1,531 research outputs found

    Calibration of non-conventional imaging systems

    Get PDF

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    SIGS: Synthetic Imagery Generating Software for the development and evaluation of vision-based sense-and-avoid systems

    Get PDF
    Unmanned Aerial Systems (UASs) have recently become a versatile platform for many civilian applications including inspection, surveillance and mapping. Sense-and-Avoid systems are essential for the autonomous safe operation of these systems in non-segregated airspaces. Vision-based Sense-and-Avoid systems are preferred to other alternatives as their price, physical dimensions and weight are more suitable for small and medium-sized UASs, but obtaining real flight imagery of potential collision scenarios is hard and dangerous, which complicates the development of Vision-based detection and tracking algorithms. For this purpose, user-friendly software for synthetic imagery generation has been developed, allowing to blend user-defined flight imagery of a simulated aircraft with real flight scenario images to produce realistic images with ground truth annotations. These are extremely useful for the development and benchmarking of Vision-based detection and tracking algorithms at a much lower cost and risk. An image processing algorithm has also been developed for automatic detection of the occlusions caused by certain parts of the UAV which carries the camera. The detected occlusions can later be used by our software to simulate the occlusions due to the UAV that would appear in a real flight with the same camera setup. Additionally this algorithm could be used to mask out pixels which do not contain relevant information of the scene for the visual detection, making the image search process more efficient. Finally an application example of the imagery obtained with our software for the benchmarking of a state-of-art visual tracker is presented

    Long Range Automated Persistent Surveillance

    Get PDF
    This dissertation addresses long range automated persistent surveillance with focus on three topics: sensor planning, size preserving tracking, and high magnification imaging. field of view should be reserved so that camera handoff can be executed successfully before the object of interest becomes unidentifiable or untraceable. We design a sensor planning algorithm that not only maximizes coverage but also ensures uniform and sufficient overlapped camera’s field of view for an optimal handoff success rate. This algorithm works for environments with multiple dynamic targets using different types of cameras. Significantly improved handoff success rates are illustrated via experiments using floor plans of various scales. Size preserving tracking automatically adjusts the camera’s zoom for a consistent view of the object of interest. Target scale estimation is carried out based on the paraperspective projection model which compensates for the center offset and considers system latency and tracking errors. A computationally efficient foreground segmentation strategy, 3D affine shapes, is proposed. The 3D affine shapes feature direct and real-time implementation and improved flexibility in accommodating the target’s 3D motion, including off-plane rotations. The effectiveness of the scale estimation and foreground segmentation algorithms is validated via both offline and real-time tracking of pedestrians at various resolution levels. Face image quality assessment and enhancement compensate for the performance degradations in face recognition rates caused by high system magnifications and long observation distances. A class of adaptive sharpness measures is proposed to evaluate and predict this degradation. A wavelet based enhancement algorithm with automated frame selection is developed and proves efficient by a considerably elevated face recognition rate for severely blurred long range face images

    OMNIDIRECTIONAL IMAGE PROCESSING USING GEODESIC METRIC

    Get PDF
    International audienceDue to distorsions of catadioptric sensors, omnidirectional images can not be treated as classical images. If the equivalence between central catadioptric images and spherical images is now well known and used, spherical analysis often leads to complex methods particularly tricky to employ. In this paper, we propose to derive omnidirectional image treatments by using geodesic metric. We demonstrate that this approach allows to adapt efficiently classical image processing to omnidirectional images

    Central catadioptric image processing with geodesic metric

    Get PDF
    International audienceBecause of the distortions produced by the insertion of a mirror, catadioptric images cannot be processed similarly to classical perspective images. Now, although the equivalence between such images and spherical images is well known, the use of spherical harmonic analysis often leads to image processing methods which are more difficult to implement. In this paper, we propose to define catadioptric image processing from the geodesic metric on the unitary sphere. We show that this definition allows to adapt very simply classical image processing methods. We focus more particularly on image gradient estimation, interest point detection, and matching. More generally, the proposed approach extends traditional image processing techniques based on Euclidean metric to central catadioptric images. We show in this paper the efficiency of the approach through different experimental results and quantitative evaluations
    corecore