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Abstract— Breast cancer affects one out of eight women.
Ultrasound (US) plays an important role in the diagnostic
workflow, especially during the biopsy phase, in which tissue
is extracted from the lesion for further analysis. The extension
from 2D to 3D US acquisitions has multiple benefits including
enhanced lesion localization and improved registration with
MRI data. Current commercial 3D US systems lack the ability
to preserve the breast’s original shape. Robotic US scanners
follow tailored trajectories and produce high quality volumes by
accurate localization of 2D slices captured with a conventional
linear probe. Current methods require a patient specific model
to plan the scanning trajectory.

In this study we investigate how to change the direction of
the scanning trajectory based on US feedback, such that no
patient specific model is required to perform a scan. In our
method, the scanning trajectory is kept tangent to the breast
based on confidence maps of the US images and an estimation
of current radius of curvature of the surface. We evaluated our
approach on a realistic breast phantom. The robot revolves
around the breast without prior knowledge of its shape. In ten
scans, the RMS error between the probe’s scanning plane and
the breast’s surface normal is 12.6° out-of-plane, and 4.3° in-
plane. A 3D US reconstruction shows the acquired data. This
is a step forward to fully autonomous, high quality robotic US
volume acquisitions.

I. INTRODUCTION

One out of eight women is affected by breast cancer during
her lifetime. Early detection of suspicious lesions is known to
reduce the mortality rate [1]. Several imaging modalities play
an important role in the detection and diagnosis of breast
cancer such as mammography, ultrasound (US) and MRI.

The role of US in breast cancer diagnostics is versatile.
If a lesion is found during an examination, a biopsy is
required, which is a procedure in which some tissue from the
abnormality is removed with a needle for further examination.
A US guided biopsy is the preferred biopsy method, since this
method gives real-time feedback, is straightforward, relatively
cheap, fast and causes less patient discomfort compared to
an MRI-guided biopsy. Additionally, US can play a role in
detecting breast cancer in females with dense breasts [2].

However, US has some limitations as well. The sensitivity
of US is low compared to e.g. MRI. Therefore, lesions de-
tected on MRI may be difficult to detect on US. Additionally,
B-mode US images represent 2D cross-sections of the tissue.
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This, combined with the fact that the probe is manipulated
manually, makes the interpretation of the spatial relation
between imaged regions difficult, and screening the complete
breast time consuming. Due to these limitations, a US guided
biopsy may not be possible on an MR-detected lesion, and
therefore an MR guided biopsy is necessary.

The extension of 2D US to 3D US images will partly solve
these issues. A 3D US volume has multiple advantages over
2D US images: the interpretation of spatial relations between
internal structures is independent of the radiologist’s ability
to interpret individual slices, the lesion size is measured more
accurately, the reproduction of cross-sections at follow up
studies is easier, and the registration of US data with MRI
data is less complex due to more available features [3].

Therefore, a variety of solutions to produce 3D US volumes
have been presented. A 3D US probe can be realized by
integrating a motorized 1D array of transducer elements
or extending to a 2D array of elements. These probes are
suboptimal since the fabrication is complex and latency of
the image generation combined with the unstable hand of the
radiologist introduces errors [4]. Therefore, many systems
work with regular linear probes, of which the motions are
tracked through time and space. Examples of these are
optically or electromagnetically tracked freehand techniques
[5]. Furthermore, linear probes can be integrated on moving
platforms to perform a reproducible tracked motion. Commer-
cial breast volume scanners are available in supine and prone
variations. Supine examinations cause significant deformation
of the breast [6]. Examinations in prone position, such as US
tomography, cause less deformation but the covered volume
is limited and the system is not suitable for all breast shapes
and sizes [7].

Theoretically, robots are ideal to perform 3D US acquisi-
tions because they produce reproducible, precisely tracked mo-
tions. This results in evenly spaced US images and eases the
volume reconstruction. Multiple degrees of freedom (DOFs)
allow for complex trajectories adapted to the individual’s
breast shape and robots do not suffer from fatigue.

Usually, robotic US volume acquisitions consist of two
steps: localization and scanning. The patient should be
localized to plan the subsequent scanning phase. Currently
employed methods are surface reconstruction based on stereo
cameras [8] or a depth camera [6] and the registration of MRI
data based on multi modality markers [9]. Patient-specific
paths may be generated by projecting a generic path on a
tesselated surface representing the patient [10].

Although the patient’s position was determined during the
localization phase, the pre-planned path may not perfectly
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Fig. 1: A system overview. (a) A 7DOF manipulator with an end-effector is placed underneath the patient’s breast. The reference trajectory is initially a
straight line, but is wrapped around the breast in real-time based on the visual servoing algorithm. (b) Three probe adjustments can be performed based on
US feedback and past EE positions. A rotation around the EE y-axis based on the bary center, a movement in the z-direction based on the mean confidence,
or a rotation around the x-axis based on the current radius of curvature and the mean confidence.

follow the breast’s shape. This can be due to inaccuracies in
the surface reconstruction, or due to involuntary movements
of the patient, such as breathing. There are several methods
to compensate for inaccuracies of the pre-planned trajectory
compared to the actual patient. Often, impedance control
is utilized to account for small deviations and to ensure
safe interactions between the robot, the patient and the
radiologist [11]–[14]. However, to ensure good acoustic
coupling of the US probe with the skin, some form of
feedback during scanning is preferred. Sensing mechanisms
currently employed in robotic scanning are force feedback
and image feedback. Force feedback is mostly used to keep
a constant pressure during scanning, but also to align the
probe with the surface normal of the tissue [6], [14]–[18].
Kim et al. link the applied force to the image quality [19].
Our previous work showed that confidence maps are also an
option to keep the US probe in contact with the tissue [10].
The advantage of image feedback over a constant normal
force is the application of similar deformations for both softer
and harder tissue. Additionally, confidence maps have been
used to balance the probe contact with the tissue [10], [15],
[17], [18]. Other visual servoing techniques, which connect
end-effector (EE) behavior to image features are intensity
based methods, feature tracking algorithms, image moments
and speckle correlation or block matching [20]–[24].

In this paper we investigate how to utilize current and
past US images to perform corrections on the path not only
in-plane, like in our previous work [10], but also out of the
US plane. The advantage is that the robot will find its way
around the breast autonomously, and thus the localization step
can be omitted. The out-of-plane corrections are achieved by
keeping the confidence constant, and estimating the radius of
curvature. The probe’s scanning plane is kept perpendicular to
the tangent plane of the surface and thus follows the breast’s
shape. The approach is validated by means of experiments
on a realistic breast phantom.

II. THE SCANNING ALGORITHM

A. System overview

Fig. 1 shows an overview of the system. The patient
lies in prone position on a bed with the examined breast
through a hole such that it is freely accessible by the robot.
The robot is placed underneath the bed, and is equipped
with an EE carrying a US probe [9]. The robot’s initial
position coincides with the first pose and position of an
initially planned trajectory. This trajectory is a straight line
at a specified height in the negative y-direction of the EE
frame, Ψee. Once the scanning is started, the robot first
localizes the breast surface. During scanning, the robot tries
to keep the trajectory tangent to the surface based on the
confidence of incoming US images (Fig. 1(b)). It does so
by transforming the remaining part of the trajectory with
the depicted transformations. The functioning of the various
components is further elaborated in the following sections.

B. Operational space control

Operational space control, originally introduced by [25],
is an approach to achieve desired EE behavior by applying
virtual forces to the EE, and mapping these to the joint space
of the robot. The control signal for the torques on the joints,
τc, is expressed as

τc = JT(q) Mx(q) (kp (xd − x) + kd (ẋd − ẋ)) , (1)

where q is the vector with joint positions, JT(q) is the Jaco-
bian transpose, which maps the forces from the operational
space to the joint space, Mx is the inertia matrix of the robot
expressed in the operational space, which is

Mx(q) =
(
J(q)M−1

q (q) JT(q)
)−1

, (2)

in which Mq(q) is the mass matrix of the robot expressed in
joint space. kp is the spring constant, xd and ẋd are the desired
position and velocity, respectively, x and ẋ are the current
position and velocity in the operational space, respectively,
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and kd is the value of the damper. xd is extracted from a
homogeneous transformation matrix, H0

d , which is generated
by the visual servoing algorithm and describes the desired
configuration of the EE-frame, Ψee, with respect to the base
frame, Ψ0. In our work, the desired velocity, ẋd, is zero.

C. Confidence maps

Confidence maps were originally introduced by [26], to
highlight attenuated regions of a US image. As such, they
are useful to gain insight in the acoustic coupling of the
probe with the skin. Each pixel (u, v) of an image is located
in Ω := [1..n] × [1..m]. A confidence map C : Ω → [0, 1]
is a pixel-wise representation of the uncertainties in a US
image U : Ω → [0, 1]. The map, f : U → C, is based on
the probability of a random walk starting from a pixel and
reaching each of the virtual transducer elements. The random
walk equilibrium meets three constraints: the top row of the
US image has confidence 1, the bottom row has confidence
0, and the signal path is conform to US specific propagation
constraints. In Fig. 1(b), examples of US images and their
corresponding confidence maps are presented. Two features
of the confidence maps are useful for adjustments of the pose
and position of the probe: the mean confidence, Cmean, and
the barycenter of the confidence, µ.

The mean confidence is a measure for the area of the
transducer being in contact with the skin. It is defined as

Cmean =
1

n ·m
∑

(u,v)∈Ω

C (u, v) . (3)

If the mean confidence is controlled around a setpoint, Cs,
a constant amount of contact with the skin is ensured. The
confidence error is defined as: eC = Cs − Cmean.

The barycenter of the confidence is defined as

µu =
1

CΩ

∑
(u,v)∈Ω

u · C(u, v) ,

µv =
1

CΩ

∑
(u,v)∈Ω

v · C(u, v) ,
(4)

with CΩ =
∑

(u,v)∈Ω C (u, v) the total confidence. The pixel
indices µu and µv correspond to EE coordinates µz and µx,
respectively. A centered contact will result in µx = 0. As
in-plane rotations have an influence on the barycenter, the
error is defined as eµ = arctan µx

µz
radians.

Only the top of the confidence image is utilized in the
control to make both features independent of the patient’s
physiology, as the first layer of tissue always consists of a
skin and adipose layer.

D. Continuous contact

A controller is designed to maintain the mean confidence
and the barycenter at the setpoints and as a result keep contact
during a scan. Initially, the planned path is a straight line, its
waypoints are listed in an array of transformation matrices,
H0

ref(j), j indicating the current entry.
As outlined in Fig. 1(b), three types of transformations are

applied to the initial trajectory: Hθ rotates the probe around

Scanning Recovery
i++, j++

Initialization

Initial state

Cmean ∈ Cr

i++ i++

j = end
Cmean ∉ Cr

Cmean ∈ Cr

Fig. 2: The robot controller has three states: The initialization state, the
scanning state and the recovery state. The initialization state ensures the initial
contact. The scanning state takes new waypoints and continues the trajectory
along the breast. The recovery state regains contact if the confidence is not
sufficient.

its y-axis, Hz is adjusted to translate the waypoints towards
or away from the breast, and the out-of-plane transformation,
Hoop, is used to give the trajectory a new direction. The
desired configuration of the EE in the i-th control iteration,
H0

d (i), is defined as

H0
d (i) = Hoop(i)H0

ref(j)Hz(i)Hθ(i) . (5)

Hθ(i) is adjusted to maintain the confidence barycenter at
its setpoint. This is performed by a PID controller, and the
updated matrix is defined as:

Hθ(i) = Hθ(i− 1)

[
Roty(θ) 03×1

01×3 1

]
, (6)

in which i − 1 indicates the previous control iteration and
Roty(θ) is a rotation matrix around the y-axis of θ radians.

A state machine is designed to apply modifications toHz(i)
and Hoop(i) in a coordinated manner (Fig. 2). It consists of
three states: initialization, scanning and recovery.

1) Initialization state: This state ensures acoustic coupling
between the breast surface and the US probe at the start of the
scan. To achieve this, next to Hθ(i), Hz(i) is manipulated
by a PID controller. Hz is defined by

Hz(i) = Hz(i− 1)

[
I3×3 d ẑ
01×3 1

]
, (7)

in which I is the identity matrix, d is the displacement and
ẑ is the unity vector in the z-direction.

A mean confidence range, Cr, has been defined with the
lower and upper boundary being bmin and bmax, respectively,
such that: Cr = [bmin, bmax]. The probe is in contact if Cmean ∈
Cr and the controller moves on to the next state. In this state:
Hoop = I4×4 .

2) Scanning state: The robot moves along the path by
incrementing j every control iteration. Hoop(i) is adjusted
to maintain the confidence setpoint: if the confidence is
decreasing while performing a linear motion, the surface
is expected to be convex, whereas an increasing confidence
indicates a concave surface. As such, a PID controller can
adjust the direction of the scan to maintain the confidence
setpoint. Additionally, the radius of curvature of the surface
is estimated by applying a Taubin circle fit on a window of
the past trajectory and therefore, a prediction of the change
in direction is available too [27].

The out-of-plane transformations perform a rotation around
a frame defined by the orientation of the reference path and
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the origin of the current EE position. The transformation
is expressed in the base frame of the robot such that i-th
out-of-plane rotation is defined as:

Hoop(i) = Hoop(i− 1) ·[
R0

ref p0
ee

01×3 1

] [
Rotx(φ)

3×3
03×1

01×3 1

] [
R0

ref p0
ee

01×3 1

]−1 , (8)

in which R0
ref is the orientation of the current reference

waypoint, p0
ee is the current position of the EE and Rotx(φ)

is a rotation around the x-axis by φ radians. In this state, Hz

is kept constant. The controller goes to the recovery state if
Cmean /∈ Cr.

3) Recovery state: The controller adjusts Hz(i) to regain
sufficient contact with the skin. Additionally, Hoop(i) is
adjusted such that the EE is again perpendicular to the newly
estimated tangent. The controller moves back to the scanning
state if Cmean ∈ Cr.

Table I gives an overview of which manipulation is
performed in which state of the state machine.

III. EXPERIMENTAL VALIDATION

A. Experimental setup

The setup (Fig. 3) consists of a seven DOFs robotic
manipulator (KUKA Med 7 R800, KUKA GmbH, Germany)
to which an EE is connected. The EE holds an L15-
7L40H-5 linear US probe (Telemed UAB, Lithuania). The
transformation of the transducer with respect to the flange is
retrieved from the CAD design of the EE. The US probe is
connected to a MicrUs EXT-1H (Telemed UAB, Lithuania)
which streams the 27×40 mm (w×h) US images with an
update rate of 40 Hz to a workstation via a server. This
workstation runs the algorithms and communicates with the
manipulator via the fast research interface [28].

A breast phantom was made based on the surface re-
construction of a breast MRI of a woman laying in prone

TABLE I: Overview of the various manipulations to the current desired
position and the corresponding states in which they are performed.

Control action State

Initialization Scanning Recovery

Hz
3 3

Hθ
3 3 3

Hoop
3 3

Href  (j++)0

3

(b)

KUKA Med

End-effector

Telemed

Phantom

Markers(a)

Fig. 3: The setup. (a) An enlarged version of the EE and the phantom with
indicated the skin markers. (b) An overview of the setup with indicated:
the KUKA MED medical robot, the EE, the phantom and the Telemed
ultrasound machine.

position. Two molds were printed: an outer mold with
the breast shape, and an inner mold. The inner mold was
placed inside the outer mold to create a 5 mm thick skin
layer which was filled with a PVCP/Plasticizer (100 % / 0 %)
mixture (Bricoleurre, France). Then, the inner mold was
removed. The remaining volume was filled with a mixture of
PVCP/Plasticizer (100 % / 0 %) strands and PVCP/Plasticizer
(70 % / 30 %), to create a randomized structure resembling
the adipose and glandular tissue in an actual breast. Silica
powder was added to all mixtures in varying amounts (0-1
wt.%) to give the tissue varying degrees of echogenicity. The
adipose tissue in this breast is up to ten times stiffer than
actual adipose tissue, the skin layer has a stiffness comparable
to actual skin [29]–[31].

Five skin markers were fabricated from PVCP mixed with
green colorant (LUPA coloring, LureParts, The Netherlands).
These were attached to a 1 mm PET disk and glued on
the phantom. The markers are used for MRI data to robot
registration during the experiment.

The breast was placed centered above the robot at a height
of approximately 1.1 m (Fig. 3). This configuration resembles
a patient laying in prone position on the bed.

B. Experiments

The fabricated phantom was scanned ten times. A scan
contained the following steps: US gel was applied to the
phantom with a brush. The EE was aligned with the first
location of the path, (x, y, z) = (0.06, 0, 1.01) m. The y-
and z-axis of the EE were aligned with the -y and the x-
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Fig. 4: (a) The average confidence, Cmean along the trajectory for ten scans.
(b) The average error of the barycenter, eµ, for ten scans. The opaque region
indicates the standard deviation.

axis of the base frame, respectively. The probe surface was
located at 2 cm from the breast surface in this position. The
scan was started and the robot automatically navigated along
the breast surface with a velocity of 2.5 mm s−1. A scan
was stopped when the robot had executed approximately
360° around the breast. The confidence setpoint, Cs, was
0.50. The confidence range in which the scanning state is
active was Cr = [0.35, 0.7]. The boundaries were chosen
asymmetric because a higher confidence is preferred over
no contact. Additionally, a phantom-to-robot calibration was
performed with stereo cameras to evaluate the quality of the
US acquisitions afterwards.

C. Results

The robot succesfully revolved around the breast ten times.
All plots are shown in polar coordinates with the breast at
its center, because the trajectory approximates a circle.

In Fig. 4, the mean confidence and the error of the
barycenter are plotted. The RMS error of the confidence
was 0.08. The confidence is mostly above the setpoint of
0.5, because a too low confidence was penalized more by the
controller than a too high confidence, due to the asymmetric
boundaries that determine the robot state. The barycenter was
on average -2.2° off, whereas the RMS error is 12.2°.

The EE’s z-axis should be collinear with the breast’s surface
normal. To this end, the probe can rotate around the EE’s
x- and y-axis. We assessed the EE’s orientation with respect
to the phantom by means of the camera calibration and the
surface reconstruction of the phantom. The out-of-plane error
is defined as the angle between the breast’s surface normal
and the image plane. Thus, the rotation around the EE’s
x-axis necessary to align the image plane with the surface
normal. The in-plane error indicates how much the rotation
around the EE’s y-axis is off. Fig. 5(a) and (b) present the
out-of-plane and the in-plane error, respectively. On average,
the out-of-plane error is -7.6°, and the RMS error 12.6°. At
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Fig. 5: (a) The average out-of-plane error of the probe with respect to the
surface normal of the breast for ten scans. (b) The average in-plane error of
the probe with respect to the surface normal of the breast for ten scans. The
opaque region indicates the standard deviation.

0°, the error builds up in the negative direction, because the
robot did not record enough data to estimate the radius of
curvature yet. Around 180°, the error becomes positive, since
the breast’s cross section is ellipse shaped (see Fig. 6(a)), and
the algorithm underestimates the radius of curvature on the
flatter side. The mean in-plane error is 4.0°, and the RMS
error is 4.3°. As expected, these numbers have the same order
of magnitude as the errors in the barycenter.

Fig. 6(a) shows the robot trajectory with respect to the
breast surface. It is shown that the breast is most indented
around 0°and 210°. This effect is also due to the algorithm’s
tendency to underestimate after a transition from a small to
a large radius of curvature. Additionally, at 210°, the EE’s
xy-plane is almost aligned with the world’s xy-plane. The
steep inclination of the breast’s surface at this position makes
that this plot is sensitive to calibration errors in this section.

Fig. 6(b) shows the confidence in the US images at z =
1.01 m for scan No. 9. The graph shows a confidence which
is higher than the average confidence as shown in Fig. 4(a)
in most sections. The confidence is usually the highest in
the middle of an image. This cross section is approximately
taken at the middle of all acquired images, and represents
the highest confidence found for each location. From this
image, it is clear that the breast volume is mostly covered
with high confidence data. The confidence is lower in the
middle, because the confidence decreases the further it travels
through the phantom. There is a section in the middle which
is not imaged and thus does not have confidence.

Fig. 6(c) shows the reconstructed US cross section. This
reconstruction is based on the acquired US data, and a
deformation compensation is applied based on the original
shape as extracted from the MRI images of the phantom.
Some features of the phantom are clearly distinguished, such
as the 5 mm thick skin layer.
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Fig. 6: (a) The anticipated cross-section (dashed) of the breast at height z = 1.01m and the the average US probe’s position (solid) for ten scans. The
opaque region indicates the standard deviation. (b) The confidence in the US signal in the cross-section of the breast at z = 1.01m for scan No. 9. This
scan was the closest to the average trajectory shown in (a). (c) The generated US cross-section of the breast based on the acquired data during scan No. 9.

IV. DISCUSSION

This study presents an approach for fully automated robotic
breast volume US acquisitions. The approach was tested in
a realistic clinical setting with a breast phantom placed in
prone position over the robot. The robot follows the breast
surface without prior knowledge.

Our results show that it is feasible to control three DOFs
of the EE based on confidence maps: a translation in the
z-direction of the EE, an in-plane rotation and an out-of-plane
rotation. This is an improvement over our previous study [10],
which was able to control two degrees of freedom.

The addition of an extra DOF has a significant impact on
the workflow of a robotic US acquisition. Other studies use
some form of prerequisite information on which the US scan
is based. Most often, this is a surface reconstruction of the
scanned area, which can be acquired with stereo cameras [8],
a depth camera [6], or registration with a MRI images [10].
Utilizing our implementation, the robot revolves around the
breast based on just a generic initial path and US feedback.
Calibration steps between the camera, the robot and the
patient, the extra time taken by recording the surface data or
the necessity of a pre-operative MRI are all ruled out, because
the system depends on just the US data. Additionally, the
complexity of the EE is reduced to just a linear US probe.

However, the US volume reconstruction becomes more
complex if the preprocedural surface reconstruction is absent,
because the initial state compared to the compressed state is
unknown. In our study, we utilized the camera calibration and
the surface reconstruction of the phantom for deformation
compensation in the US volume reconstruction. We are
investigating whether transitions from low to high confidence
allow us to reconstruct the original breast shape during a
scan. This allows not only the robotic acquisition, but also
the reconstruction to be independent of prerequisite data.

Currently, the system’s out-of-plane corrections still lag
behind the actual surface normal of the breast. Consequently,
Fig. 6(c) shows a section without data in the middle. The lag
is caused by the system’s dependence on a prediction of the
radius of curvature, which is based on a past section of the

trajectory. Therefore, at the start of the scan, the prediction
is not accurate yet, and later during the scan, if the radius
of curvature transitions from small to large or vice versa
too fast, the systems adapts with a delay. Position-wise this
delay is less present, because the recovery state constantly
reestablishes the contact of the probe with the skin.

The system’s performance should be further examined
under different circumstances. Currently, the system was
tested on one phantom, with a specific size, shape and material.
Although the phantom is a representative example, many
variations occur in real life scenarios such as the quantity
of US gel, actual human tissue and patient movements. The
robustness may be improved by manually choosing the initial
position of the probe, such that the initial configuration can
be adapted to the breast’s shape by e.g. an initial in-plane
rotation. It is expected that differences in stiffness have minor
impact on the results, since the adjustments are based on
image-features, and not on force.

Currently, the acquisition time is approximately 180 s,
which is comparable to existing systems [7]. However, total
volume coverage may require multiple sweeps at varying
heights. Therefore, the scanning velocity and acquisition rate
may have to be increased in future work.

Summarizing, the presented method shows potential for
autonomous breast volume US acquisitions. The approach
may also be applicable in other clinical settings such as
skeletal muscle volume determination and abdomen screening.

V. CONCLUSION

This work investigates how to control three DOFs of the
robot utilizing US feedback. The robot finds its way around
a complex shape like the breast based on a simple reference
trajectory and real-time US and position feedback. Currently,
the RMS error of the in-plane and the out-of-plane alignment
of the scanning plane with the surface normal is 4.3° and
12.6°, respectively. The acquired US data covers a significant
part of the desired cross-section. The obtained results show
the potential of the approach, which may also be interesting
for other US scanning applications.

12520



REFERENCES

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and
A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries,”
CA: A Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, nov
2018.

[2] M. Nothacker, V. Duda, M. Hahn, M. Warm, F. Degenhardt, H. Madjar,
S. Weinbrenner, and U.-S. Albert, “Early detection of breast cancer:
benefits and risks of supplemental breast ultrasound in asymptomatic
women with mammographically dense breast tissue. A systematic
review,” BMC Cancer, vol. 9, no. 1, p. 335, dec 2009.

[3] S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S. X. Li, D. Ni, and
T. Wang, “Deep Learning in Medical Ultrasound Analysis: A Review,”
Engineering, vol. 5, no. 2, pp. 261–275, 2019.

[4] Q. Huang and Z. Zeng, “A Review on Real-Time 3D Ultrasound
Imaging Technology,” BioMed Research International, vol. 2017, pp.
1–20, 2017.

[5] F. Mohamed and C. Vei Siang, “A Survey on 3D Ultrasound
Reconstruction Techniques,” in Artificial Intelligence - Applications in
Medicine and Biology. IntechOpen, jul 2019, ch. 4.

[6] Q. Huang, B. Wu, J. Lan, and X. Li, “Fully Automatic Three-
Dimensional Ultrasound Imaging Based on Conventional B-Scan,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 2,
pp. 426–436, apr 2018.

[7] D. Amy, Lobar Approach to Breast Ultrasound, D. Amy, Ed. Cham:
Springer International Publishing, 2018.

[8] T. E. Chemaly, F. J. Siepel, S. Rihana, V. Groenhuis, F. van der Heijden,
and S. Stramigioli, “MRI and stereo vision surface reconstruction and
fusion,” in 2017 Fourth International Conference on Advances in
Biomedical Engineering (ICABME), vol. 2017-Octob. IEEE, oct 2017,
pp. 1–4.

[9] M. K. Welleweerd, F. J. Siepel, V. Groenhuis, J. Veltman, and
S. Stramigioli, “Design of an end-effector for robot-assisted ultrasound-
guided breast biopsies,” International Journal of Computer Assisted
Radiology and Surgery, vol. 15, no. 4, pp. 681–690, apr 2020.

[10] M. Welleweerd, A. de Groot, S. de Looijer, F. Siepel, and S. Stramigioli,
“Automated robotic breast ultrasound acquisition using ultrasound
feedback,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, may 2020, pp. 9946–9952.

[11] C. Graumann, B. Fuerst, C. Hennersperger, F. Bork, and N. Navab,
“Robotic ultrasound trajectory planning for volume of interest cover-
age,” Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2016-June, pp. 736–741, 2016.

[12] R. Kojcev, B. Fuerst, O. Zettinig, J. Fotouhi, S. C. Lee, B. Frisch,
R. Taylor, E. Sinibaldi, and N. Navab, “Dual-robot ultrasound-
guided needle placement: closing the planning-imaging-action loop,”
International Journal of Computer Assisted Radiology and Surgery,
vol. 11, no. 6, pp. 1173–1181, jun 2016.

[13] K. Mathiassen, J. E. Fjellin, K. Glette, P. K. Hol, and O. J. Elle,
“An Ultrasound Robotic System Using the Commercial Robot UR5,”
Frontiers in Robotics and AI, vol. 3, no. February, pp. 1–16, 2016.

[14] Z. Jiang, M. Grimm, M. Zhou, Y. Hu, J. Esteban, and N. Navab, “Au-
tomatic Force-Based Probe Positioning for Precise Robotic Ultrasound
Acquisition,” IEEE Transactions on Industrial Electronics, vol. 0046,
no. c, pp. 1–1, 2020.

[15] S. Virga, O. Zettinig, M. Esposito, K. Pfister, B. Frisch, T. Neff,
N. Navab, and C. Hennersperger, “Automatic force-compliant robotic
ultrasound screening of abdominal aortic aneurysms,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, oct 2016, pp. 508–513.

[16] A. S. B. Mustafa, T. Ishii, Y. Matsunaga, R. Nakadate, H. Ishii,
K. Ogawa, A. Saito, M. Sugawara, K. Niki, and A. Takanishi,
“Development of robotic system for autonomous liver screening using
ultrasound scanning device,” 2013 IEEE International Conference on
Robotics and Biomimetics, ROBIO 2013, no. December, pp. 804–809,
2013.

[17] P. Chatelain, A. Krupa, and N. Navab, “Confidence-Driven Control of
an Ultrasound Probe,” IEEE Transactions on Robotics, vol. 33, no. 6,
pp. 1410–1424, dec 2017.

[18] Z. Jiang, M. Grimm, M. Zhou, J. Esteban, W. Simson, G. Zahnd, and
N. Navab, “Automatic Normal Positioning of Robotic Ultrasound Probe
Based only on Confidence Map Optimization and Force Measurement,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1342–1349,
2020.

[19] Y. J. Kim, J. H. Seo, H. R. Kim, and K. G. Kim, “Development of a
control algorithm for the ultrasound scanning robot (NCCUSR) using
ultrasound image and force feedback,” The International Journal of
Medical Robotics and Computer Assisted Surgery, vol. 13, no. 2, p.
e1756, jun 2017.

[20] C. Nadeau and A. Krupa, “Intensity-Based Ultrasound Visual Servoing:
Modeling and Validation With 2-D and 3-D Probes,” IEEE Transactions
on Robotics, vol. 29, no. 4, pp. 1003–1015, aug 2013.

[21] P. Abolmaesumi, S. Salcudean, Wen-Hong Zhu, M. Sirouspour, and
S. DiMaio, “Image-guided control of a robot for medical ultrasound,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pp.
11–23, 2002.

[22] R. Mebarki, A. Krupa, and F. Chaumette, “2-D Ultrasound Probe
Complete Guidance by Visual Servoing Using Image Moments,” IEEE
Transactions on Robotics, vol. 26, no. 2, pp. 296–306, apr 2010.

[23] A. Krupa, G. Fichtinger, and G. D. Hager, “Real-time Motion
Stabilization with B-mode Ultrasound Using Image Speckle Information
and Visual Servoing,” The International Journal of Robotics Research,
vol. 28, no. 10, pp. 1334–1354, oct 2009.

[24] R. Nakadate, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, and
K. Niki, “Out-of-plane visual servoing method for tracking the carotid
artery with a robot-assisted ultrasound diagnostic system,” in 2011
IEEE International Conference on Robotics and Automation. IEEE,
may 2011, pp. 5267–5272.

[25] O. Khatib, “A Unified approach The operational space formulation.pdf,”
pp. 43 – 53, 1987.

[26] A. Karamalis, W. Wein, T. Klein, and N. Navab, “Ultrasound confidence
maps using random walks,” Medical Image Analysis, vol. 16, no. 6,
pp. 1101–1112, aug 2012.

[27] N. Chernov, “C++ code for circle fitting algorithms.”
[28] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface

for the kuka lightweight robot,” IEEE Workshop on Innovative Robot
Control Architectures for Demanding (Research) Applications How to
Modify and Enhance Commercial Controllers (ICRA 2010), pp. 15–21,
2010.

[29] A. Gefen and B. Dilmoney, “Mechanics of the normal woman’s breast,”
Technology and Health Care, vol. 15, no. 4, pp. 259–271, jul 2007.

[30] A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal
and pathological human breast tissues: An inversion-technique-based
investigation of 169 samples,” Physics in Medicine and Biology, vol. 52,
no. 6, pp. 1565–1576, 2007.

[31] W. Li, B. Belmont, and A. Shih, “Design and Manufacture of Polyvinyl
Chloride (PVC) Tissue Mimicking Material for Needle Insertion,”
Procedia Manufacturing, vol. 1, pp. 866–878, 2015.

12521


		2022-08-24T12:45:37-0400
	Preflight Ticket Signature




