  As the B-scan images were captured in RF format it 

was possible to change the format in which they were displayed in StradWin by 

using a series of predefined image processing filters.  StradWin contains a series of 

discrete frequency band filters which can be applied to the RF data in order to filter 

out data obtained at specific frequencies and thus show only the US image made up 

from chosen specific band of frequencies.  For example, with the 5-10 MHz probe it 

was possible to apply filters to view the parts of the image from the frequencies 

bands of 5-6 MHz, 6-7 MHz, 7-8 MHz, 8-9 MHz and 9-10 MHz.  To determine if 

there was a detectable frequency dependency in the appearance of the forming callus 

an US image of the callus was chosen in StradWin and the 9-10 MHz filter was 

applied, the resulting image was exported to Matlab.  Similarly, the 5-6 MHz filter 

was also applied to the same image and the resulting image exported to Matlab.  

Subtracting the greyscale intensities of the 5-6 MHz image from the 9-10 MHz 

image on a pixel by pixel basis yielded no difference in the appearance of the callus 

material.  This process was repeated using the data from the 8-16 MHz probe for the 
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frequency bands 15-16 MHz minus 8-9 MHz with similar results.  It was concluded 

that there was not a sufficiently large difference in the frequency spectrum available 

within each individual probe to detect a difference in the appearance of the callus.  

Due to the difference in dimensions between the 5-10 MHz and 8-16 MHz images 

further work would be required to be able to compare filtered images over a wider 

range of frequencies.    

 

 

6.5. Discussion 

The experimental protocol was based on a decalcification experiment using the same 

concentration of EDTA solution to remove the calcium content from whole feline 

femur samples (127).  For the feline femur samples to reach total decalcification took 

approximately 13 days.  Although the sheep femur samples were smaller in volume 

they had a thicker bone cortex so in order to reach full decalcification the duration 

over which the bones were left in the EDTA solution was increased to 22 days.  

Despite this increase in duration the Healing Index results indicated that only around 

50 - 60% decalcification was achieved. 

 

The expected trend in results for the Healing Index was not observed for all the bone 

samples.  Potential sources of error in the calculation of the Healing Index may have 

arisen due to the region of interest selected and background speckle in the US image.  

Being restricted to selecting rectangular regions of interest meant only a small area 

could be sampled on the length scan images due to the curvature of the bone.  For the 

width scans, if the image of the bone was captured at an angle the area that could be 

sampled had to be reduced to avoid selecting parts of the image not related to the 

bone surface.  This was the case for figure 6-2(D).  To increase the accuracy of the 

regions of interest sampled it would be better to sample non-uniform regions that 

follow the contours of the bone surface echoes. 
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The effect of background speckle was a source of systematic error in this method and 

was evident from the large errors in the Healing Index values (δ Healing Index).  

These errors were not plotted on the graphs of results as they were not believed to be 

indicative of a problem with the calculated values.  Instead, it was thought that they 

reflected the variation of the greyscale intensity of the pixels within the regions 

selected for comparison.  Speckle is a result of random constructive and destructive 

interference of scattered US reflections giving rise to a wide range of greyscale 

intensities within the regions of interest selected (35).  It was the mean greyscale 

within each region of interest that was compared and the error in the Healing Index 

was calculated using the percentage errors of the standard deviation against the mean 

greyscale for each region.  Variation in the greyscale level between the background 

speckle and the bright echoes from the bone surface resulted in consistently high 

errors on the Healing Index.  In comparison, the standard deviations on the mean 

values were small, almost all less than 2% indicating that the selection of the regions 

of interest for the Healing Index had good repeatability.   

 

 Only decalcification at the bone surface would have been detectable on US any 

decalcification on the inner bone surface would have been undetected as the region 

of non-decalcified bone between the two regions of decalcification would have 

stopped the US beam penetrating to the second region of decalcification.  In this 

situation the measure of Healing Index would have been ineffective.  In the case of 

fracture repair, regions of callus fill in the fracture gap and also extend as collars of 

bridging material from the bone ends.  If it was possible to select non uniform 

regions of interest more detailed comparisons could be drawn between a volume of 

bridging callus and a volume of healthy bone.  Comparing volumes of interest would 

remove one of the current limitations of the callus density measure, that only a single 

2D US image of the callus is used give a value for the Healing Index.  It would be 

unsuitable to take the analysis of one point in the callus as indicative of the strength 

of the whole callus.  Also, it would be difficult to ensure that that same point was 

measured for future comparison.  The selection of a volume of callus to compare 

with a volume of the patient’s healthy bone would be the ideal as this would give a 

more accurate overview of the density of the whole callus.   
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7. Freehand Three-Dimensional Ultrasound for 

Determining Muscle Volume 

 
 

7.1. Introduction 

3D US offers a flexible and non invasive method of imaging the musculoskeletal 

system which has the added advantages of being portable and having few exclusion 

criteria for use.  3D US is less resource intensive than MR and can provide real time 

data.  To establish whether 3D US can provide a comparable method to MR for 

determining muscle volume in vivo a healthy volunteer study was undertaken, 

whereby, volume measurements of a section of the rectus femoris muscle were 

derived from 3D US and compared to measurements obtained from MR.    

 

 

7.2. Methods 

The rectus femoris which is part of the quadriceps muscle group was chosen as the 

object of interest as its small size and superficial position at the anterior part of the 

thigh make it ideal for both MR and 3D US scanning.   Eleven healthy volunteers 

(median age 79 years, range 24–85 years) were recruited to the study through 

informed consent.  Approval for the study was granted by Lothian Research Ethics 

Committee and NHS Lothian Research and Development Management.  The section 

of the rectus femoris measured was centred on the mid thigh as this point could be 

determined using anthropomorphic measurements by measuring the distance 

between the greater trochanter of the hip and the lateral joint line of the knee.  The 

position was marked on the skin surface with a pen on each volunteer before MR and 

3D US scanning.  Both scans were carried out within a maximum of 14 days of each 

other. 
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During 3D US scanning participants sat on a patient examination table with the knee 

of the thigh to be scanned flexed at an angle of approximately 30°, as shown in 

figure 7-1.  The exact angle of flexion of the knee was not recorded and may have 

varied by ±10° between subjects.  Having the knee flexed in this way maximised the 

circumference of the thigh which could be scanned with 3D US without blocking the 

required line-of-sight between the tracking tool and the optical system.  The 5-10 

MHz probe was used to conduct all scans as it gave greater depth penetration 

providing a maximal view of the thigh tissue down to the surface of the femur.  

Being able to image the full depth of the thigh allowed comparable images to those 

of MR to be produced from the 3D US data.   

 

 

 
Figure 7-1:  A healthy volunteer undergoing a 3D Ultrasound scan. 
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The point of focus and depth setting for the probe varied between participants 

dependent on the size of their thigh.  For all subjects the depth setting was chosen so 

that the surface of the femur was visible and the point of focus was set at the level of 

the rectus femoris to give the best definition of the muscle boundaries.  The anterior 

mid thigh region of the left leg was scanned.  Starting at the medial posterior region 

the US probe was held parallel to the length of the thigh and scanned round the mid 

thigh in a single smooth sweep ending at the posterior lateral region.  Figure 7-2 

shows the outline of a scan superimposed on a Reslice image to demonstrate the 

scanning motion.  It took approximately 3 minutes to position a subject and carry out 

a scan.  All scans were carried out by the same operator. 

 

 

 
Figure 7-2:  A Reslice image taken perpendicular to the length of the thigh with a partial scan 

outline overlaid to demonstrate the motion of the probe sweep around the anterior portion of 

the mid thigh. 
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The MR scans were recorded using a 1.5T scanner (Phillips Medical Systems, 

Edinburgh) using a T1 spin echo sequence with a 462 ms repetition time, 15 ms 

echo-time, one excitation, and with a resolution of 0.98 mm x 0.98 mm x 10 mm 

(128).  Subjects lay supine on the examination table with their knees fully extended 

and relaxed.  The MR scans were centred on the mid thigh point and imaged the 

whole length of the thigh.  To assist in the identification of the mid thigh point a 

marker (cod liver oil capsule) which was visible on the MR images was placed at the 

measured mid thigh point.  It took approximately 9 minutes to conduct the scan, this 

included the time taken to position the patient and carry out a ‘scout’ scan to centre 

data acquisition at the mid thigh level. 

 

 

7.3. Analysis 

The Reslice view in StradWin provided cross-sectional views through the 3D US 

dataset which were comparable to the MR images.  The width of the US probe 

allowed a 37 mm wide section of the thigh to be imaged.  However, the freehand 

nature of scanning meant that the operator was likely to deviate slightly from a 

completely straight sweep around the mid thigh.  When taking into account these 

deviations the actual width of data centred on the mid thigh was closer to 30 mm.   

 

In order to make volume measurements of the 30 mm section of the rectus femoris 

the 3D US data had to be exported as a voxel array orientated in the same direction 

as the MR image slices.  The 3D US data was exported as a voxel grid where each 

voxel had dimensions of 0.1 mm x 0.1 mm x 1 mm.  This provided a method of 

viewing the 3D US data as a series of 1mm thick image slices which were similar to 

those produced by MR.  In comparison to the 3D US data, each MR slice had a 

thickness of 10 mm. Both the exported 3D US and MR data were analysed using the 

ANALYZE software package (Mayo Clinic, Rochester, USA).   
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Anatomical knowledge was used to locate the muscles of the quadriceps group and 

identify the boundaries of the rectus femoris muscle on the MR and 3D US images.  

The MR slice showing the mid point of the thigh was identified by the appearance of 

the marker in the image and the boundary of the rectus femoris muscle was 

segmented by hand in the three images centred on this slice.  This allowed a volume 

measurement to be obtained for a 30 mm section of the muscle.  For the 3D US data 

the boundary of the rectus femoris muscle was segmented by hand on thirty images 

centred around the mid thigh point.  Once the segmentation was complete the volume 

of the region highlighted on each slice was summed to give the total volume for the 

section of muscle.   

 

Analysis of the MR and 3D US data was carried out by two separate raters to allow 

intra and inter-operator repeatability to be assessed.  Segmentation of the data was 

done without conference between the raters and the MR data was not used as a guide 

for muscle boundary identification on the 3D US images.  A paired t-test was used to 

check for inter and intra-rater differences in the segmentation and thus volume 

measurements obtained from the scan data of both modalities (129).  The mean 

difference between volume measurements derived using MR and 3D US were  also 

calculated.   

 

 

7.4. Results 

Identification of the boundaries of the rectus femoris muscle was easier on the MR 

images than on 3D US.  Figures 7-3 and 7-4 show the segmentation of the rectus 

femoris muscle on the MR and 3D US data respectively.  Segmentation of the MR 

data took approximately 10 minutes, whilst segmentation of the 3D US data took 

approximately 20 minutes due to the greater number of slices to be analysed and the 

difficulty in identifying some of the muscle boundaries.  The muscle volume 

measurements derived from the MR and 3D US data for all eleven participants are 

presented in table 7-1.   
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Figure 7-3:  Segmentation of the rectus femoris muscle on an MR image slice. 

 

 

 
Figure 7-4:  Segmentation of the rectus femoris muscle on a 3D US image. 
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 MR 3D Ultrasound 
Scan 1 Scan 1 Scan 2 

Rater  
a 

Rater 
b 

Rater  
a 

Rater 
b 

Rater 
a 

Rater 
b 

Participant 1st 2nd 1st 1st 2nd 1st 1st 1st 

1 5.25 5 5.16 5.06 4.49 4.5 * * 
2 28.8 28.4 27.79 26.21 27.02 24.04 * * 
3 8.08 8.36 8.35 7.76 7.97 7.85 * * 
4 22.5 23.4 22.57 20.74 20.14 22.6 * * 
5 10.1 9.47 9.39 10.18 10.57 11.28 9.19 9.1 
6 12.3 12 11.25 12.16 11.25 10.95 11.58 10.7 
7 6.6 7.02 6.46 6.01 5.8 6.9 5.89 6.46 
8 4.61 4.73 5.07 4.5 4.05 6.43 4.3 5.29 
9 12.6 12.8 12.89 10.7 10.89 11.26 10.23 11.77 

10 12.4 12.3 11.99 12.97 13.07 12.24 9.98 10.69 
11 13.6 14.1 14.62 14.59 15.19 14.3 13.82 14.11 

Table 7-1:Results of volume measurements for a 30mm long section of the rectus femoris muscle 

derived from MR and 3D Ultrasound data analysed by two different raters.  All measurements 

are in cm3  

 

 

The mean difference between volume measurements derived from 3D US and MR  

was 0.53 cm3 with a standard deviation (SD) of 1.09 cm3 and 95% confidence 

intervals (CI) of -1.61 – 2.67 cm3for rater a.  A paired t-test was used to assess 

whether there was evidence of a significant difference between the two imaging 

techniques.  This returned a value of p=0.14 indicating there was no evidence of 

significant difference between techniques.  For rater b the mean difference between 

volume measurements derived from MR and 3D US was 0.29(1.50) cm3, with 95% 

CI of -2.64 – 3.23 cm3, returning p=0.53.  The Bland-Altman plots in figures 7-5 and 

7-6 show agreement between MR and 3D US volume measurements for rater a and 

rater b respectively. For both raters the difference in volume measurements between 

MR and 3D US were within ±3.75 cm³.   

 

 



Chapter 7: Freehand Three Dimensional Ultrasound for Determining Muscle Volume 

 207 

 
Figure 7-5:  Bland-Altman plot showing the agreement between MR and 3D US derived volume 

measurements for rater a. 

 

 

 
Figure 7-6:  Bland-Altman plot showing the agreement between MR and 3D US derived volume 

measurements for rater b. 
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Analysis was carried out twice by rater a for both the MR and 3D US data to assess 

repeatability of the segmentation process.  A paired t-test was used to assess the 

intra-rater difference between repeated measurements.  The mean difference between 

repeated volume measurements from MR was -0.07(0.47) cm3 (95% CI -0.99 – 0.83 

cm3), p=0.65.  For the repeated 3D US segmentation the mean difference in volume 

measurements was 0.04(0.55) cm3, (95% CI -1.04 – 1.12 cm3) p = 0.84.  Both p 

values showed there were no significant differences between repeated segmentations.   

 

The inter-rater difference for the segmentation of the same set of 3D US scans gave a 

mean difference of -0.13(1.28) cm3 (95% CI -2.64 – 2.38 cm3) with p = 0.74.  For 

MR the mean inter-rater difference for the segmentation of the same image data was 

0.101(0.64) cm³ (95% CI -1.15 – 1.36 cm³) where p = 0.59. 

 

For 7 of the participants a second set of 3D US scans were obtained to check 

repeatability of scanning.  These scans were analysed by both raters and compared to 

the corresponding data from the original scans.  For rater a the mean difference in 

volume measurements between repeated scans was 0.87(0.98) cm3 with CI of -1.05 – 

2.79 cm3.  For rater b the mean difference in volume measurements between repeated 

scans was 0.75(0.92) cm3 with CI of -1.05 – 2.55 cm3.   

 

 

7.5. Discussion 

Muscle volume measurements derived from the 3D US data were within ±16% of 

those derived from MR with 95% confidence intervals of ±2.14 cm3.  The differences 

in muscle volumes between participants varied from approximately 4.50 cm3 to just 

over 28.5 cm3, but, there was no visible trend in the size of a participants muscle 

compared to the volume difference found between modalities.  Identification of the 

muscle boundaries was the biggest factor influencing the muscle volume 

measurements.  As seen from figures 7-3 and 7-4 the muscle boundaries were easier 

to identify on MR than US.  On the US image slices it was often the case that three 
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of the four muscle boundaries were reasonably easy to identify, however, the fourth 

boundary was difficult to depict and open to interpretation by both raters.  Figure 7-7 

shows a 3D US image slice from one of the participants, the muscle boundaries for 

the rectus femoris, identified by the two different raters, have been highlighted.   

 

 

 
Figure 7-7: 3D Ultrasound image slice with the main features of interest labelled.  (SF) 

subcutaneous fat. (VM) vastus medialis. (FE) femur. (VL) vastus lateralis. (VI) vastus 

intermedius. (RF) rectus femoris.  The muscle boundaries of the RF muscle identified by the two 

raters are highlighted in red and green. (A) anterior, (P) posterior, (M) medial and (L) lateral. 

 

 

The quality of the images obtained from the Diasus effected muscle boundary 

identification and this was further compounded when the data had to be put into a 

voxel array to be imported into ANALYZE.  This additional image processing step 

caused a small but visible degradation of the US data.  The Diasus was 

approximately 10 years old and a newer machine is likely to provide better image 

quality which would make identification of muscle boundaries easier.  For 

comparison, figure 7-8 shows a pair of 2D US image of the rectus femoris muscle 
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captured using the Diasus and also a modern SONIX RP US machine (Ultrasonix, 

Richmond, Canada).  The improvement in image quality with the SONIX RP is 

visible with all the boundaries of the rectus femoris muscle being easier to identify.  

 

 

 
Figure 7-8: 2D Ultrasound image of the rectus femoris muscle captured just below the mid thigh 

point using (A) the Diasus and (B) the SONIX RP US machines. 

 

 

The width of the images slices and size of the voxels in the image arrays will also 

have influenced the differences in volume measurements between MR and 3D US.  

The MR slices have a thickness of 10 mm and the size of the voxels allowed volume 

measurements to be made to within 0.01 cm3.  In comparison the thickness of the US 

slices were 1 mm and the voxel resolution allowed volume measurements to be made 

to within 0.01 mm3.  Therefore it was expected that the MR data would slightly 

overestimate the actual muscle volume.  When comparing the MR and 3D US results 

for rater a in eight out of eleven cases the 3D US volumes were less than the MR 

volume measurements and for rater b it was six out of eleven cases.   
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A further factor affecting the volume of the muscle was the positioning of the 

volunteer.  During the MR scan the knee was extended, whilst, during 3D US 

scanning the knee was flexed.  As rectus femoris is a hip flexor and knee extensor 

muscle this difference in positioning of the participants will have had an effect on the 

volume of the muscle at the mid thigh point.  If the whole muscle volume could have 

been measured then this would not have been a factor. 

 

During the course of this investigation a study reported the use of a 3D US system, 

using the StradX software and a Flock of Birds EM tracking system, to determine 

muscle volumes in canines (130).  3D US was compared to MR and the mean 

difference between volume measurements was 3.33(4.37) cm³ (CI -5.24-17.14 cm³).  

The muscle volumes were obtained from isolated cadaver dog muscle samples 

scanned in a water bath.  Multiple sweeps of the muscles were obtained during 3D 

US scanning in order to image the whole muscle rather than a short section.  As the 

muscles were isolated identification of boundaries would not have been an issue.  

The accuracy of the 3D US measurements were noted as having a dependency on 

scanning speed, the rate at which the US frames were acquired and how frequently 

the object of interest was segmented within the 3D dataset.   The use of the less 

precise EM tracking system was likely to be a source of error for the 3D US volume 

measurements that may have been further compounded by using multiple sweep 

scanning.   

 

The optical freehand 3D US system could improve on the results of previous studies 

using 2D US to obtain muscle CSA and volume measurements.  In the study by 

Reeves et al. a series of overlapping 2D US slices were captured to give a panoramic 

image of the quadriceps muscles which was used to measure CSA (15).  The series 

of images were built into a panorama using a contour matching algorithm.  Although 

the results were in good agreement with those determined from MR, within ±1.7%, 

the US scan time was 20 minutes compared to 6 minutes for MR.  Using the 3D US 

system a panoramic image of the thigh could be capture in less than 5 minutes, 

including the time taken to position the patient.  The use of 3D US would also reduce 
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the scan times for the study by Esformes et al. where a series of 2D US images 

obtained at regular intervals along the muscle belly of the tibialis anterior were used 

to calculate its volume (73).  Scan times for 2D US were 45 minutes compared to 20 

minutes for MR.  The accurate volume measurements provided by the optical 

freehand 3D US system would also have improve upon the truncated cone 

approximations used to obtain the volume of the tibialis anterior muscle. 

   

This study aimed to show 3D US is suitable for measuring muscle volumes in vivo.  

Results indicated 3D US to be able to obtain volume measurements which are 

comparable to MR.  Although a difference between MR and 3D US of up to 16% 

was found it is expected that with a modern scanner and standardisation of 

participant positioning the mean difference would be reduced.  The smaller voxel 

size and thinner image slices for 3D US images mean more precise volume 

measurements can be obtained and smaller changes in volume may be detectable.  

Use of the multiple sweep scanning function would allow whole muscle volumes to 

be captured.  The 3D US system was less expensive than MR, had fewer exclusion 

criteria for patient scanning and provided real time data.  The portability of the 3D 

US system would allow it to be brought into clinics or to the patient bedside as 

required.   
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8. Conclusions and Future Research 
 

 

Freehand 3D US was investigated as a method of imaging the musculoskeletal 

system that could overcome limitations of other modalities and provide an 

accessible, easy to use tool for both clinical and research use.  It was hypothesised 

that freehand 3D US could provide an alternative method to X-ray for monitoring 

fracture repair and also a flexible and non invasive means of obtaining accurate 

muscle volume measurements in vivo.   

 

The systematic evaluation of two potential 3D US systems showed that the optically 

tracked system was the most suitable for musculoskeletal imaging.  This system 

could reliably produce 3D datasets that were detailed and accurate.  The 3D models 

and Reslice images obtained from the datasets aided interpretation of the state of 

healing when monitoring fracture repair.  Accurate length measurements from scans 

allowed the changing width of the fracture gap to be measured during limb 

lengthening and this information was used to determine if the correct rate of 

distraction was applied.  Novel image analysis was applied to the data captured in RF 

format to develop a callus density measure as well as investigate the frequency 

dependent appearance of fracture callus.  The extended field of view images that the 

Reslice tool in StradWin provided were comparable to those produced during an MR 

scan and allowed comparable measurements of muscle volume to be made between 

the two modalities.  Pilot studies using the optical freehand 3D US system to 

investigate both fracture healing and measure muscle volumes in vivo showed 

promising results. 

 

 

8.1.1. Freehand Systems 

2D US imaging was introduced in Chapter 2 to highlight its abilities and limitations 

as an imaging technique.  The literature demonstrated that it had been used for a 
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variety of musculoskeletal imaging applications, however, operator dependency and 

approximations used for volume measurements meant other modalities were often 

favoured.  The development of 3D US was covered in Chapter 3 showing how this 

new technique had improved upon the abilities of 2D US.  The volume datasets it 

could provide reduced operator dependency in scan interpretation and allowed 

accurate length and volume measurements to be returned.  Furthermore, 3D US 

provided the operator with additional tools for visualisation which in some cases 

gave views of the anatomy which would not be available with 2D US or X-ray but 

would require the use of MR or CT.   

 

EM tracking offered the greatest flexibility for probe motion allowing the operator to 

scan the full circumference of a limb unhindered as was desirable for the intended 

clinical applications.  A healthy volunteer study demonstrated the potential of 3D US 

for musculoskeletal imaging.  The additional views, 3D models and length and 

volume measurements gave a more comprehensive means of assessing the 

musculoskeletal system than X-ray and in a more affordable way than MR.  

However, EM tracking was susceptible to other EM fields and ferromagnetic objects 

within or near the tracking field which made it unsuitable for the intended clinical 

applications.  An alternative optically tracked system was sought.  This provided 

greater positional accuracy than the EM system and was not affected by the presence 

of metal objects or other EM fields.   

 

The Optical 3D US system provided an accurate and reliable means of conducting 

3D US scans.  The use of calibration templates that could be created in StradWin, 

allowed quick changes to be made between scan settings and US probes reducing 

setup times.  A slow steady scanning rate used in conjunction with a frame rate of 20 

fps or above was found to produce detailed datasets from which to build 3D models 

and make measurements and also minimised the error on separation measurements.  

For the calibration templates created separation measurements could be made to 

within a maximum error of ±0.25 mm.  The Optical 3D US system was deemed 

suitable for use for the proposed clinical applications. 
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8.1.2. Fracture Repair 

In Chapter 2 the fracture repair process was covered in detail introducing the 

limitations of using X-ray to monitor the fracture repair process.  2D US was found 

to be able to identify signs of healing and also the occurrence of complications 

before they became visible on X-ray.  However, the operator dependency limitations 

of 2D US meant it was never adopted as a suitable alternative to X-ray.  Freehand 3D 

US offered a comprehensive means of imaging the fracture repair process and this 

was trialled in Chapter 5.  3D US scanning was tolerated well by all patients.  The 

fibrous material deposited within the fracture gap during the early stages of healing 

was visible using 3D US and a notable lag was detected between the amount of 

callus visible on X-ray compared to 3D US.  The first signs of healing could be 

detected at approximately 2-6 weeks whereas on X-ray it was 6-19 weeks. 

 

The 3D models and Reslice images allowed for easier interpretation of the shape of 

the fracture and developing callus as well as aided in the identification of 

complications.  In comparison, the projection nature of X-ray meant the shape of the 

fracture was not always clear and it was difficult to interpret at what depth callus was 

forming.  The change in greyscale intensity of the callus material on 3D US indicated 

that it was maturing and returning to a similar state as normal bone.  When 

monitoring limb lengthening this became a limitation, the periosteal callus forming 

on the edges of the fracture obscured the original bone ends making it difficult to 

determine the rate of distraction.  The use of metal marker beads which would be 

visible on US, placed at the edge of the osteotomy gap, was suggested to overcome 

this problem.   

 

 

8.1.3. Callus Density Measure 

Acquiring the US images in RF format rather than as processed B-scan images 

allowed novel image processing to be applied to the image data to try and extract 

additional information relating to bone density.  This was covered in Chapter 6.  The 
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Healing Index was developed as a comparative measure of the density of fracture 

callus compared to healthy bone on a patient specific level.  The aim was to provide 

a means of determining when a fracture was sufficiently healed to safely allow 

weight bearing or removal or a fixation device without risk of re-fracture.  Studies 

looking at the use of radiological measures and physical assessment of fracture callus 

strength found no agreed or validated standard.  A pre-clinical trial of the Healing 

Index using sections of decalcified sheep femur showed initial promise.  It was only 

in the later stages of the decalcification process that unexpectedly high values of the 

Healing Index were returned.  It is likely these anomalous results were a product of 

the limited regions of interest that could be sampled as well as the variation in 

background speckle in the images.  The effects of background speckle are a systemic 

limitation for the analysis of US images, however, fracture callus has a more uniform 

greyscale appearance than the experimentally decalcified bone so should be a lesser 

source of error in a clinical situation.  To make the Healing Index applicable to 

patient data would require further development of the analysis technique to look at 

volumes of interest instead of the 2D rectangular regions which currently limit this 

method.  Comparison of a volume of bridging callus to a volume of healthy bone 

would provide a more comprehensive measure of fracture callus density and a better 

indication of the progression of healing. 

 

 

8.1.4. Muscle Volume 

The need for a for an accurate, cost effective means of measuring skeletal muscle 

volumes in vivo was outlined in Chapter 2.  3D US was proposed as a suitable 

alternative as it could provide accurate volume measurements and image data can be 

viewed in a similar slice format to that of MR.  The healthy volunteer study 

presented in Chapter 7 compared the use of MR to 3D US.  The Optical freehand 3D 

US system was found to provide a non invasive means of measuring muscle volumes 

in vivo that was less resource intensive than MR.  The current 3D US system and 

scanning technique provided volume measurements within ±16% of MR derived 

volumes.  A new US machine and standardisation of patient positioning would be 
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required in order to improve on current results.  In addition, the inclusion of the 

multiple sweep function into StradWin will now make it possible to compare whole 

muscle volumes.  Further studies into the use of 3D US for measuring muscle 

volume are warranted. 

 

 

8.2. Future Research 

The line-of-sight restriction when using an optical tracking system limited the 

circumference around the limb that could be scanned.  Further to this the limited 

mobility of some of the fracture patients also made it difficult to maintain the 

required line-of-sight between the tracking tool and position sensor unit.  Work is 

being carried out by the MIG at Cambrigde to develop sensorless 3D US scanning by 

extracting positional data from features in the recorded US images (131).  The use of 

fibre optics has also been discussed but this idea is in its infancy.  A simple interim 

solution would be to look at the possibility of combining two or more Polaris sensor 

units and positioning these around the scanning region to allow the probe to be 

tracked at all times.   

 

The fracture study showed proof of concept but a further more comprehensive trial 

now needs to be carried out following up greater numbers of both fracture and limb 

lengthening patients. It would be recommended that fracture patients be followed up 

at 2 weekly intervals for the first 8 weeks then at 3 months and 6 months.  For limb 

lengthening patients follow-up should be fortnightly whilst lengthening is underway.   

 

The callus density measure requires development in order to apply it to patient data.  

The rectangular regions of interest that could be selected made it impractical to apply 

the Healing Index calculation to patient data.  Investigation is required into changing 

the regions of interest selected into volumes which can follow the contours of the 

callus and normal bone.   
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Finally, a new US machine would enable further studies using 3D US for measuring 

muscle volume to determine if more accurate results can be obtained.  Use of 

multiple sweep scanning would remove the need for standardisation of patient 

positioning between the MR and 3D US scan.  If these trials are positive 3D US 

should be compared to MR for measuring changes in muscle volume over a period of 

time due to a predetermined cause such as a set physical training regime.   
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Appendix A 
 

 

 The StradX Calibration Procedure 

 

Temporal calibration is carried out by holding the US probe steady in the water bath 

near to and perpendicular to its bottom.  The probe is then moved swiftly upwards to 

cause a significant change in both the image content and the position reading 

measurement.  The probe must be jerked upwards at least 5 cm within a time period 

of 100 ms in order for the motion to be registered by StradX.  The change in position 

of the line showing the bottom of the water bath and the change in the position 

reading for the probe are used to calculate the temporal offset between the images 

and positions  This process should be repeated 5 times to give an averaged 

calibration result.  

 

The temperature of the water in the water bath during calibration should be 48°C as 

this will match the average speed of US in soft tissue (1540 m/s) and is also the 

speed of the US pulse generated by the Diasus US machines.  However, at room 

temperature the 48°C temperature of the water bath will cool quickly and this can 

cause errors in the calibration process.  This can be avoided by using a 9% glycerol 

solution which has a propagation speed of US of 1540 m/s.   

 

The Spatial calibration used in StradX is the single-walled method which requires a 

simple flat surface phantom immersed within the water bath.  A set of calibration 

movements have been devised to ensure a sufficient range of motion of the probe is 

sampled for accurate calibration.  Figure A shows the required probe movement 

(119).   
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Figure A: Probe movements carried out during Spatial calibration.  This is necessary to define 

both the Spatial calibration parameters and the location of the calibration plane (Treece, Gee et 

al. 2003). 

 

 

The flat surface is scanned in order to obtain a series of US images that contain a 

single straight line.  The Random Sample Consensus (RANSAC) algorithm can then 

be applied to the calibration images to extract information about the position of the 

line in each B-scan images.  If a line cannot be detected by the RANSAC algorithm 
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due to weak image intensity or image artefacts that B-scan will be rejected by the 

algorithm and will play no further part in the calibration.  A set of calibration 

parameters are then applied to the co-ordinates of several points on each line 

extracted from each B-scan in order to transform the lines from the co-ordinate 

system of the B-scan image into the real world co-ordinate system.  The complete set 

of transformed lines should form a flat plane in real world space if the calibration 

parameters are correct.   

 
The series of calibration images should be reviewed at this point to check that the 

positioning of the automatically detected line matches the actual position of the line 

in each image.  This verifies that the automatic accept/reject decisions of the line 

detection algorithm were correct, the outcome of each decision is displayed below 

each image as it is reviewed in the Spatial calibration window.  If an image has been 

incorrectly accepted or rejected by the algorithm the user can force the system to 

reject or accept the image as appropriate.  The calibration solution algorithm is then 

applied to optimise the calibration parameters determined from the RANSAC 

algorithm.  The residual root mean square (RMS) error from this iterative process is 

provided at the end of the calibration and the size of the error provides a guide as to 

the quality of the calibration carried out (132).  An RMS error of less than 0.1 cm is 

deemed to be acceptable; an RMS error of less than 0.06 cm is desirable.   

 

Verification of the quality of the calibration can also be visually assessed using the 

Verify toggle button within the Spatial calibration window.  Verify mode displays a 

line representing the intersection of the calibrated plane superimposed on each B-

scan as it is reviewed.  This superimposed line should ideally match up with the 

position of the line showing the surface of the phantom plane.  The relative position 

of the two lines should be checked on each image to ensure they do not vary by more 

than a few millimetres, this is indicative of a reliable calibration; otherwise the 

calibration should be carried out again.     
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Appendix B 
 

 

The StradWin Calibration Procedure 

 

Certain system configuration parameters must be set within StradWin and on the US 

machine before calibration can be carried out.  The required depth setting and point 

of focus for the US probe must be first set on the US machine before initiating the 

live image display within StradWin.  Live display allows the US images to be viewed 

as they are recorded and is displayed alongside another window that shows the 

position of the tracking tool within the measurement volume during scanning.  The 

outline of the measurement volume changes colour dependent on the state of the 

tracking tool.  If it is green the tool is within the volume, if it is yellow the tracking 

tool is approaching the edge of the volume and if it is red it is outside the volume or 

the line-of-sight between the tool and position sensor unit has been blocked.   

 

With both live images and position tracking available the Record task page should be 

selected.  Both the image source and position source configuration details should be 

checked to ensure they are correct for the US probe, depth and point of focus settings 

being used.  Most of the image source configuration settings remain as default; the 

source of the image data should have been automatically detected.  The auto image 

cropping function will set the height, width and offsets for the US image being 

recorded or they can be set manually.  For RF image capture the RF image 

parameters need to be set, specifically the type of US probe to be used and RF signal 

sampling rate must be selected.  Finally, the number of focal points and the position 

of the first focal point for the US beam must be selected.  Position source 

configuration should automatically be detected when StradWin starts, however, if 

this has not happened details can be selected in the position source configuration 

menu.   
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On the Record task page the frame acquisition rate should be set to full speed and the 

image format should be set to Greyscale.  Finally, the data format must be selected, 

RF or B-scan.   Saving the image data in RF format gives far greater flexibility for 

post scan processing and analysis of US data. 

 

Calibration is initiated on the Probe Calib task page.  The first part of the calibration 

process requires the user to input the temperature of the water in the water bath.  

Room temperature water should be used for calibration as this avoids any change in 

temperature during the process which will affect the result.  Previously in StradX 

water of 48°C was recommended for calibration as the speed of US in water this 

temperature matched the speed of sound of the US pulse produced by the Diasus.  

However, a new algorithm has been incorporated into StradWin which compensates 

for the affects of using lower temperature water during calibration.   

 

Final adjustments should now be made to the US image using the Tx (Transmit 

gain), Rx (Received gain) and the TGC (Time Gain Compensation) controls on the 

US machine.  The appearance of the surface of the single walled phantom, which 

appears as a line on the B-scan images, should be set so that it is barely visible.  This 

helps to remove repeated surface artefacts from the image and aids the line detection 

process   

 

The dimensions of the pixels which make up the US image must be determined by 

measuring the width and height of the image.  In version 3.2 of StradWin and earlier 

only one measurement across the width of the image was made under the assumption 

that all US machines used square pixels. However, it has since been found that there 

are some US machines that use rectangular pixels in their displays and that this 

would affect calibration accuracy.  A good image of the bottom of the water bath 

should be obtained and then frozen using the US machine controls this will causes 

the image on StradWin to also freeze.  The measurement callipers on the US machine 

are used to determine the width of the image.  Keeping the image frozen the image 

width must be measured across the same point in StradWin using a further set of 

callipers  A set slider control is used to set the width of the line in StradWin using the 
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measurement obtained from the US machine callipers.  This process is repeated to 

measure height on the US image before the image display is unfrozen.  This 

procedure is slightly different for curvilinear probes. 

 

The next stage in the calibration process is to collect a series of images of the 

phantom in the water bath that will be used in the calibration algorithm.  The probe 

should be moved through the pre-defined set of motions shown previously in figure 

A for the StradX calibration procedure.  When the probe is moved into one of the 

calibration positions, a good image of the bottom of the water bath should be 

obtained and the line detector shown on the StradWin live image should be checked 

to ensure it is correctly locked on to the line before the image is accepted for use in 

calibration.  If the line detector is having difficulty locking onto the line a message 

stating ‘No valid Line’ will be shown.  At least 40 lines should be captured using the 

full range or probe positions in order to give a reliable calibration.  Once a set of 

lines has been collected, click the ‘Solve for Spatial calibration’ button to run the 

calibration algorithm.  This algorithm uses the position information extracted from 

the lines to determine the co-ordinate transforms between the US probe, tracking 

system and the real world system.  A good calibration should return an RMS error of 

less than 0.1 cm (109).  Details of the depth setting and probe frequency need to be 

input before the calibration is accepted for scanning.  At this point the calibration can 

be saved as a template to be reloaded for use at any future date.  Before saving the 

calibration as a template ensure that the desired frame rate data format are selected 

on the Record task page.   

 

Verification of the calibration can be carried out using a tracked pointer.  The 

optically tracked pointer is one of the tools included with the Polaris optical system.  

Polaris can track two different tools simultaneously and the positions of both tools 

are displayed within the tracked volume.  The pointer must be calibrated before 

verification can be carried out.  The pointer tool has a small sphere at its point, to 

calibrate the pointer this small sphere should be kept steady in one spot or ideally the 

point should be located in a small hemispherical dimple to limit movement.  The 

tracked pointer should be moved through as many degrees of freedom as is possible 
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over an interval of around ten seconds.  With the pointer calibrated; it can be 

positioned within the US beam so it appears in the live image.   

 

If the calibration of the US probe and the tracked pointer are consistent a green dot 

with a circle, which varies in diameter, appears around the image of the pointer tip on 

the US image.  As the pointer is moved in and out of the US beam the green circle 

will decrease and increase in size.  It should be smallest when the pointer reaches the 

mid point of the US beam, i.e. the pointer tip is brightest in appearance.  If this is the 

case the pointer and probe are consistently calibrated and the probe calibration is 

reliable.  The pointer check should be performed in a number of locations within the 

US image not just at the centre.  Calibration templates can be keep long term, 

however, they must be periodically checked using pointer verification to ensure they 

are still consistent and accurate.   
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Appendix C 
 

 

Calibration Templates 

 

Thirty calibration templates have been created for this project, fifteen for the 5-10 

MHz probe and fifteen for the 8-16 MHz probe.   Tables A and B contain details of 

each template.  The RMS errors obtained when carrying out the calibrations to create 

each template have not been included as they have changed each time the templates 

have been updated. 

 

 

Template 
Name 

Probe 
Frequency 
(MHz) 

Depth of 
Image (mm) 

Depth of Point 
of Focus (mm) 

T8174 5-10 81 74 
T8141 5-10 81 41 
T6160 5-10 61 60 
T6141 5-10 61 41 
T6129 5-10 61 29 
T6123 5-10 61 23 
T4141 5-10 41 41 
T4129 5-10 41 29 
T4123 5-10 41 23 
T4118 5-10 41 18 
T4115 5-10 41 15 
T3023 5-10 30 23 
T3018 5-10 30 18 
T3015 5-10 30 15 
T3010 5-10 30 10 

Table A: Details of the calibration templates created for use with the 5-10 MHz transducer 
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Template 
Name 

Probe 
Frequency 
(MHz) 

Depth of 
Image (mm) 

Depth of Point 
of Focus (mm) 

U6142 8-16 61 42 
U6130 8-16 61 30 
U6123 8-16 61 23 
U4123 8-16 41 23 
U4119 8-16 41 19 
U4117 8-16 41 17 
U3017 8-16 30 17 
U3016 8-16 30 16 
U3015 8-16 30 15 
U3014 8-16 30 14 
U3013 8-16 30 13 
U3012 8-16 30 12 
U3011 8-16 30 11 
U2008 8-16 20 8 
U2005 8-16 20 5 

Table B: Details of the calibration templates created for use with the 8-16 MHz transducer 
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Appendix D 
 

 

Conference Abstracts 

 
 2nd Joint Meeting of the Bone Research Society and British Orthopaedic 
Research Society, Manchester, June 2008 
 
Determining Human Skeletal Muscle Volume using 3D Freehand Ultrasound 
 
 
1E Ross*, 2TJ MacGillivray, 1 AHRW Simpson, 3 CA Greig 
 

1. Edinburgh Orthopaedic Engineering Centre, University of Edinburgh, 
Edinburgh Royal Infirmary 

2. Wellcome Trust Clinical Research Facility, University of Edinburgh 
3. Department of Clinical and Surgical Sciences, University of Edinburgh 

 
 
 
Measurements of change in skeletal muscle volume can indicate response to treatment 
in cancer patients and also the rate of rehabilitation in the case of joint replacement.  
Currently, Magnetic Resonance (MR) is the favoured method for muscle volume 
measurements however it is resource intensive and waiting times for non urgent cases 
are long.  3D Ultrasound provides a non invasive method of obtaining accurate 
muscle volume measurements and is acquired using a standard clinical ultrasound 
machine and an external optical tracking devices to monitoring the position of the 
transducer during scanning.  3D Ultrasound is much quicker and easier to access than 
MR and it is also less intimidating to children, the elderly and the very ill.  We have 
shown for the first time that 3D Freehand Ultrasound can be used to accurately 
determine human skeletal muscle volume in vivo.  Volume measurements of the 
rectus femoris quadricep muscle were obtained using 3D Freehand Ultrasound from 
four healthy volunteers and were validated against volume measurements derived 
using MR.  Muscle volume measurements obtained using 3D Ultrasound were within 
8% of the corresponding values from MR. The mean difference was 0.22cm3 with a 
standard deviation of 0.44cm3. 
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European Orthopaedic Research Society Conference, Madrid, April 2008. 
 

IMAGING OF THE MUSCULOSKELETAL SYSTEM USING 3D 
ULTRASOUND 
E. Ross, TJ. MacGillivray, AY. Muir, AHRW. Simpson 

Edinburgh Orthopaedic Engineering Centre, Chancellors Building, 49 Little France Crescent, 
Edinburgh, EH16 4SB U.K 

 
X-ray is the standard method for monitoring fracture healing however it is not ideal; signs of healing 
are not normally visible on X-ray until around 6-8 weeks post fracture.  Ultrasonography allows the 
detection of both the initial haematoma, usually formed immediately after fracture, and the small 
calcium deposits laid down between broken bone ends in the first stages of fracture healing. It has 
been reported that these early indicators of the healing process are visible as early as 1-2 weeks after 
fracture.  We use Freehand 3D Ultrasound to monitor the early stages of fracture healing as both the 
bone surface and surrounding soft tissues can be imaged simultaneously. 
         The Freehand 3D Ultrasound system consists of a standard Ultrasound machine, a PC running 
STRADWIN (Medical Imaging Group, Cambridge University) 3D software, and an optical tracking 
devise (NDI Polaris) to record the position and orientation of the Ultrasound probe during scanning.  
Images are transferred from the Ultrasound machine to the PC using RF capture through out a scan.  
Calibrating the system matches up the correct image with the correct probe position to produce a 3D 
dataset.   
   We segment features of interest on the sequence of 2D images to construct a 3D model.  These 
models are rotatable and provide views of the scanned anatomy that are not otherwise achievable 
using conventional Ultrasound or X-ray. The 3D data set can also be resliced through any plane to 
provide further views. 
    To conduct a 3D Ultrasound scan takes the same amount of time as a conventional 2D scan.  The 
production of the 3D model takes between 15-60 minutes depending on the level of detail required.  
Distances are measurable to within ±0.4mm meaning fracture gaps of sub-millimeter width can be 
resolved.  The system has already been evaluated on healthy volunteers and a clinical study currently 
underway. 
 
 
British Medical Ultrasound Society, Harrogate, December 2007. 
 
Invited to speak, no abstract submitted. 
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IPEM Biennial Ultrasound Meeting, Birmingham, February 2007. 

 
British Orthopaedic Research Society, Southampton, July 2006. 
 
 
IMAGING OF THE MUSCULOSKELETAL SYSTEM USING 3D ULTRASOUND 
1E Ross*, 2TJ MacGillivray, 1H Simpson and 3WN McDicken 
 

1. Edinburgh Orthopaedic Engineering Centre, University of Edinburgh, 
Edinburgh Royal Infirmary 

2. Wellcome Trust Clinical Research Facility, Western General Hospital, EH4 
XU 
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3. Medical Physics, University of Edinburgh, Edinburgh Royal Infirmary 
 
Imaging of the musculoskeletal system is vital for delivering optimum treatment 
particularly in the assessment of fracture healing. X-ray and CT are adequate 
imaging methods for bone but, soft tissue needs other modalities such as MRI 
and Ultrasound.  We propose the use of Freehand 3D Ultrasound to study the 
early stages of fracture healing by imaging the bone surfaces around the fracture 
site and monitoring changes in the surrounding soft tissue.  
Freehand 3D ultrasound is acquired by attaching a position sensor to the probe 
of a conventional 2D diagnostic ultrasound machine. As the probe is moved, its 
position and orientation are recorded along with the 2D ultrasound images. This 
enables slices through the body to be viewed that would be inaccessible using a 
normal ultrasound system. Bone surfaces around a fracture site are scanned and 
the data reconstructed using the Stradx and Stradwin software developed by 
Cambridge University, to give a 3D visualization of the area.  
To assess the feasibility of this proposed method the lower limbs of healthy 
volunteers were scanned using a 5-10MHz ultrasound probe. The scanning 
resolution of the system was evaluated using a phantom to ensure millimetre 
detail could be detected as would be required for imaging early fracture healing.  
It was found that detail down to 0.8mm could easily be resolved for 
measurement. 
The 3D system could accurately profile the different soft tissue interfaces.  The 
visible surfaces of the tibia were reconstructed to give 3D models. Additional 
layers of soft tissue interfaces could easily be added to these models to provide 
more detail. 
This imaging modality can provided detailed 3D models of bone the bone surface 
and surrounding soft tissue.  As ultrasound is non-ionizing, rescanning can be 
conducted more frequently than CT or x-ray thus offering a more accurate 
assessment of a patient’s response to healing. 
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Awarded the Mercia Award by the Worshipful Company of 
Engineers 2008 

Mercia Award Abstract 

 
Applications of 3D Freehand Ultrasound in Clinical Healthcare 
Erin Ross - Edinburgh Orthopaedic Engineering Centre 
 
3D Freehand ultrasound has the potential to revolutionise many aspects of clinical 
healthcare, particularly musculoskeletal examinations where X-ray is often 
inadequate and MR is extremely resource intensive.   
Fractures are currently X-rayed however signs of healing are not normally visible 
until 6-8 weeks, meaning it can be months before complications are identified. This 
prolongs rehabilitation, causes further distress to the patient and is costly.  Healing 
occurs initially in the soft tissues and can be imaged with 3D ultrasound after 1-2 
weeks.  Subsequent changes to bone surfaces can also be observed allowing much 
earlier detection and treatment of complications.   
In addition, measurements of muscle volume can indicate a patient’s response to 
cancer treatment as well as the rate of rehabilitation for joint replacement.  We have 
shown that 3D freehand ultrasound can be used to measure muscle volume in 
humans. Scanning is much less intimidating than MR, thus well suited to children, 
the elderly and the very ill. 
 
 

 

Published Paper 

T.J MacGillivray, E. Ross, H. Simpson, C.A. Greig.  3D freehand Ultrasound for in 
vivo determination of human skeletal muscle volume.  Accepted for publication in 
Ultrasound in Medicine and Biology November 35(6):2009 
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