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Abstract 

This dissertation addresses long range automated persistent surveillance with focus on 
three topics: sensor planning, size preserving tracking, and high magnification imaging.   

For an automated and persistent surveillance, a sufficient overlap of the camera’s 
field of view should be reserved so that camera handoff can be executed successfully 
before the object of interest becomes unidentifiable or untraceable.  We design a sensor 
planning algorithm that not only maximizes coverage but also ensures uniform and 
sufficient overlapped camera’s field of view for an optimal handoff success rate.  This 
algorithm works for environments with multiple dynamic targets using different types of 
cameras.  Significantly improved handoff success rates are illustrated via experiments 
using floor plans of various scales.   

Size preserving tracking automatically adjusts the camera’s zoom for a consistent 
view of the object of interest.  Target scale estimation is carried out based on the 
paraperspective projection model which compensates for the center offset and considers 
system latency and tracking errors.  A computationally efficient foreground segmentation 
strategy, 3D affine shapes, is proposed.  The 3D affine shapes feature direct and real-time 
implementation and improved flexibility in accommodating the target’s 3D motion, 
including off-plane rotations.  The effectiveness of the scale estimation and foreground 
segmentation algorithms is validated via both offline and real-time tracking of 
pedestrians at various resolution levels. 

Face image quality assessment and enhancement compensate for the performance 
degradations in face recognition rates caused by high system magnifications and long 
observation distances.  A class of adaptive sharpness measures is proposed to evaluate 
and predict this degradation.  A wavelet based enhancement algorithm with automated 
frame selection is developed and proves efficient by a considerably elevated face 
recognition rate for severely blurred long range face images. 
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1 Introduction 

Safety and security in public locations have received intensive attention in recent 
years and especially after the tragedy of 9/11.  For security purposes, such locations often 
rely on camera systems for activity monitoring, threat assessment, and situational 
awareness.  With the increased scale and complexity involved in most practical 
surveillance situations, it is almost impossible for any single camera (either 
omnidirectional or PTZ) to fulfill the tracking and monitoring tasks with an acceptable 
degree of continuity and/or reasonable accuracy.  As a result, systems with multiple 
cameras have entered into play and found extensive applications. The question of how to 
place multiple cameras to accomplish the given tasks arises naturally, followed by the 
question of how to manage multiple cameras automatically in real time so that the objects 
of interest can be monitored continuously.  In addition, as the required system’s 
intelligence level increases, object recognition and activity understanding are performed 
for threat assessment and situational awareness.  This introduces extra resolution 
requirements and the second question raised above then becomes: how to manage 
multiple cameras automatically in real time so that the objects of interest can be 
monitored continuously and with the required degree of details.  The dissertation work 
described herewith resolves the aforementioned questions and extends the research to 
long range surveillance and high magnification video processing.       

The remainder of this chapter outlines the motivation for this research in section 1.1. 
Section 1.2 gives a brief review of the state of the art.  The pipeline and contributions of 
this dissertation are presented in section 1.3.  Section 1.4 concludes this chapter with the 
document organization. 

1.1 Motivation  

Sensor planning for surveillance systems has received increasing attention in recent 
years.  Cameras are placed to achieve a full or specified coverage of the environment.  
The performance of camera placement depends on the modeling of the environments and 
cameras, the design of the objective function representing the given tasks, and the 
effectiveness of the optimization algorithm used.  A large number of ineffective camera 
arrangements exist in current surveillance systems.  Figure 1.1 illustrates the camera 
arrangement on the third floor of the Electrical Engineering building of the University of 
Tennessee.  It is clear that the existing camera arrangement shown in Figure 1.1(a) does 
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not make full use of the cameras’ field of view (FOV), especially for cameras 1 and 3.  
With the adjusted positions of cameras 1 and 3 shown in Figure 1.1(b), which are 
obtained via sensor planning for coverage maximization, all entrances are covered with a 
significantly improved coverage.  This verifies the need for a systematic method to 
optimize the camera placement. Furthermore, the conventional requirements in sensor 
planning, such as coverage and visibility [Erdem06], alone are unable to ensure a 
persistent and automated tracking in real-time surveillance.  A uniform and sufficient 
amount of overlap between the FOVs of adjacent cameras should be reserved so that 
consistent labeling and camera handoff can be executed successfully.   

To illustrate the resolution requirement encountered in a surveillance system, we 
consider face recognition as an example application.  Along with illumination and pose, 
resolution constitutes one of the most decisive factors in face recognition.  For a 
successful recognition, a minimum resolution is required.  For instance, a resolution 
corresponding to an inter-ocular distance of 60 pixels is recommended by FaceIt® 

[Phillips02].  Figure 1.2 demonstrates the cumulative match characteristics (CMC) curves, 
obtained by computing the cumulative percentage of correctly recognized probes at 
various ranks, and manifests the degradation in face recognition rates (FRR) caused by 
decreased resolution.  The CMC measure (CMCM) and rank-one recognition rate, as 
listed in Table 1.1, are used to evaluate the overall face recognition performance.  The 
CMCM is a quantified measure of a CMC curve and is defined as ∑ =

= rankN

k kCMC kCQ
1

/ , 
where Nrank is the total number of ranks considered and Ck denotes the percentage of 
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Figure 1.1. Illustration of the need for sensor planning.  (a) Sketch of the camera 
arrangement of an existing surveillance system: the third floor of the Electrical 
Engineering building, the University of Tennessee, Knoxville.  (b) The camera 
arrangement after sensor planning for coverage maximization.  With the same number of 
cameras of the same models, the coverage is improved substantially without loosing the 
focus on the entrance areas.   



 3

 

   
(a) (b) (c) (d) 

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

Rank

C
um

ul
at

iv
e 

re
co

gn
iti

on
 ra

te
 (%

)

35 pixels
45 pixels
60 pixels
85 pixels

10x,15.9m

10x,13.4m

10x,9.5m

15x,9.5m

 
(e)  

Figure 1.2. Face recognition rate vs. face resolution measured by the inter-ocular distance 
in pixel.  (a)-(d) Sample face images with various inter-ocular distances: (a) 35 pixels, (b) 
45 pixels, (c) 60 pixels, and (d) 85 pixels.  (e) CMC comparison across face resolutions.  
Gallery images are collected by a Canon A80 camera with a focal length of 114mm and a 
resolution of 2272×1704 from a distance of 0.5m.  Probe images are collected by a 
Panasonic PTZ camera (WV-CS854) with varying camera zooms (10×~15×) and 
observation distances (9.5m~15.9m).  Database size: 55 subjects. 
 
 
 

Table 1.1. Performance comparison across face resolutions based on the CMCM and 
rank-one recognition rate. 

 
Magnification, distance, resolution CMCM (%) Rank-one (%) 

10×, 15.9m, 35p 22.3 14.6 
10×, 13.4m, 45p 32.1 20.0 
10×, 9.5m, 60p 60.2 47.3 
15×, 9.5m, 85p 68.2 60.0  
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probes correctly recognized at rank k [Yao06D].  In our experiments, 10=rankN  is used.  
The overall FRR drops substantially with respect to a reduced face resolution, indicated 
by a decrease of 45.9% in CMCM as the inter-ocular distance decreases from 85 pixels to 
35 pixels.   

To achieve and maintain the required resolution on the object of interest, we consider 
the following two aspects: (1) object tracking algorithms with automatic zoom control to 
maintain the required resolution while the target is in the camera’s FOV and (2) high 
magnification imaging systems capable of optically achieving the required resolution.    

To maintain the required resolution, conventional object tracking, where the camera’s 
pan and tilt angles are adjusted so that the target remains in the camera’s FOV, is 
insufficient.  The camera’s zoom should be varied automatically so that the target also 
has a constant or a desired image size regardless of its relative motion and distance with 
respect to the observing camera.  To differentiate it from conventional object tracking, we 
denote our tracking with automatic zoom control as size preserving tracking.   

Video tracking systems with automatic zoom control have attracted increasing 
research interests, due to their added flexibility to interact with changing conditions.  The 
concept and advantages of size preserving tracking are clearly illustrated in Figure 1.3.  
The image sequence in Figures 1.3(a)-(d) is collected using a constant camera zoom.  
Beyond a certain distance the target’s details are unrecognizable as shown in Figures 
1.3(a) and (b) to where a larger zoom is preferable.  On the other end as shown in Figure 
1.3(d), the target is too close for the camera to properly maintain it in the camera’s FOV 
by panning and/or tilting.  Under these circumstances, a smaller zoom is required to 
enlarge the camera’s FOV.  As Figures 1.3(e)-(h) depict, with proper zoom control, the 
target remains in the camera’s FOV and its image presents the desired details throughout 
the sequence. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1.3.  Illustration of the need for size preserving tracking based on a pedestrian 
sequence with (a)-(d) constant camera zoom and (e)-(h) automatically adjusted camera 
zoom.  The red rectangle highlights the tracked target.  With proper zoom control, the 
target remains in the camera’s FOV and its image presents the desired details throughout 
the sequence. 
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From our experiments, cameras with a 20× zoom capability can monitor an area with 
a radius of 15m while maintaining the required resolution for a successful face 
recognition.  For a larger surveillance area (radius>50m) or a better resolution, the zoom 
capability of commercial PTZ cameras is no longer adequate, which necessitates the use 
of composite imaging systems.  Composite imaging systems are traditionally employed in 
astronomy and wild life monitoring.  More recently, the need for such capabilities has 
extended to near-ground surveillance. To achieve high magnification and long 
observation distance, we designed a number of composite imaging systems by coupling 
off-the-shelf scopes (telescopes or spotting scopes) with digital cameras/camcorders and 
utilized the resulting imaging systems in near-ground and real-time surveillance including 
object tracking and face recognition.  Images with high magnification suffer from various 
types of degradations, such as increased image noise, severe image blur, and low 
intensity contrast.  In this effort, a comprehensive processing algorithm designed for long 
range face images is discussed, including frame selection, noise reduction, and facial 
detail enhancement.   

Figures 1.4 and 1.5 illustrate a typical scenario where this dissertation is applicable.  
Multiple cameras are employed to monitor all the latent activities in the environment.  
Specified resolution sufficient for identity verification is required when a worker carries 
valuable assets along the path toward the RFID detector until he or she drops the assets in 
the storage area.   To fulfill all the required monitoring and tracking tasks, sensor 
planning, size preserving tracking, and high magnification imaging are necessary.   

1.2 State of the art 

Although multi-camera surveillance systems have resulted in intensive research 
efforts, most of the existing work remains in solving the problem of consistent labeling, 
which relates and identifies the projected images of the same target in different cameras.   
In literature, consistent labeling could be grouped into two categories: feature-based and 
geometry-based approaches. Feature-based methods search for a match of distinguishing 
features, such as the color distribution of the tracked objects, and generate 
correspondences among cameras [Chang01, Kogut01, Nummiaro03, Utsumi04].  In 
geometry-based algorithms, the trajectory of the tracked object is projected into the world 
or a reference coordinate system.  Consistent labeling then can be established based on 
the equivalence between objects projected onto the same location [Black01, Cai99, 
Kelly95, Tan94].     

With multiple cameras, surveillance systems need sensor planning.  There exist many 
sensor planning algorithms in literature focusing on such applications as 3D object 
inspection and reconstruction.  Roy et al. reviewed existing sensor planning algorithms 
for 3D object reconstruction [Roy04] and proposed an online scheme using a 
probabilistic reasoning framework for next-view planning [Roy05].  Yous et al. designed 
an active scheme for the assignment of multiple PTZ cameras so that each camera 
observes a specific part of a moving object (mainly pedestrian) and achieves the best 
visibility of the entire object [Yous06].  Wong and Kamel compared the viewpoint  
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Figure 1.4.  Illustration of a typical scenario where this dissertation work is applicable.  
3D illustration of the environment to surveil.  Sample pictures collected at the specified 
positions are shown in Figure 1.5.  Courtesy of BWXT Y-12. 
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(a) (b) (c) 

 
(d) 

 
(e) 

Figure 1.5.  Sample pictures collected at the positions specified in Figure 1.4, including 
(a) entrance, (b) RFID detector, and (c) storage.  Detailed view of the (d) RFID detector 
and (e) glove box and storage areas.  Courtesy of BWXT Y-12. 
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evaluation functions for model based inspectional coverage [Wong04].  Research work 
was also done on sensor planning for surveillance systems [Cai99, Quereshi05].   
Cameras are placed to achieve a full or specified coverage of the environment.  A 
probabilistic camera planning framework with visibility analysis was proposed by Mittal 
and Davis [Mittal04].  Erdem and Sclaroff defined different types of coverage problems 
and developed corresponding solutions using PTZ cameras [Erdem06]. 

Tracking can basically be defined as the search for the optimal matches in 
consecutive frames.  In literature, video tracking schemes only considering pan/tilt 
control are a well developed research topic.  If conventional video tracking schemes are 
considered as 2D based, the involvement of zoom adds a third dimension. The additional 
dimension is reflected by either variations in the target’s size or additional information 
about the target’s movements in the 3D world coordinates, especially the motion along 
the camera’s optical axis. 

The introduction of zoom brings in challenges in three main aspects.  (1) The 
involvement of zoom affects the selection and use of features. For instance, region based 
methods suffer from the problem of being zoom variant by nature. Contour based 
methods can compensate for limited degree of deformation but fail when part of the 
contour falls out of the image, which is commonly encountered during zoom-in 
operations.  (2) A varying zoom imposes extra obstacles and computational burdens on 
target pursuing. For region based methods, the template must be updated timely or scaled 
accordingly to keep up with the variations in the target’s image size.  In point (image 
corner) based methods, the differentiation between the target movement and background 
movement is a major concern.  (3) The third difficulty has roots in the zoom control itself. 
The appropriate focal length, capable of compensating for the targets’ movement along 
the camera’s optical axis and of producing the desired target image size, has to be 
determined from a 2D image sequence. In addition, the challenges in practical 
implementation include the nonlinear and device dependant relation between the system’s 
focal length and zoom control, system delay introduced by mechanical parts and image 
acquisition, and concerns about system stability. 

The most widely used approaches of size preserving tracking are region based 
methods, where the size, area, and variance of the detected target image are used 
[Collins03, Hoad95, Kuo02].  Recently, two new trends emerged. One led by Tordoff and 
Murray [Tordoff00, Tordoff01, Tordoff04] utilizes the concept of structure from motion 
(SFM) and the other proposed by Fayman et al. [Fayman98, Fayman01] is based on the 
optical flow of the image sequence.  Apart from these two algorithms, methods using 
wavelet transform establish another promising approach [Wei01], where the area of the 
detected motion blob in the transformed domain is used for zoom control.  

Over the last two decades, intensive research work has been conducted in face 
recognition.  Most of the existing work concentrates on scenarios with varying 
illumination, varying pose, and partial occlusion using still face images or videos 
collected from a close distance and with a low and constant zoom.  Little research 
attention is paid to face recognition in long range.  However, face quality assessment and 
enhancement algorithms proposed within close range can also serve as references and 
will be reviewed in the scope of this dissertation. 



 9

In face detection and tracking, measurement functions are used to describe the 
probability of an area being a face image.  The term face quality assessment was first 
explicitly used by Identix [Griffin05], where a face image is evaluated according to the 
confidence of detectable eyes, frontal face geometry, resolution, illumination, occlusion, 
contrast, focus, etc.  Kalka et al. applied quality assessment metrics for iris to face images 
[Kalka06].  Criteria such as lighting (illumination), occlusion, inter-ocular distance 
(resolution), and image blurriness caused by both out-of-focus and motion are considered.  
Xiong and Jaynes developed a metric based on bilateral symmetry, color, resolution, and 
expected aspect ratio (frontal face geometry) to determine whether the current detected 
face image in a surveillance video is suitable to be added to an on-the-fly database 
[Xiong03].   

Deblurring algorithms are proposed especially for face images by making use of 
known facial structures.  Fan et al. incorporated the prior statistical models of the shape 
and appearance of a face into the formulation of regularized image restoration [Fan03].  
A hybrid recognition and restoration architecture was described by Stainvas and Intrator 
[Stainvas00], where a neural network is trained on both clear and blurred face images.  
Liao and Lin applied the Tikhonov regularization to Eigen-face subspaces to overcome 
the algorithm’s sensitivity to image noise [Liao05].  Apart from algorithms designed 
particularly for face images, there exist two major categories of image deblurring 
techniques, referred to as image sharpening and image restoration by deconvolution.  
Image sharpening explores image edges or high frequency components to bring out 
previously invisible details.  As for image restoration based on deconvolution, the blurred 
image is modeled as the original image convolved with a 2D filter.  The goal of image 
restoration is to undo the convolution and in turn eliminate the blur.  Unsharp masking 
using the Laplacian filter is a well-known example of sharpening methods.  The classic 
linear unsharp masking technique suffers from two main drawbacks: sensitivity to noise 
and overshoot artifacts.  Various approaches have been suggested to overcome the 
aforementioned drawbacks.  Many of these schemes are based on the use of nonlinear 
operators [Ramponi98A, Ramponi98B], where the sharpening operation is controlled by 
the local activities of the image gradients.  Image deconvolution can improve the image’s 
dynamic range and resolve blur simultaneously.  Commonly used algorithms are the 
Lucy-Richardson algorithm, the maximum entropy method, and the Wiener filtering.  
Regularized deconvolution handles ill-posed problems by adding a regularization term.  
The Tikhonov [Tikhonov77] and total variation regularization [Chan99] are two such 
popular choices. 

1.3 Contributions 

The pipeline of this dissertation work is illustrated in Figure 1.6.  An automated and 
persistent surveillance system using multiple cameras is developed including sensor 
planning, size preserving tracking, and camera handoff.  For long range applications, high 
magnification imaging systems are employed, which include data acquisition and image 
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quality assessment and enhancement.  Accordingly, our research contributions are listed 
as follows. 
 

• Sensor planning: most existing camera placement algorithms focus on coverage 
and/or visibility analysis, which ensures that the object of interest is visible in the 
camera’s FOV.  However, visibility alone, a fundamental requirement of object 
tracking, is inadequate for persistent and automated surveillance.  In such 
applications, a uniform and sufficient overlap between the FOVs of adjacent 
cameras should be secured so that camera handoff can be executed successfully 
and automatically before the object of interest becomes untraceable or 
unidentifiable.  From this perspective, our proposed sensor planning method 
improves existing algorithms by adding handoff rate analysis, which preserves 
necessary overlapped FOVs for an optimal handoff success rate.  In addition, our 
proposed algorithms also consider multiple dynamic targets where the real-time 
interaction among moving targets and observing cameras is taken into account via 
a probabilistic framework.        

 
• Size preserving tracking: Tordoff and Murray proposed a scale estimation 

method based on the weak perspective projection model [Tordoff04].  To account 
for center offset, the distance between the center of mass of the target’s image and 
the camera’s principal point, the paraperspective projection model, a more 
advanced affine projection model, is utilized and the corresponding scale 
estimation algorithm is proposed.  Furthermore, based on the reconstructed 
structure, affine shapes of the target are derived and projected into the image to 
separate the foreground from the background.  The resulting segmentation 
features a fast implementation with linear computations, is robust to off-plane 
rotation, and allows for deformation to accommodate newly emerged views 
automatically.   

 
• Quality assessment and enhancement of high magnification images: adaptive 

sharpness measures are designed for the evaluation of image quality under high 

 
 

Figure 1.6. The pipeline of our high magnification imaging and video surveillance 
system. 
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magnifications.  In addition to illumination and pose, magnification blur is 
identified as an additional major degradation source in long range face 
recognition.  Wavelet based enhancement algorithms are developed to improve 
facial features and suppress noise simultaneously.  The effectiveness of the 
proposed assessment and enhancement scheme is validated via a significantly 
improved FRR in comparison with existing backbone enhancement techniques.   

1.4 Document organization 

The remainder of this dissertation is organized as follows: 
• Chapter 2 reviews existing research work relevant to this dissertation, including 

multi-camera surveillance, size preserving tracking, and sharpness measures. 
• Chapter 3 describes our sensor planning algorithm for multi-camera surveillance. 
• Chapter 4 discusses our size preserving tracking algorithm with focus on scale 

estimation and foreground segmentation.  
• Chapter 5 presents the camera handoff algorithm for persistent object tracking.   
• Chapter 6 covers out quality assessment and enhancement algorithm for high 

magnification face images. 
• Chapter 7 demonstrates our high magnification imaging system with auto-

focusing capabilities. 
• Chapter 8 concludes this dissertation with a summary of accomplished and future 

work. 
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2 Related work 

This chapter discusses existing research work in three relevant areas.  Section 2.1 
discusses multi-camera surveillance systems.  Size preserving tracking algorithms are 
addressed in section 2.2.  A review of sharpness measures, based on which the proposed 
quality measure for high magnification face images are designed, is given in section 2.3.     

2.1 Multi-camera surveillance systems 

According to the environments to be monitored and the tasks to be fulfilled, various 
types of cameras and their combinations are used in multi-camera surveillance systems.  
In this section, multi-camera surveillance systems are reviewed according to their camera 
configuration such as perspective cameras, omnidirectional cameras, binocular cameras, 
and master/slave dual cameras.   

2.1.1 Systems using perspective cameras 

The collaboration among multiple cameras includes object matching, data fusion, and 
camera handoff/switching.  According to the object matching strategies used, there exist 
two popular groups of methods: geometry based and feature based methods.  Some of the 
geometry based methods establish the correspondences according to geometric features 
transformed to the same space, either the ground plane or a common reference plane.  
Others make direct use of the 3D information obtained from multiple cameras. 

The geometric relation between the cameras and the ground plane is calibrated using 
a set of known landmark features in [Marcenaro01], based on which the targets’ 3D 
trajectories from different cameras (restricted to the ground plane) are obtained and fused.  
Target detection and tracking are carried out via background subtraction and color 
histogram matching.  If the target is lost from one camera because of occlusion, its 
position can be restored using data from other cameras.  Black and Ellis generated the 
targets’ 2D traces via background subtraction [Black01].  The correspondences of the 2D 
traces among different viewpoints (cameras) are matched via a least mean squares 
minimization process.  Based on these correspondences, the targets’ 3D trajectories are 
recovered by intersecting the 3D lines connecting the camera’s optical center and the 2D 
trace points.  Kalman filter is then used to smooth the raw 3D trajectory.  Lee et al. 
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aligned the scene’s ground plane across multiple cameras via matching and fitting of 
tracked objects to a planar model [Lee00].  Afterwards, the planar alignment matrix is 
decomposed to recover the 3D relative positions of the camera and the ground plane.  Cai 
and Aggarwal used features such as location, intensity, and geometry to match between 
images collected by different cameras via a Bayesian probability framework [Cai99].  
The correspondences between two adjacent cameras are obtained from epipolar 
constrains.  Homography matrices between different viewpoints are also employed to 
fuse multiple cameras [Morellas03].  The computation is based on a set of known 
landmark points.   

The target’s 3D information is used as a fusion reference by Dockstader and Tekalp 
[Dockstader01] who proposed an integrating algorithm based on Bayesian network.  
Their algorithm takes in the 2D observations from multiple cameras and outputs 3D state 
estimates.  The 3D state estimates are then fed into a Kalman filter, producing the targets’ 
final 3D trajectories.  These 3D position estimates are used to predict the 2D state for 
each camera, forming a closed loop system.  Cupillard et al. [Cupillard02, Cupillard04] 
made use of 3D features, such as position, width, and height, to match targets in various 
cameras.  The target depth is recovered from multiple views, based on which the targets’ 
3D models are developed and used for object matching and data fusion.   

Although it is affected by changes in illumination and variations in sensor responses, 
color is still commonly used in feature based methods.  Compared with geometry based 
methods, color based methods suffer from low accuracy.  Generally speaking, the color 
histogram of the detected target is used to search for the optimal matches in different 
cameras [Kogut01, Nummiaro03].  To overcome the aforementioned weakness, several 
modifications are proposed, such as adaptive color histogram and multiple color 
histograms.    

Hybrid methods are also exploited in literature.  Chang and Gong [Chang01] 
developed geometry based modalities, including epipolar constrains, homograhpy, 
landmark points, and feature based modalities, such as the apparent height and apparent 
color.  A Bayesian network takes in these features and infers the correspondence of 
objects across cameras.  In [Utsumi04], a 3D color model is established.  The projected 
image of this 3D color model is compared with the detected target so that the target is 
labeled consistently across different cameras.  A survey regarding visual surveillance of 
object motion and behaviors can be found in [Hu04].   

2.1.2 Systems using master/slave dual cameras  

The combination of omnidirectional and PTZ cameras, referred to as the dual camera 
system, is another popular choice for multi-camera surveillance systems.  In a dual 
camera system, the omnidirectional camera detects the target’s motion and provides the 
PTZ camera with the target’s geo-location.  The PTZ camera is then directed to the target 
and keeps tracking it.  Meanwhile, the omnidirectional camera keeps monitoring new 
latent activities and fulfils supplementary object tracking when necessary.     

Cui et al. used background differencing and radial profile for target detection and 
tracking [Cui98].  The geometric correspondences between the omnidirectional and PTZ 
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cameras are fitted into a polynomial with a degree of three.  Confidence coefficients are 
assigned to tracking decisions from both cameras.  The final tracking follows the one 
with the higher confidence coefficient.  In so doing, tracking ambiguity and occlusion can 
be resolved and hence an improved tracking accuracy is achieved.   

Scotti et al. paid more attention to the discussion on the omnidirectional camera’s 
nonuniform resolution and its geometric relation with the PTZ camera [Scotti05].  The 
target’s color, shape, and position are selected as tracking features.  The omnidirectional 
camera performs as a secondary tracker and becomes active only when the PTZ camera 
loses its target.   

In [Lin03], targets are detected via background subtraction and traced via a Kalman 
filter.  The geometric correspondences are obtained by first mapping the image 
coordinates of the omnidirectional camera to a reference coordinates corresponding to the 
PTZ camera’s zero position (zero pan and tilt angles).  Afterwards, the geometric 
correspondences are transformed to the PTZ camera’s current position via rotation.   

2.1.3 Systems using other types of cameras 

Binocular omnidirectional cameras are used in [Peixoto98, Peixoto00, Yagi02].  The 
system proposed in [Peixoto98, Peixoto00] detects targets based on background 
differencing.  The target’s motion is restricted in the ground plane and hence can be 
computed from omnidirectional images without ambiguity.  Object tracking is performed 
using Kalman filter.  Yagi and Yachida used optical flow to initialize the foreground 
region [Yagi02].  The histograms of the background and foreground regions are obtained 
and the radial profile is computed for object tracking.   

Morita et al. utilized multiple omnidirectional cameras [Morita03].  With the use of 
multiple omnidirectional cameras, the target’s position can be determined more precisely.  
In the serial work of Zhu et al. [Zhu00], two omnidirectional cameras are used to track 
and recover the target’s 3D motion via panoramic stereo.  For both cameras, the target’s 
motion is detected by background subtraction and quasi-connected region grouping.   

2.2 Size preserving tracking 

Our classification of various size preserving tracking algorithms is based on the type 
of features used and the underlying mathematical framework.  The reviewed algorithms 
are divided into five categories: (1) region based, (2) image corner based, (3) wavelet 
based, (4) hybrid and other methods including the image velocity based approach, and (5) 
target depth based methods.     

2.2.1 Region based methods 

Region based algorithms are inherently zoom variant.  To account for changes in the 
target’s image size, additional parameters must be introduced.  However, region based 
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algorithms only consider the 2D image plane and disregard the target’s motion in the 3D 
world coordinates.  Thus, even if additional parameters accounting for the change in the 
target’s image size are obtained, they will be restricted to the 2D image plane and usually 
not able to produce accurate zoom controls.  Despite their drawbacks, region based 
approaches are still competitive due to their relatively low computational complexity.  
Different quantities are extracted from the region of interest (ROI), such as the area or 
size [Hager03, Hoad95, Kim03, Kuo02] and the variance [Mirmehdi97]. 

In the work of Hoad and Illingworth, the camera’s zoom is adjusted so that the 
bounding box of the detected target occupies 90% of the whole image [Hoad95]. A zoom 
factor is defined as the ratio between the current and the required target image sizes. A 
lookup table devised from lens calibration is used to convert the zoom factor into a zoom 
motor control.  A real-time algorithm for tracking human heads is discussed in [Kuo02]. 
The proposed algorithm is based on an elliptical head tracker [Bircheld97], which 
generates an ellipse with varying sizes and locations tracing the head’s movements. The 
camera’s focal length is adjusted according to the ratio of the desired and current ellipse 
sizes.  Kim et al.  [Kim03] made use of the area of ROI, ROIA , obtained from color 
segmentation for automatic zoom control. They defined two experimentally selected 
limiting values, denoted as Tele and Wide. If ROIA  is greater than Wide, the camera’s lens 
turns wide for zooming out and the camera’s lens zooms in if ROIA  is smaller than Tele.   

The mechanism of zoom control based on the detected image size is straightforward.  
However, the resulting zoom control is not precise since the simple linear relation 
between the target’s image size and the camera’s focal length is a high abstraction and 
simplification of the actual projective imaging process.  The deficiency of this type of 
methods is inherent.  Thus they are only applicable to cases where accuracy is not crucial.  
Moreover, the algorithms discussed in [Hoad95] and [Kim03] are device dependent.  The 
lookup table is obtained from pre-calibration, and the parameters Wide and Tele are 
derived from experiments.  When different cameras, even of the same make, are used, the 
system should be re-calibrated. 

Mirmehdi et al.  [Mirmehdi97] proposed a zoom initialization scheme, where the goal 
is to zoom in onto the target so that the target fills up almost the whole image.  By 
assuming a homogeneous background, it is shown that the target’s image size is 
maximized when the image variance is maximized.  From this observation a closed loop 
control system is developed, where the image variance is monitored.  The zoom-in 
operation stops when the image variance starts decreasing.  The proposed scheme is 
efficient in initializing the system’s focal length.  Nevertheless, it is only able to carry out 
zoom-in operations by maximizing the image variance.  Moreover, the resulting target’s 
image size may not be visually suitable or even may be over-zoomed.   

Lindeberg initiated research work using a Gaussian kernel and its derivatives as a 
basic tool for analyzing structures at different scales [Lindeberg94A, Lindeberg94B].  
Based on his fundamental framework, features are detected through a staged filtering 
parameterized by Gaussian kernels [Lowe99].  These features define stable points in the 
scale-space. Image keys are created, which allow for local geometric deformations by 
representing blurred image gradients in multiple orientation planes and at multiple scales. 
These image keys are in turn used for object tracking and recognition by searching a least 
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squares solution for the unknown model parameters. The proposed scheme is invariant to 
translation, scaling, and rotation, and partially invariant to intensity changes and affine 
projection.  

Collins adapted Lindeberg’s scale selection methods to the problem of selecting 
kernel scale for mean-shift blob tracking [Collins03].  Two interleaved mean-shift 
procedures are employed to search for the optimal position and scale.  The blob features 
at various scales can be detected as points in the scale-space that are local maxima both 
spatially and in scale.   

2.2.2 Image corner based methods 

Tordoff and Murray showed that during tracking, the camera’s zoom acts as a gain 
between the scene dynamics and tracking errors, providing a trade-off between 
maximizing resolution and minimizing tracking error [Tordoff03].  Intuitively, when the 
target is moving fast, more camera’s FOV is needed to keep up with its movement.  On 
the other hand, when the target’s speed is slow, we have the freedom to zoom in while 
maintaining satisfactory tracking.  Therefore, the maximum allowable focal length can be 
determined based on the tracking error.  Using a zoom invariant Kalman filter, the 
camera’s zoom can be controlled based on the tracking error, in particular the variance of 
the tracking error, using two criteria.  First, the tracking error must remain within a 
threshold, and second, the resolution should be maximized.  One major concern of this 
method lies in that the system performance depends on the accurate estimation of the 
system delays. Tordoff and Murray deliberated on the derivation of system delays and 
their impact on the overall system performance. 

To retrieve scale information, Wei and Badawy estimated the inter-image affine 
transformation from point correspondences [Wei03].  Compared with Tordoff and 
Murray’s approaches [Tordoff04], this algorithm is simplified in two aspects.  (1) 
Corners are detected within a bounding box, which avoids foreground and background 
segmentation.  (2) Image correspondences are confined to inter-image affine 
transformation.  The second simplification suggests that this approach ignores the target’s 
movements in the 3D world coordinates and is actually a 2D image based method.  Three 
tracked points from the moving target are used as the basis for the inter-image affine 
transformation. The location of the bounding box is obtained following this affine 
transformation and the target scale is estimated based on the size of the bounding box.   

Shah and Morrell incorporated zoom control into tracking algorithms based on 
particle filters [Shah04].  The camera’s zoom is adjusted so that a given percentage (90% 
is suggested by Shah and Morrell) of the projected particles fall onto the image plane.  
Compared with the algorithm described by Tordoff and Murray [Tordoff03], the 
assumptions of Gaussian distribution and linear transition required by Kalman filter are 
not necessary.  Thus the particle filter based methods are capable of representing more 
complicated motions. 

Hatano and Hashimoto introduced a potential function to evaluate the changes in the 
detected image corners, especially the corners on the target’s edges [Hatano03].  This 
potential function actually measures the differences in both position and size between the 
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current frame and a reference frame.  The goal of tracking and controlling the camera’s 
focal length is to minimize this potential function.  The merit of the proposed algorithm is 
that the camera’s focal length is adjusted according to the target’s current position 
relative to the image center.  When the target’s image is close to the image center, more 
space is allowed for zooming in.  On the other hand, when the target’s image is close to 
the image boundaries, the camera’s focal length is decreased to ensure that the target 
remains in the camera’s FOV in spite of the target’s current distance to the camera.  This 
avoids the problem of over-zooming.  The proposed algorithm relies on targets with 
regular shapes that can be parameterized.  Although a successful application is illustrated 
to track a ball-shaped target, the extension to targets with arbitrary and non-rigid shapes 
remains questionable. 

2.2.3 Wavelet based methods 

The algorithms studied in the previous sections are established in the spatial domain, 
where operations are performed directly on the pixels in the image.  In this section, 
images are transformed using wavelets first.  Algorithms based on foveate wavelet 
transform and wavelet subspace are reviewed.  The transform based algorithms usually 
yield less computational complexity.  Moreover, due to the lack of direct relation with the 
pixel intensity, a large amount of deformation is allowable.   

The central idea of foveate wavelet transform (FWT), a variable resolution technique, 
is to represent the fovea with higher resolution and the periphery with a lower resolution 
in a pyramidal representation [Wei01]. Compared with other variable resolution 
techniques, FWT is shown to have various merits such as linearity preservation, 
orientation selectivity, and high flexibility.  FWT based automatic zoom control is one 
successful application of FWT.    

The implementation of automatic zoom control is primarily based on the motion of 
the surrounding objects in the FWT representation, which can be approximated by the 
foveate potential moving area (FPMA).  The area of FPMA determines both the gaze 
point and the zoom values.  The gaze point is obtained such that the area of FPMA is 
beyond a predefined threshold, meaning that enough motion exists in the window.  Once 
we are confident that the FPMA captures the motion in the image, the size of the 
corresponding FPMA is used as an indicator of the size of the moving target.  Similar to 
the approach used in [Kim03], but in the wavelet domain, when the area is small, the 
camera zooms in.  The camera zooms out when the area is large and maintains the current 
zoom value otherwise.   

In the serial work of Krueger [Krueger99, Krueger00], a tracking scheme based on 
the wavelet subspace is presented. The wavelet subspace is a vector space spanned by a 
set of wavelets.  It is dual to the image subspace. In order to establish tracking, the basic 
idea is to deform the image subspace so that it imitates the affine deformation of the input 
image. When tracking is successful, the weight vector in the wavelet subspace should be 
constant.  Compared with tracking in the image space, which usually involves large 
computations introduced by pixel-wise operations, tracking in the wavelet subspace 
requires lower dimension and fewer computations. The proposed scheme is robust to 
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scale, rotation, and translation. Moreover, it is able to handle the deformations caused by 
facial expressions.  

2.2.4 Hybrid and other methods 

In practice, some schemes make use of both regions and points to achieve a better 
performance. Ferrari et al. proposed an affine region tracker [Ferrari01], where an affine 
inter-image transformation obtained from point correspondences is used for zoom control 
and search window prediction, while region matching is applied for tracking.  Anchor 
points along the region’s bounding box are retrieved based on which an inter-image 
affine transform is derived in a similar way as in [Wei03]. The predicted search region is 
computed from its ancestor using this affine transform.  Afterwards, the target region is 
searched in the neighborhood of the predicted region.  Different from pure region based 
schemes, Ferrari et al. employed the affine transform between anchor points to provide 
the scale information.  Point based algorithms can better represent the changes in the 
target’s image size, while region based algorithms are well-developed under the 
circumstances with a constant focal length.  Simple and efficient algorithms are available.  
The combination of points and regions exploits the competency of both algorithms while 
avoiding their weaknesses.  Scale estimation and object tracking are addressed by point 
based and region based approaches, respectively.   

Schemes based on optical flow are proposed in [Fayman98, Fayman01].  These 
schemes only consider the target’s motion along the camera’s optical axis.  Under this 
assumption, changes in the target’s image size are properly captured by the image radial 
velocity.  For a constant image size, this image radial velocity should be zero, which 
establishes the theoretical foundation for estimating the camera’s focal length.  The 
proposed method has four major limitations.  (1) The target’s motion is restricted to be 
along the camera’s optical axis.  The computation of the image radial velocity becomes 
difficult when more complicated motions are involved.  (2) The instability of optical flow 
computation resulting form image noise further deteriorates the system performance. (3) 
In [Fayman01], it is shown that the proposed algorithm is able to yield exact results only 
for target points lying on a reference plane.  The error introduced by points not lying on 
the plane, which experience perspective distortions, is another major concern.  (4) The 
proposed algorithm is only able to negate the radial optical flow, which means that it can 
only maintain the target’s image size but not assign one.   

In practical situations, where the camera’s position and the geometry of the 
surrounding environments are known and unchanged, proper zoom control can be derived 
from the camera’s tilt angle required by pursuing the target [Kang04].  A lookup table or 
an approximation function can be constructed with the camera’s tilt angle and the desired 
target image size as the inputs and the zoom control as the output.  This saves on 
computational complexity and processing time.  However, this approach highly depends 
on the actual geometry of the environment and the available tracking precision.   
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2.2.5 Target depth based methods 

In this category, we concentrate on the research work conducted by Tordoff and 
Murray, which can be further divided into two major types, perspective camera model 
based and affine camera model based [Tordoff01, Tordoff04].  Points and lines are 
commonly used features in this category [Reid96, Hayman03].  In comparison, lines 
invariant to zoom can be located more accurately and show more temporal stability than 
corner features. 

The approaches considered in this category make use of the observation that changes 
in the target’s image size are related to the target’s movement along the camera’s optical 
axis.  The ratio between the area in the image (da) and the area in the scene (dA) 
projected along the ray direction is preserved:  
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where φ  (Φ ) represents the angle between the normal direction of the image (scene) and 
the camera’s optical axis, f denotes the camera’s focal length, and Z is the mean distance 
between the target and the camera, as shown in Figure 2.1.  As a result, a constant target 
image size is achieved. 

Based on the perspective projection model, the target’s motion along the camera’s 
optical axis is derived from the movement of the gaze point along the camera’s optical 
axis. The gaze point is defined as the point in the image plane or in the world coordinates 
at which the camera is supposed to aim.  This method is an improvement over the region 
based methods.  The proposed scheme precisely derives the target’s shape and 
movements in the world coordinates, which produces a more accurate estimation.  
However, the computational complexity is considerably high, involving exhaustive 
foreground/background segmentation and camera self-calibration.  Another restriction 
lies in that the proposed scheme assumes a planar structure.  Although they are common 
in man-made scenes, planar structures are rare in natural scenes.  Moreover, the algorithm 
is sensitive to image noise.   

When the target’s relief is comparatively smaller than its distance to the camera, 
typically smaller than one fifth of its distance to the camera which occurs frequently in 
tracking and surveillance applications, the affine projection model is sufficient to 
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Figure 2.1.  Schematic illustration of target depth based methods for size preserving 
tracking.  Courtesy of [Tordoff04].  



 20

estimate the changes in the target’s image size.  In comparison with algorithms based on 
the perspective projection model, the adoption of the affine projection model 
substantially reduces computational complexity and improves system stability.   

2.2.6 Algorithm comparison 

Table 2.1 summarizes and compares the reviewed algorithms.  In general, region 
based methods are not only straightforward in theory but also easy to implement.  The 
existence of well developed region based tracking algorithms constitutes another 
attractive aspect of these methods.  Hence, they are the most popular approaches 
employed in systems with automatic zoom control.  Nevertheless, region based 
approaches, 2D image based by nature, are of low accuracy in estimating the changes in 
target scale.    The algorithms proposed in the wavelet domain also belong to 2D image 
based methods and suffer from low accuracy as well.   However, they have the 
advantages of low computations and high tolerance for deformations.  Image velocity 
based methods are straightforward in theory.  A direct relation is obtained between the 
camera’s focal length and the image radial velocity.  Nevertheless, the difficulties in 
computing the image velocity accurately, especially when arbitrary target motion is 
involved, impede their practical application.   

In our opinion, target depth based methods are the most promising candidate, 
primarily due to their superior accuracy.  In addition, the simplification from the 
perspective to the affine projection model, which perfectly adapts to wide area 
surveillance scenarios, considerably reduces the computational complexity and eliminates 
the need for planar objects in the scene.  The algorithm based on the combined use of 
regions and image corners is another promising approach, where the advantages of both 
schemes are explored and where their deficiencies are avoided. 

2.3 Sharpness measures 

Image artifact, including blur, blocking, and ringing, is commonly encountered in 
digital image processing.  Image quality metrics evaluate the influence of these artifacts.  
We are interested in image quality measures for our high magnification images.  
Literature mentions three approaches of image quality assessment: (1) full-reference 
where the distorted image is compared with its original undistorted image; (2) reduced-
reference where the distorted image is compared with a few statistics from its original 
undistorted image; (3) no-reference where no a priori knowledge of the original 
undistorted image is required.  In high magnification imaging systems and in most real-
time applications, the original undistorted image is usually not available.  Furthermore, 
the major degradations in high magnification imaging systems are image blur and low 
contrast.  The appropriate candidates of quality assessment for our applications are then  
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Table 2.1. Comparison of size preserving tracking algorithms. 

 
Algorithms Advantages Limitations 

Region based methods  

Detected target 
image size  Straightforward implementation 

Linear relation between the target’s 
image size and the camera’s focal 
length  

Detected target 
image variance 

Automatically determine the 
maximum achievable scale 

(1) Require homogeneous background  
(2) Capable of zoom-in operation only 

Scale-space  Invariant to rotation and 
translation 

Search in both spatial and scale 
domains 

Image corner based methods 

Tracking error Low computational complexity 

(1) Depend on a zoom invariant 
Kalman filter  
(2) Only an upper bound of the zoom 
range is given  

Particle filter Applicable to general motion and 
arbitrary noise distributions High computational complexity 

Potential function  
Zoom is adjusted by the desired 
size and the target’s image 
position 

Restricted to targets with regular 
shapes  

Wavelet based methods 
Foveate wavelet 
transform Automatic latent motion detection The selection of multiple thresholds  

Wavelet subspace (1)Low computational complexity 
(2)Ability to handle deformations Low estimation accuracy  

Hilbert 
transformation 

Ability to handle rotation and 
deformation A reference template is required 

Hybrid and other methods 

Image radial 
velocity 

Direct formula between the 
camera’s focal length and the 
image radial velocity 

(1)Low accuracy in computing optical 
flow 
(2)Unable to handle off-plane points 

From tilt angle Essentially a tracking problem Known surrounding geometry is 
assumed 

Dual camera 
system 

Collaboration between two types 
of cameras  

(1) Known relative geometry is 
assumed 
(2) Planar motion is required 

Target depth based methods 
Perspective  
camera model Accurate (1) Restricted to planar structure  

(2) High computational complexity 

Affine camera 
model  

(1)Accurate 
(2)Computationally efficient 

The target’s relief must be small 
enough compared with the distance 
between the target and the camera 
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narrowed down to sharpness measures, which can be divided into five categories: 
gradient based, statistics based, autocorrelation based, transform based, and edge based.   

2.3.1 Gradient based measures 

Grey level differences among neighboring pixels provide a reasonable representation 
of an image’s sharpness.  Image gradients obtained by differencing or using high pass 
filters are abundant in literature.  Different forms of gradients can be used [Santos97]: (1) 
the absolute gradient defined as: 
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(2) the squared gradient given by: 
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and (3) the maximum gradient formulated as: 
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where f(x,y) represents the image intensity, Nrow (Ncol) denotes the total number of image 
rows (columns), and n is the differencing step.  The absolute gradient with n=1 is also 
called the Sum-Modulus-Difference (SMD) and the case with n=2 is commonly referred 
to as the Brenner measure [Santos97].   

The most well-known measure based on high pass filters is the Tenengrad measure 
[Kroktov89].  The Tenengrad measure is given by: 
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with the horizontal and vertical gradients, fx(x,y) and fy(x,y), obtained using the Sobel filters 
and T is a threshold. The Laplacian filter is another popular choice [Kroktov89]. The 
sharpness is defined by: 
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where hLap(x, y) is a Laplacian filter.  Choi et al. utilized a linear combination of multiple 
median filters, referred to as the frequency selective weighted median (FSWM) filter 
[Choi99].     

2.3.2 Statistics based measures 

Sharp images usually involve large dynamic ranges and scattered grey levels, 
suggesting a large variance.   Two widely recognized sharpness measures are the grey 
level amplitude and variance.  The grey level amplitude, also referred to as the absolute 
central moment (ACM), is defined as:  
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traditional definition [Santos97]:  
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Several sharpness measures are derived based on the image histogram.  The most 

straightforward measure is the difference between the maximum and minimum grey 
levels [Santos97].  Another popular choice uses the entropy of the image grey levels 
[Santos97].  Kroktov also proposed a measure using the histogram of local variations 
[Kroktov89].   

2.3.3 Autocorrelation based measures 

Autocorrelation evaluates the dependency among neighboring pixels, which provides 
another practical way to quantify image sharpness.  In literature, some of the sharpness 
measures simply compute one sample of the autocorrelation function as given by 
[Kroktov89]: 
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More complicated measures use quantities such as the area [Batten00] and the height 
[Ong98] of the central peak of the autocorrelation function.   
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2.3.4 Transform based measures 

In this category, the image is first transformed into the frequency domain usually via 
Fourier transform (FT) or discrete cosine transform (DCT).  The sharpness measure is 
then computed based on the coefficients F(u,v) in the frequency domain or their 
distributions.  The Fast Fourier Transform (FFT) sharpness measure is defined as 
[Subbarao92]:  

 
∑∑ ×= |),(),(| vuAnglevuMagnitudeS . (2.10)

 
The sum of the amplitudes of the frequency coefficients within a predefined window WF 
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is also used as sharpness measure [Batten00].     

Besides point based definitions, some measures explore the statistical information 
contained in the frequency domain.  The multivariate kurtosis, derived from the 
distribution of the FT coefficients, is employed as a sharpness metric [Zhang99].  Kristan 
et al. proved that the maximum entropy in the frequency domain coincides with the 
maximum sharpness in the spatial domain and proposed an entropy based measure 
[Kristan04].     

2.3.5 Edge based measures 

Edge based measures make use of the edge components, which are primarily 
responsible for the visual perception of image sharpness.  In theory, edge based methods 
should better represent the sharpness of an image.  However, these approaches are not 
widely used mainly because of the computational complexities associated with edge 
detection and characterization.   

Li defined an ideal 2D step edge as [Li02]: 
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where c, θ , and w represent the contrast, orientation and scale, respectively, fo(x,y) is the 
mean intensity level,  and )(oerf  denotes the error function.   The scale w describes the 
width of the edge transition, whose average value determines image sharpness.  The 
proposed algorithm provides a neat solution in theory.  However, it requires the isolation 
of step edges.  A filter bank, adjusted to various edge orientations, was used by Dijk et al. 
to detect the average edge width [Dijk02].     

As an improvement over the global kurtosis sharpness measure [Zhang99], Caviedes 
and Gurbuz proposed a local kurtosis sharpness measure based on both spatial edges and 
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coefficients in the transformed domain [Caviedes02].  Compared with other edge based 
algorithms, the local kurtosis measure handles different types of edges in the same 
fashion and avoids the difficulty in distinguishing step and line edges. 

2.3.6 Performance comparison 

According to our survey, the characteristic behaviors of various sharpness measures 
can be summarized as follows. 

(1) Gradient based measures yield a performance closest to the ideal response and 
more importantly their performances are robust to degradations introduced by high 
magnification. However, their values drop and saturate rapidly as the focus moves away 
from the optimal position, resulting in a large portion of flat response regardless of the 
changes in the camera’s focus.  Given an initial focus position in the saturation region, it 
is difficult to determine the direction that leads to an increased sharpness value. 

(2) Statistics based measures perform global operations, such as computing image 
variance and histogram, and neglect the local information of image edges, which is 
responsible for their inferior accuracy. 

(3) The performance of the autocorrelation based measures is comparable to that of 
the gradient based measures.  In addition, the decreasing/increasing slope is adjustable by 
choosing different window sizes.  With a smaller window size, the response is relatively 
sharp and narrow similar to that of the gradient based measures, while measures with a 
larger window size produce wide peaks and gradual slopes.  This feature can be used to 
balance two criteria during focus search: precise location and easy direction initialization. 

(4) As to the measures defined in the transformed domain, their performance falls in 
between the gradient based and statistics based measures. The associated computations 
depend on the transform used.   

(5) Edge based measures yield comparable performances as transform based 
measures.  However, their computational complexity is substantially intensive.  In 
addition, it is difficult to detect strong edges in a blurred high magnification image.  Thus 
its applicability to high magnification images remains questionable.  Table 2.2 
summarizes the comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 26

 
 
 

Table 2.2. Comparison of sharpness measures. 
 

Measures Advantages Disadvantages 

Gradient based Sharp peak 
Low computational complexity Large portion of saturation region 

Statistics based Low computational complexity Low accuracy and noisy response 
Autocorrelation 

based Response slope is adjustable Slightly increased computations 

Transform based Sharp peak Slightly increased computations 

Edge based Representative of visual 
perception 

High computational complexity 
Difficulties in separating strong 
edges 
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3 Sensor planning 

With the increased scale and complexity involved in most practical surveillance 
applications, it is almost impossible for any single camera (either omnidirectional or PTZ) 
to fulfill tracking and monitoring with an acceptable degree of continuity and/or a 
reasonable accuracy.  Systems with multiple cameras enter into play and find extensive 
applications.  The concept of sensor planning comes naturally when the question of how 
to place multiple cameras for the best coverage and at the lowest cost arises. 

A descriptive definition of sensor planning given in [Tarabanis95] is quoted as: 
“Given information about the environment as well as the information about the task that 
the vision system is to accomplish, develop strategies to automatically determine sensor 
parameter values that achieve this task with a certain degree of satisfaction.”  When 
formulated mathematically as an optimization process, there exist two types of problems 
in sensor planning: (1) the search for the maximum coverage given a fixed total cost or 
number of cameras and (2) the search for the minimum cost or number of cameras for a 
full or required coverage [Erdem06, Lee91].  In this paper, we refer to (1) and (2) as the 
Max-Coverage (Type 1) and Min-Cost (Type 2) problems. 

Assuming that a polygonal floor plan is represented as an occupancy grid, a binary 
vector b can be obtained by letting 1=ib  if the ith grid can be seen by at least one camera 
and 0=ib  otherwise.   We construct a binary matrix A with 1=ija if the ith grid is covered 
by the jth camera configuration.  Each camera configuration specifies one combination of 
the camera’s intrinsic and extrinsic parameters, including the camera’s focal length f, 
pan/tilt angle TP θθ / , and position TC.  The following relation holds: 1=ib  if 0' >ib and 

0=ib otherwise, with xb A=' .  The solution vector x specifies a set of chosen camera 
configurations with the corresponding element xj=1 if the configuration is chosen and 
xj=0 otherwise. 

Let the cost associated with the jth camera configuration be jω .  Given the maximum 
cost Cmax, the Max-Coverage problem can be described by: 

 
maxsubject to ,max Cxb

j jji i ≤∑∑ ω . (3.1) 
 
Given a specified coverage vector bC,o or a minimum overall coverage Cmin, the Min-

Cost problem can be modeled as:  
 

min, or   subject to ,min CbAx
i ioCj jj ≥≥ ∑∑ bxω . (3.2) 
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In addition to the conventional requirements in sensor planning, such as coverage and 
cost, extra criteria need to be considered to ensure persistent tracking and monitoring in a 
real-time automatic surveillance system.  One of the criteria to be included is a sufficient 
amount of overlapped FOVs between adjacent cameras so that enough time is reserved to 
perform consistent labeling and camera handoff.  This criterion, to which this chapter is 
devoted, is however not addressed in existing camera placement algorithms.  Thereby, 
our algorithm improves existing camera placement methods by adding handoff rate 
analysis. 

In coverage analysis, only two types of areas, visible and invisible, are used.  To 
incorporate handoff rate analysis, a third type of area, handoff safety margin, is 
introduced, which defines visible areas requiring camera handoff.  An observation 
measure is proposed to define the handoff safety margin.  We then develop sensor 
planning algorithms balancing the tradeoff between overall coverage and adequate 
overlapped handoff safety margins.  Variations, such as direct constraint and adaptive 
weight approaches, are introduced for special considerations of resolution and frontal 
view.  Furthermore, the problems of dynamic occlusion and camera overload are 
addressed so that the optimal handoff success rate can be achieved regardless of the 
dynamic interactions among multiple moving targets and the camera’s limited 
computational capacities.   

Figure 3.1 illustrates the flow chart of our sensor planning algorithm.  In parallel with 
the definition of sensor planning given in [Tarabanis95], our algorithm has three inputs: 
environment representation, camera modeling, and performance requirements.  Tracking 
and observation suitability is evaluated via the observation measure and thresholds 
separating the visible area, handoff safety margin, and invisible area are obtained from 
target behavior modeling. Based on these three areas an objective function is constructed 
and used to guide the search for the optimal camera placement.      

The remainder of this chapter is organized as follows.  Section 3.1 defines the 
observation measure.  The objective function is described in section 3.2 with 
experimental results demonstrated in section 3.3. 

3.1 Observation measure 

In addition to visibility, we introduce the following criteria to describe the 

Environment 
Representation

Camera 
Modeling

Optimization

Performance 
Requirements 

Thresholding

Target Behavior 
Modeling

Observation 
Measure

Objective 
Function  

Figure 3.1. Flow chart of sensor planning. 
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observation of the tracked target: its resolution MR, its distance to the edges of the 
camera’s FOV MD, and the availability of a frontal view MFV.  From a viewer’s 
perspective, visibility is the fundamental requirement.  Herewith, the viewer includes not 
only human operators but also successive automatic processing such as consistent 
labeling, object tracking, and face/object recognition.  Observations with different detail 
levels affect the performance of these algorithms.   For example, a frontal face image 
with an inter-ocular distance no smaller than 60 pixels is recommended by a well-known 
face recognition engine FaceIt® for a face to be automatically recognized [Phillips02].  
For persistent object tracking and smooth camera handoff, the tracked target should be at 
a reasonable distance from the edges of the camera’s FOV.  The MD component considers 
the margin for executing handoff before the object falls out of the camera’s FOV.   

3.1.1 Static perspective cameras 

To begin our study, the camera and world coordinates are defined and illustrated in 
Figure 3.2.  A point [ ]TZYX  in the world coordinates is projected onto a point 
[ ]Tzyx '''  in the camera coordinates by: 
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with [ ]TZYXC TTTT = .  Assuming zero skew, unit aspect ratio, and image center on the 

principal point, the projected point in the image plane is given by: 
⎩
⎨
⎧

=
=

'/'
'/'

zfyy
zfxx .  Letting 

0=Z  (points on the ground plane), we have: 
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Figure 3.2. Illustration of the camera and world coordinates for perspective cameras.  
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The estimation of the target depth 'ẑ  can be obtained by: 
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For static cameras with a constant focal length, the estimated target depth is sufficient to 
describe the resolution: 
 

'ˆ/ zM RR α= , (3.7) 
  
where Rα  is a normalization coefficient.  However, when the target is at a close distance, 
this relation is not entirely valid, especially when part of the target falls out of the 
camera’s FOV.  Therefore, the above definition is modified: 
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In practice, for a better observation and to reserve enough computation time for 

camera handoff, the target should remain at a safe distance from the edges of the 
camera’s FOV.  Moreover, this margin distance is affected by the target depth.  When the 
target is at a closer distance, its projected image undergoes larger displacements in the 
image plane.  Therefore, a larger margin should be reserved.  In our definition, different 
polynomial powers are used to achieve varying decreasing/increasing rates.  The MD is 
then given by: 
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where Ncol and Nrow denote the image’s width and height, Dα  is a normalization weight, 
and coefficients 1β  and 0β are used to adjust the polynomial power. 
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The frontal view measure computes the angle between the target’s motion direction û  
and the direction of the line connecting the target’s current position P̂  and the camera’s 
optical center: 
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where FVα is a normalization factor.  The observation measure for a static perspective 
camera is then given by: 
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where Rw , Dw , and FVw are importance weights and Π denotes the image plane.   

3.1.2 PTZ cameras 

For PTZ cameras with varying zooms, the resolution component MR is given by: 
 

'ẑfM RR α= . (3.12) 
 

Compared with (3.8), the additional term for the special case when part of the target falls 
out of the camera’s FOV is not necessary because of the additional flexibility from the 
camera’s adjustable tilt angle.  In addition, we assume that the target is always 
maintained at the image center by panning and tilting the camera.  Therefore, the MD 
component can be eliminated from the computation of the observation measure.   

However, the assumption that the target is always maintained at the image center 
sometimes requires extreme pan and tilt speeds.  Let the instant FOV denote the FOV that 
a PTZ camera can see at any given time instance and the achievable FOV the FOV that a 
PTZ camera can survey given a sufficient period of time.  The limited pan and tilt speeds 
lead to the discrepancy between the instant FOV and the achievable FOV.  To address 
this issue, a common practice is to impose additional constraints on the maximum time 
duration for a PTZ camera to pan and tilt to a specified position.  We will come back to 
this issue in the discussion of our sensor planning algorithm for multiple dynamic targets, 
where the aforementioned discrepancy is resolved elegantly using the probability of 
camera overload.   

The definition of the frontal view component remains the same and the observation 
measure is a weighted sum of the MR and MFV components.   
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3.1.3 Omnidirectional cameras 

The geometry of an omnidirectional camera is depicted in Figure 3.3.  The imaging 
process of an omnidirectional camera does not comply with the traditional perspective 
projection.  Let r denote the distance between the projected point Tyx ][ and the principal 
point and θ  the angle between the incoming ray and the optical axis.  The perspective 
projection is characterized by θtanfr = .  To realize a wider opening angle, this relation 
is changed.  Various projection models exist in literature [Kannala04], such as the 
equidistance projection θfr =  and the general polynomial model ∑ =

=
oddk

k
kfr

,1 , θλθ where 

k,θλ denote the approximation coefficients.  Image resolution is the partial derivative of r 
with respect to R: 
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with 22 YXR += .  The MD component is given by: 
 

( )2/1 oDD rrM −=α , (3.14) 
 

where ro represents the image size of the omnidirectional camera.  The definition of the 
frontal view component remains the same and the observation measure is a weighted sum 
of the MR, MD, and MFV components. 

3.1.4 Handoff safety margin  

A failure threshold QF and a trigger threshold QT are derived to define three disjoint 
regions: (1) invisible area with Fij QQ <  where Qij represents the observation measure 
value of the ith grid observed by the jth camera configuration, (2) visible area with Tij QQ ≥ , 
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Figure 3.3. Illustration of the geometry for omnidirectional cameras.  
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and (3) handoff safety margin with TijF QQQ <≤ . The failure threshold QF segments the 
invisible areas and is used for coverage analysis. The trigger threshold QT separates the 
visible areas and handoff safety margins.  It is introduced for handoff rate analysis, where 
necessary overlapped FOVs between adjacent cameras are optimized. The trigger 
threshold QT is given by HobjFT tuQQ κ+= where uobj represents the average moving speed 
of the object of interest, tH denotes the average duration for a successful handoff, and κ  
is a conversion scalar. 

The individual and combined effects of the MR and MD components become evident 
when we study the contours of the observation measure defined by QF and QT.  In Figure 
3.4, the black solid lines and red dashed lines depict the contours with Fij QQ = and 

Tij QQ = , respectively.  The resolution component MR provides limits along the direction 
of the camera’s optical axis while the MD component generates constraints mainly in the 
direction orthogonal to the camera’s optical axis.  If (3.7) is used as shown in Figure 
3.4(a), the handoff safety margin is given by TR Qz <'ˆ/α .  That is 'ˆ/ zQTR <α .  As a result, 
the handoff safety margin is only defined at the far end of the camera’s FOV along the 
optical axis.  The scenario where the target is so close to the camera that part of it falls 
out of the camera’s FOV is ignored.  The modification in (3.8) imposes a proper 
constraint at the near end of the camera’s FOV along the optical axis, as shown in Figure 
3.4(b).  Therefore, the resulting observation is complete and with the desired resolution.  

3.2 Objective function 

Let A1 represent the grid coverage with 1,1 =ija  if Fij QQ ≥  and 0,1 =ija  otherwise.  The 
A1 matrix resembles the A matrix in the conventional coverage analysis discussed in the 
previous section.  Two additional matrices are constructed A2 and A3.  The matrix A2 has 

jth camera  jth camera  

Qij=QF

Qij=QT

jth camera  
(a) (b) (c) 

Figure 3.4. Schematic illustration of the contours of the observation measure with 
Fij QQ =  and Tij QQ =  to show the effect of the MR and MD components.  (a) 

'ˆ/ zMQ RR α== .  (b) RMQ =  as defined in (3.8).  (c) DDRR MwMwQ +=  with 5.0=Rw  and 
5.0=Dw . 
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1,2 =ija  if TijF QQQ <≤  and 0,2 =ija  otherwise.  The matrix A3 has 1,3 =ija  if Tij QQ ≥  and 
0,3 =ija  otherwise.  Matrices A2 and A3 represent the handoff safety margin and visible 

area, respectively.  Let xc kk A=' , 3,2,1=k .  The objective function is formulated as: 
 

)1'()2'()0'( ,33,22,11 >−=+>= iiii cwcwcwc , (3.15) 
 

where w1, w2, and w3 are predefined importance weights.  The operation )0'( ,1 >ic means 

⎩
⎨
⎧ >

=>
otherwize

c
c i

i 0
0'1

)0'( ,1
,1 .  The first term in the objective function considers coverage, the 

second term produces sufficient overlapped handoff safety margins, and the third term 
penalizes excessive overlapped visible areas.  Our objective function achieves a balance 
between coverage and sufficient margins for camera handoff.  The optimal sensor 
placement for the Max-Coverage and Min-Cost problems can then be obtained by: 
 

  subject to,max maxi
Cxc

j jji ≤∑∑ ω , (3.16) 

min, or   subject to,max then min CbAcx
i ioCi ij jj ≥≥ ∑∑∑ bxω . (3.17) 

3.2.1 Function validation 

To validate our objective function, we consider the positioning of two cameras for 
example.  Figure 3.5 shows the relative position of two perspective cameras, where the 
FOV of camera 1 is centered at the origin of the world coordinates in the ground plane 
and camera 2 is free to translate ),( YX ∆∆ and rotate ),( TP θθ ∆∆ .  From the definition of the 
observation measure, the contours defined by Fij QQ =  and Tij QQ =  approximate 
trapezoids.  The corresponding parameters are given in Figure 3.5. 

The derivation of the exact expression of the objective function is not difficult but 
tedious.  To simplify the process and yet reveal the characteristics of the objective 
function, we fix ∆Y= ∆θP = ∆θT =0 and study the relation between the objective function 
∑= i icF and ∆X as our first step.  The resulting function can be expressed as:  
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with 2)3)(1(2 FFFth lLLX −−−=∆ τ  and FT LL /=τ .  Since the coverage, overlapped 
handoff margins, and overlapped visible areas become effective in (3.15) in sequence as 
∆X decreases, F has three expressions depending on the value of ∆X.  Given the 
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expression in (3.18), Figure 3.6 shows the objective function with different choices of 
weights.  We can see that the optimal ∆X* is achieved with thF XXL ∆≤∆< *2τ .  When a 
smaller weight is assigned to the coverage term, the optimal ∆X* is shifted toward FLτ2 , 
resulting in more overlapped FOVs for executing camera handoff.  From the derivatives 
of (3.18), we note that F1 is a monotonously decreasing function if 12 ww > .  With a 
proper choice of w3, F3 is a monotonously increasing function.  As a result, the turning 
point falls in the range of F2 and is determined by the relation between w1 and w2, the 
weights for the coverage and handoff margin terms.  Figure 3.7 shows the objective 
function as a function of ∆X and ∆Y.   

Since the observation measures for omnidirectional cameras are radial symmetric, it 
is sufficient to study the variations along the radial direction.  Figure 3.8 shows the FOVs 
of two omnidirectional cameras placed ∆R distance apart.  We want to examine the 
behavior of our objective function with varying ∆R.  The contours defined by Fij QQ =  
and Tij QQ =  are concentric circles with radii of RF and RT, respectively. 

Figure 3.9 depicts the values of the objective function ∑= i icF  as a function of ∆R.  
Different choices of w1 are used to illustrate their influence on the optimal camera 
position.  The optimal camera position is achieved with TFT RRRR +≤∆≤ *2 .  The actual 
position depends on the w1 used.  Like the case of perspective cameras, a smaller w1 
results in a camera placement with a smaller ∆R*.  The exact expression and derivative of 
the objective function for omnidirectional cameras are given in (3.19) and (3.20), 
respectively.   
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Figure 3.5. Schematic illustration of the geometry relation between the adjacent cameras’ 
FOVs for the computing of the objective function.  The position of camera 1 is fixed 
while camera 2 is free to translate and rotate.  Both cameras are static perspective 
cameras.   
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Figure 3.6. The objective function for perspective cameras with varying ∆X and different 
choices of w1, the weight assigned to the coverage term in (3.15). w2=2, w3=5, LF=1, 
lF=0.6, hF=0.8, τ=0.6. 
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Figure 3.7. The objective function for perspective cameras with varying ∆X and ∆Y.  The 
weights are w1=1.2, w2=2, and w3=5. LF=1, lF=0.6, hF=0.8, τ=0.6. 
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Figure 3.9.  The objective function for omnidirectional cameras with varying ∆R and 
different choices of w1, the weight assigned to the coverage term in (3.15). w2=2, w3=5, 
RF=1, RT=0.5.  
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Camera 1 Camera 2  

Figure 3.8. Illustration of the FOVs in the ground plane (Z=0) of two omnidirectional 
cameras.  The position of camera 1 is fixed while camera 2 is free to translate. 
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Finally, Figure 3.10 presents a plot of the objective function for omnidirectional 

cameras as a function of ∆X and ∆Y.  We could see that the maxima of the objective 
function are obtained at *22 RYX ∆=∆+∆  due to the radial symmetric property of the 
omnidirectional cameras.   
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Figure 3.10. The objective function for omnidirectional cameras with varying ∆X and ∆Y.  
The weights are w1=1.2, w2=2, and w3=5.  RF=1, RT=0.5. 
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3.2.2 Environments with multiple dynamic targets 

Environments with multiple moving objects impose additional difficulties on sensor 
planning.  Multiple moving objects cause dynamic occlusions depending on their real-
time relative positions. Figure 3.11 compares two camera placements in terms of the 
ability to handle dynamic occlusion.  It is obvious that the camera placement in Figure 
3.11(a) is unable to deal with dynamic occlusion since target 2 is blocked by target 1 in 
the FOVs of both cameras.  On the contrary, in the camera placement shown in Figure 
3.11(b), target 2 can be seen from camera 2 when it is occluded by target 1 in camera 1.  
From the above illustration, we could see that the probability of dynamic occlusion can 
be reduced by a proper camera placement.  Due to the non-deterministic nature of 
dynamic occlusion, analysis regarding such occlusions is conducted in a probabilistic 
framework.  The probability of dynamic occlusion doP  is derived and incorporated into 
sensor planning.   

Another important issue in sensor planning for environments with multiple dynamic 
targets is the coordination among multiple cameras.  In practice, a single camera can 
track a limited number of targets simultaneously because of the limited resolvable 
distance and computational capacities.  The camera may not be able to detect and/or track 
new objects when its maximum computational capacity has been reached.  This scenario 
is referred to as the problem of camera overload and is demonstrated in Figure 3.12.  
Assume that the camera is able to track four targets at maximum simultaneously.  When a 
new target enters the camera’s FOV, a decision is to be made so that an appropriate target 
is dropped due to the limited computational capacity.  In Figure 3.12(b), since target 3 is 
farther away from the camera, it is dropped so that the camera can track the new target.  
The goal of sensor planning is to automatically minimize the number of dropped targets 
due to camera overload.   

For dynamic occlusion analysis, we follow the approach proposed by Mittal and 
Davis [Mittal04].  Objects are modeled as a cylinder with a radius of robj and a height of 
hobj.  Let the area of their projection onto the ground plane be fixed as 2

objob rA π= .  
Assume that the object of interest centered at the ith grid is observed by the jth camera 
from a distance Dij, as shown in Figure 3.13.  Its region of occlusion is: 

 

jZ

ij
objobjijo T
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,
, 2= . (3.21) 

 
Assuming a uniform object density, the occlusion probability at the ith grid observed by 
the jth camera Pdo,ij can then be expressed as [Mittal04]: 
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where Ko denotes the object density.  Under the assumption that Ko is much smaller than 

obA1 , Pdo,ij can be further simplified: 
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Target 2

Camera 1 Camera 2  

Camera’s FOV
Occluded area

Occluded object
Tracked object

Target 1

Target 2

Camera 1 Camera 2  
(a)                             (b) 

Figure 3.11.  Schematic illustration of the problem of dynamic occlusion.  (a) Target 2 is 
occluded by target 1 in both cameras.  (b) Target 2 can be observed from camera 2 when 
it is occluded by target 1 in camera 1. 
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(a)                                 (b) 
Figure 3.12.  Schematic illustration of the problem of camera overload.  Assume that the 
camera is able to track four targets at maximum simultaneously due to limited 
computational capacities.  (a) The maximum number of targets is achieved.  (b) Camera 
overload occurs when a new target enters the camera’s FOV.  Target 3 is dropped due to 
camera overload.  
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Figure 3.13. Illustration of the region of occlusion. 
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The overall probability of dynamic occlusion at the ith grid Pdo,i is: 
 

∏
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=
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,1 jij xaj
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The objective function becomes: 

 
)()1'()2'()0'( ,,4,33,22,11 thdoidoiiii PPwcwcwcwc ≤+>−=+>= , (3.25) 

 
where thdoP ,  is a predefined threshold and 4w is the importance weight.   

For camera overload analysis, we consider the multi-object tracking system as an 
M/M/N/N queuing system.  Following the conventions in queuing theory, an M/M/N/N 
system suggests that: (1) the arrival process follows a Poisson distribution; (2) the 
residence time follows an exponential distribution; and (3) the number of servers and 
buffer slots are N.  Denote the average arrival rate in the FOV of the jth camera as jc,λ  

and the mean camera-residence time as jc,/1 µ .  Let jobjN ,  be the maximum number of 
targets that can be tracked simultaneously by the jth camera.  From the M/M/N/N queuing 
theory, the system can be described by a Markov chain.   Given the probability of the (n-
1)th state Pn-1,j, the probability of the nth state Pn,j is expressed as: 
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for jobjNn ,1 ≤≤  where jop , is a normalization term to make the sum of the probabilities of 
all possible states as one. 
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The probability that the jth camera reaches its maximum computational capacity is the 
probability that the Markov chain reaches the (Nobj,j)th state: 
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Denote the average arrival rate at the ith grid as ig ,λ  and the mean camera-residence time 
as ig ,/1 µ .  The probability of camera overload at the ith grid Pco,i is given by: 
 

∏
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−−=
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max,,

,1

,, )1(
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xaj
jico PeP µλ

. (3.29) 

 
The objective function becomes: 

 
)()1'()2'()0'( ,,5,33,22,11 thcoicoiiii PPwcwcwcwc ≤+>−=+>= , (3.30) 

 
where thcoP , is a predefined threshold and 5w  denotes the importance weight.   

The significance of introducing camera overload analysis becomes obvious especially 
for PTZ cameras.  As mentioned in section 3.1.2, camera placement algorithms always 
find it difficult to properly model the PTZ camera’s instant and achievable FOVs.  At a 
given time instance, a PTZ camera has a limited instant FOV.  However, given enough 
time to pan and tilt, a PTZ camera has a 360°×90° achievable FOV.  The discrepancy in 
modeling the PTZ camera’s instant and achievable FOVs is solved by letting 1=objN .  

The limited instant FOV can be described as the achievable FOV with 1=objN .  That is at 
a given time instance, a single PTZ camera is able to track a single object in its 360°×90° 
achievable FOV.  In Figure 3.14, target 1 is tracked by the PTZ camera from 

okt to 
1kt .  If 

another object enters the camera’s 360°×90° achievable FOV, it cannot be seen since the 
camera’s instant FOV points to the current tracked object.  This agrees with the reasoning 
based on the achievable FOV with 1=objN .  As the maximum number of tracked objects 

Instant FOV
Achievable FOV

Tracked object
Untracked object

okt

1kt

11+kt 2kt

Target 1

Target 2

 
 

Figure 3.14.  Illustration of the PTZ camera’s instant and achievable FOVs. The 
discrepancy can be solved using an M/M/1/1 queuing system.  Target 1 is tracked by the 
PTZ camera from 

okt to 
1kt .  As the maximum number of tracked objects 1=objN  has been 

achieved, target 2 cannot be processed immediately after it enters the PTZ camera’s 
achievable FOV.  Only after target 1 leaves the camera’s achievable FOV, the PTZ 
camera can be directed to target 2 for object tracking. 
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1=objN  has been achieved, target 2 cannot be processed until target 1 leaves the camera’s 
achievable FOV.  In Figure 3.14, target 2 is tracked from 11+kt to 

2kt .  Figure 3.14 
illustrates the aforementioned process, which is an exact M/M/1/1 queuing system.  
Therefore, in sensor planning, the achievable FOV with 1=objN is sufficient to model 
PTZ cameras.  In addition, the analysis of PTZ cameras is incorporated into a unified 
framework along with the static perspective and omnidirectional cameras.  The only 
difference is the assumption regarding the maximum number of targets that can be 
tracked simultaneously.  The maximum numbers of targets for a static camera and a PTZ 
camera are 1≥objN  and 1=objN , respectively.    

3.2.3 Additional constraints from performance requirements 

Frequently special performance requirements are given.  To meet these requirements, 
additional constraints need to be added.  The coverage and resolution considerations 
correspond to priority areas that need complete coverage and/or with specified resolution.  
The frontal view requirement results from path constraints where there exist predefined 
paths within which the objects’ movements are restricted. 

There exist two approaches: direct constraint and adaptive weight, to impose these 
additional requirements.  Considering the coverage requirement for example, the direct 
constraint approach finds the solution by imposing an extra constraint oCA ,1 bx ≥ where bC,o 
represents the required coverage with 1,, =ioCb if the corresponding grid is to be covered 
and 0,, =ioCb otherwise.  The adaptive weight approach assigns different weights w1,i to the 
grid points according to the coverage requirements.  Larger weights are used if the 
corresponding grids need to be covered.  The objective function then becomes: 

 
)1'()2'()0'( ,33,22,1,1 >−=+>= iiiii cwcwcwc . (3.31) 

 
To incorporate the resolution requirements, we construct a matrix A4 with 1,4 =ija if 

ioRijR MM ,,, ≥  and 0,4 =ija otherwise, where ioRM ,, is the corresponding resolution 
requirement at the ith grid point.  The direct constraint approach is carried out by 
introducing an extra constraint oRA ,4 bx ≥  where bR,o represents the required resolution 
with 1,, =ioRb if the corresponding grid needs the minimum resolution and 

0,, =ioRb otherwise.  In the adaptive weight approach the objective function becomes: 
 

)0'()1'()2'()0'( ,4,4,33,22,11 >+>−=+>= iiiiii cwcwcwcwc , (3.32) 
 

where xc 44' A= and iw ,4 are different weights allocated according to the resolution 
requirement. 

In surveillance systems, a predefined path is commonly encountered.  It is also 
preferred that a frontal view can be achieved sometime while pedestrians are moving 
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along this path.  An example is the entrance areas where a frontal view of the pedestrian 
is desired when he or she enters the gate.  We use the tangential direction of the middle 
line of the path as the average direction of the pedestrian’s motion, as shown in Figure 
3.15.  Let the kth point on the middle line be kP ,0  and its tangential direction be kP,u .  The 
frontal view measure observed by the jth camera at point kiP ,'  along the line perpendicular 
to kP,u is given by: 
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Based on jiFV ' , we define a matrix A5 with 1',5 =jia if 0' ≥jiFV and 0',5 =jia otherwise.  Let 

0,5 =ija  for grid points outside the path.  Finally the path constraint is incorporated into 
sensor planning by: 
 

)0'()1'()2'()0'( ,5,5,33,22,11 >+>−=+>= iiiiii cwcwcwcwc , (3.34) 
 

where xc 55' A= and iw ,5 are different weights allocated according to the frontal view 
requirement.   

Note that although the coverage, resolution, and frontal view constraints are 
addressed separately, it is straightforward to combine any two terms or all three.  The 
only modification is to add the corresponding terms.  The adaptive weight approach is 
especially attractive because of its concise expression and speed of convergence.  

3.3 Experimental results 

In this section, we first validate the newly developed observation measure for 

Middle line

P0,k

P-i’,k

Pi’,k

uP,k

TC,j

TC,j -P0,k
TC ,j –Pi’,k

TC,j –P-i’,k

Observing camera

 
Figure 3.15. Illustration of how to compute the frontal view component with path 
constraints. 
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different types of cameras and then introduce our experimental methodology. Our 
experimental results using three floor plans are presented and compared with a reference 
algorithm proposed by Erdem and Sclaroff [Erdem06].  Three criteria are used to 
evaluate and compare the performances of various algorithms: coverage (C), handoff 
success rate (HSR), and frontal view percentage (FVP).  For clear presentation, the 
reference algorithm is denoted as T1C and T2C for the Max-Coverage (Type 1) and Min-
Cost (Type 2) problems, where C stands for coverage.  Our sensor planning methods 
discussed in section 3.2.1 are denoted as T1H and T2H, where H stands for handoff.  
When the frontal view or path constraint is included, we refer to our methods described in 
section 3.2.3 as T1P and T2P, where P stands for the path constraint.  Comparing the T1C 
(T2C) method with the T1H (T2H) method, an improved handoff success rate is expected.  
The major difference between the T1H and T1P (T2H and T2P) methods lies in that the 
path constraint is added in the T1P (T2P) method.  Therefore an improved frontal view 
percentage is expected from the T1P and T2P methods.  The algorithms for multiple 
dynamic targets discussed in section 3.2.2 are denoted as T1DO/T2DO, where D and O 
stand for dynamic occlusion and camera overload, respectively.  Their performances are 
compared with the T1H method. Unlike the T1H method that suffers from a decreased 
handoff success rate as the number of targets in the environment increases, a maintained 
handoff success rate is expected from the T1DO method.   

3.3.1 Experiments on observation measure 

We begin this section with the discussion regarding the selection of parameters used 
in the definition of the observation measure.  There are two sets of parameters: the 
normalization coefficients ( Rα , Dα , and FVα ) and the importance weights ( Rw , Dw , and 

FVw ).  The goal of choosing the appropriate normalization coefficients is to provide a 
uniform comparison basis for different types of cameras and cameras with various 
intrinsic and extrinsic parameters.  In so doing, sensor planning and camera handoff can 
be conducted disregarding the actual types of cameras involved.  In general, we 
normalize the MR and MD components in the range of zero to one and the MFV component 
in the range of minus one to one.  For static perspective cameras, the maximum of MR is 
achieved at TZTz θtan'ˆ −= . We have 1|'ˆ/ tan'ˆmax, == −= TZTzRR zM θα  and thus TZR T θα tan−= .  
To normalize the MD and MFV components, we need 5.0=Dα and 1=FVα , respectively.  
As for omnidirectional cameras, the maximum of the MR component is obtained by 

letting 0=θ :
Z
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1,θλ
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Z

R = .  In the similar fashion, we set 1=Dα  and 1=FVα to normalize the MD and MFV 

components for omnidirectional cameras.  Different from the selection of the 
normalization coefficients, which depend of the characteristics of the cameras used, the 
selection of the importance weights is purely application dependent.   
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In the following experiment, a static perspective camera is placed at TC=[0 0 3m]T  
looking down toward the ground plane at a tilt angle of -30°.  Its pan angle is set to zero.  
The image size is 640×480.  The camera’s focal length is 21.0mm.  Points are uniformly 
sampled in the ground plane (Z=0) with X in the range of -8m to 8m and Y in the range of 
2m to 10m.  Based on these parameters, the normalization coefficient of the MR 
component is 2.5)30tan(3 =−−= o

Rα .  As we mentioned before, a smaller 
decreasing/increasing rate of the MD component is desired when the target is at long 

distance.  In our implementation, we choose 
⎩
⎨
⎧

=+
=+

5.0|tan|2
1|tan|

1

1

oTZ

oTZ

T
T

βθβ
βθβ and obtain 1.01 −=β , 

5.10 =β .   In summary, the parameters used are listed as follows: 2.5=Rα , 5.0=Dα , 
1.01 −=β , 5.10 =β , 1=FVα , 25.0=Rw , 75.0=Dw , 0=FVw .  Figure 3.16(a) shows the 

observation measures for the perspective camera.  The best observation area with the 
maximum observation measure is in the proximity of  [0 5m 0]T.  As the object moves 
away from this area, the observation measure decreases.  A higher penalty is given to the 
motion along the X-axis, the direction orthogonal to the camera’s optical axis.  The 
proposed observation measure gives a quantified evaluation of the tracking and 
observation suitability, which also agrees with our intuition and visual inspection.   

In the second simulation, an omnidirectional camera that follows the equidistance 
projection model is placed at TC=[0 0 3m]T  overlooking an area with (X, Y) in the range 
of -6m to 6m.  The image size is 640×640.  The normalization coefficient for the 

resolution component is given by 3104.9
640

6 −×==Rα .  Other parameters used are listed as 

follows: 1=Dα , 1=FVα , 25.0=Rw , 75.0=Dw , 0=FVw .  The resulting observation 
measure is shown in Figure 3.16(b).  A radial symmetric shape is obtained, which 
coincides with the characteristics of an omnidirectional camera. 

3.3.2 Experimental methodology  

The floor plans used in this section are shown in Figure 3.17. The floor plan in Figure 
3.17(a) represents two types of environments commonly encountered in practical 
surveillance: space with obstacles (region A illustrated in yellow) and open space where 
pedestrian can move freely (region B illustrated in green).  Region B is deliberately 
included because it imposes more challenges on camera placement when considering 
handoff success rate.  Camera handoff is relatively easier when there is a predefined path 
compared with the scenarios where subjects can move freely, since camera handoff may 
be triggered at any point in the camera’s FOV.  Figure 3.17(b) illustrates an environment 
with a predefined path where workers proceed in a predefined sequence.  The floor plan 
of an outdoor parking lot is also included to evaluate the performance of the proposed 
algorithms for large scale environments.  The dimensions of the parking lot are about 
50m×100m.  In the following experiments, we refer to theses plans as plan A, B, and C.  
In our experiments, static perspective cameras are placed along the walls of the 
environment while omnidirectional and PTZ cameras can be mounted on the ceiling and 
at sampled grid points with an interval of 1m.   
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Figure 3.16. Graphical illustration of the observation measure and handoff safety margin
for (a) perspective and (b) omnidirectional cameras. 
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Figure 3.17.  Tested floor plans.  Two office floor plans: (a) without path constraints and 
(b) with path constraints.  (c) A floor plan of an outdoor parking lot.  
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To obtain a statistically valid estimation of the handoff success rate, simulations are 
carried out to enable a large amount of tests under various conditions.  A pedestrian 
behavior simulator [Antonini06, Pettre02] is implemented so that we could achieve a 
close resemblance to experiments in real environments and in turn an accurate estimation 
of the handoff success rate.  Interested readers can refer to the original papers for details. 
In our experiments, the arrival of the pedestrian follows a Poisson distribution with an 
average arrival rate of 0.01 persons per second.  The average walking speed is 0.5m per 
second.  Several points of interest are generated randomly to form a pedestrian trace.  
Figure 3.17 also depicts some randomly generated pedestrian traces.  Handoff success 
rate and frontal view percentage are obtained from simulation results of 300 randomly 
generated traces. 

3.3.3 Experiments on sensor planning  

In the following experiments, w1, w2, and w3 are set to 1, 2, and 5.  The failure and 
trigger thresholds are 0 and 0.6, respectively.  Since for both indoor floor plans the 
required visible distance is about 10m and the height is 3m, the same pair of tilt angle and 
focal length can be used for static perspective cameras with mmf 0.21=  and o30−=Tθ .   

Figure 3.18 illustrates the experimental results for floor plan A using static 
perspective cameras to solve the Max-Coverage problem. Our T1H approach chooses a 
camera positioning scheme with a slightly decreased coverage from 81.6% to 74.7%.  
However, the HSR is improved substantially from 23.2% to 87.4%.  An example trace is 
also shown in Figures 3.18(c) and (d).  As expected, if only coverage is considered, 
insufficient overlapped FOVs are kept between adjacent cameras, leading to two handoff 
failures as observed in Figure 3.18(c).  In comparison, given the camera placement 
optimized by the T1H method, the target is tracked continuously with three successful 
handoffs as shown in Figure 3.18(d). 

As expected, a considerably improved HSR is also achieved for floor plan B as 
shown in Figure 3.19.  In addition, we add the frontal view criterion with w5=5 and test 
the T1P method.  The FVP is elevated from 28.7% to 93.5%.  From Figures 3.19(b) and 
(c), we could see that the cameras are oriented toward the direction of the predefined path 
after introducing the frontal view constraint. 

The Min-Cost problem imposes additional requirements on the overall coverage, 
which leaves less freedom in the optimization process to achieve the maximum HSR.  As 
Figure 3.20 demonstrates, the overall coverage is constrained to be above 80%, which 
results in a decrease in HSR from 87.4% to 68.5%.  However, with similar coverage 
(T2H: 81.5% vs. T1C: 81.6%), our T2H algorithm is able to achieve a much higher HSR 
(68.5%) than the conventional T1C approach (23.2%).  Figure 3.21 demonstrates similar 
performance comparison of the T2H and T2P methods for floor plan B. 

Figures 3.22 and 3.23 demonstrate the experimental results for PTZ cameras.  The 
HSR is elevated from 48.7% to 100% at the cost of a marginal decrease in coverage from 
100.0% to 99.5% when comparing the performance of the T1C and T1H methods for 
floor plan B.  Our placement algorithm works properly for floor plan C, an example of 
large scale environments.  The T1H method generates an HSR of 99.9% and a coverage  
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Figure 3.18. Optimal camera positioning of floor plan A for the Max-Coverage problem 
using perspective cameras (a) T1C (C: 81.6 %, HSR: 23.2%) and (b) T1H (C: 74.7%, 
HSR: 87.4%).  An example trace: two handoff failures in (c) and three successful 
handoffs in (d). 
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Figure 3.19.  Optimal camera positioning of floor plan B for the Max-Coverage problem 
using perspective cameras (a) T1C (C: 84.8%, HSR: 6.0%, FVP: 67.7 %), (b) T1H (C: 
74.7%, HSR: 56.9 %, FVP: 28.7%), and (c) T1P (C: 72.1%, HSR: 58.0%, FVP: 93.5%).  
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Figure 3.20. Optimal camera positioning of floor plan A for the Min-Cost problem using 
perspective cameras (C≥80%).  (a) T2H (C: 81.5%, HSR: 68.5%).  (b) An example trace.   
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Figure 3.21. Optimal camera positioning of floor plan B for the Min-Cost problem using 
perspective cameras (C≥80%):  (a) T2H (C: 81.3%, HSR: 43.7%, FVP: 41.0%) and (b) 
T2P (C: 81.6 %, HSR: 47.1 %, FVP: 69.0%). 
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Figure 3.22. Optimal camera positioning of floor plan B for the Max-Coverage problem 
using PTZ cameras: (a) T1C (C: 100.0%, HSR: 48.7%, FVP: 52.5%), (b) T1H (C: 99.5%, 
HSR: 100.0%, FVP: 53.4%), and (c) T1P (C: 99.0%, HSR: 100.0%, FVP: 71.1%).  
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Figure 3.23. Optimal camera positioning of floor plan C for the Max-Coverage problem 
using PTZ cameras: (a) T1C (C: 99.5%, HSR: 73.5%) and (b) T1H (C: 99.2%, HSR: 
99.9%). 
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of 99.2% in comparison with the HSR of 73.5% and coverage of 99.5% from the T1C 
method.  

In parallel, experiments are conducted using omnidirectional cameras.  To cover a 
radius of 6m at a height of 3m, the chosen focal length is 15.4mm.  Figures 3.24 and 3.25 
show the optimal camera placement.  At the cost of 2.4% decrease in coverage, the HSR 
increases from 52.8% to 79.0% for floor plan A.  Different from perspective cameras 
which can look into a particular direction for a frontal view of the target, omnidirectional 
cameras have a 360°×90° view.  Therefore, the improvement in FVP from imposing the 
frontal view constraint is not substantial, indicated by an increase of 4.2% from T1H to 
T1P.   

Table 3.1 summarizes the performance comparison between the proposed algorithms 
and the reference algorithm described by Erdem and Sclaroff [Erdem06]. Consistent 
observations are obtained from experiments using three floor plans and three types of 
cameras.  Compared with the reference algorithm, our algorithms produce considerably 
improved HSR and FVP at the cost of slightly decreased coverage.  This amount of 
decrease in coverage is inevitable in order to maintain overlapped FOVs between 
adjacent cameras required by continuous and automated tracking given a fixed number of 
cameras.  The ratio between the increase in HSR and the decrease in coverage 

|C|HSR ∆∆ describes the advantage of our algorithms.   For the Max-Coverage problem, 
every 1% decrease in coverage results in a 4% to 10% increase in HSR.  An even higher 
improvement rate can be achieved for the Min-Cost problem.  The efficiency of the 
proposed algorithms in balancing the overall coverage and sufficient overlapped FOVs 
becomes evident.  Furthermore, our algorithms can handle additional constraints as well, 
such as the frontal view requirement.  The resulting T1P and T2P algorithms are able to 
maintain a similar improvement rate in HSR as the T1H method with further improved 
FVP. 

The conventional sensor planning methods achieve a camera placement with a 
maximized coverage.  In such a system, although it can be seen, the target cannot be 
consistently labeled or recognized as the same identity across different cameras because 
of handoff failures resulting from insufficient overlapped FOVs.  The resulting camera 
placement cannot support automated and persistent surveillance since the tracked or 
identified target trajectories are disjoint at the junction areas of adjacent cameras.  In 
contrast, our sensor placement ensures a continuous and consistently labeled trajectory.  
The slightly decreased coverage can be easily compensated for by adding an additional 
camera.   The cost of an extra camera is acceptable in comparison with a system with 
inherent disability of persistent and continuous tracking. 

Finally, we study the performance of our sensor planning algorithms for 
environments with multiple dynamic targets. PTZ cameras are used to include both 
problems of dynamic occlusion and camera overload.  The corresponding importance 
weights are w4=5 and w5=5.  Different target densities are tested to study their influence 
on camera placement.  Figure 3.26 (a) shows the camera placement obtained from the 
T1H method for floor plan B.  Figures 3.26(b) and (c) depict the camera placement with 
different target densities, Ko.  A larger Ko suggests an environment with a higher target 
density and leads to a camera placement with more overlapped FOVs between adjacent 
cameras so that the tracked target has more freedom to be transferred to another camera 
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Figure 3.24. Optimal camera positioning of floor plan A for the Max-Coverage problem 
using omnidirectional cameras (a) T1C (C: 88.4 %, HSR: 52.8%) and (b) T1H (C: 86.0%, 
HSR: 79.0%). 
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Figure 3.25. Optimal camera positioning of floor plan B using omnidirectional cameras. 
The Max-Coverage problem: (a) T1C (C: 92.1%, HSR: 50.0%, FVP: 49.9%), (b) T1H 
(C: 81.5 %, HSR: 92.6%, FVP: 53.4%), and (c) T1P (C: 80.0%, HSR: 100.0%, FVP: 
57.6%).  The Min-Cost problem (C≥90%):  (d) T2H (C: 91.2%, HSR: 52.2%, FVP: 
45.7%) and (e) T2P (C: 90.7%, HSR: 100.0%, FVP: 53.4%). 
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Table 3.1. System performance comparison. 

 
Floor plan A  (30m×10m) 

Camera Method C HSR |C|HSR/ ∆∆  

T1C/T2C 81.6 23.2  

T1H 74.7 87.4 9.3 Perspective 
T2H (C>80%) 81.5 68.5 453 

T1C/T2C 88.4 52.8  
Omnidirectional T1H/T2H 86.0 79.0 10.9 

Floor plan B (20m×15m) 

 Method C HSR |C|HSR/ ∆∆  FVP 

T1C/T2C 84.8 6.0  67.7 

T1H 74.7 56.9 5.0 28.7 

T1P 72.1 58.0 4.1 93.5 

T2H (C>80%) 81.3 43.7 10.8 41.0 
Perspective 

T2P 81.6 47.1 12.8 69.0 

T1C/T2C 92.1 50.0  49.9 

T1H 81.5 92.6 4.0 53.4 

T1P 80.0 100.0 4.1 57.6 

T2H (C>90%) 91.2 52.2 2.4 45.7 
Omnidirectional 

T2P 90.7 100.0 35.7 53.4 

T1C/T2C 100.0 48.7  52.5 

T1H 99.5 100.0 102.6 53.4 PTZ 
T1P 99.0 100.0 51.3 71.1 

Floor plan C (50m×100m) 

Camera Method C HSR |C|HSR/ ∆∆  

T1C/T2C 99.5 73.5  
PTZ T1H 99.2 99.9 88.0 
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Figure 3.26.  Sensor planning results considering the problems of dynamic occlusion and 
camera overload.  The optimal camera positioning of floor plan B for the Max-Coverage 
problem using PTZ cameras: (a) T1H, (b) T1DO with Ko=0.025, and (c) T1DO with 
Ko=0.05.  (d) System performance comparison based on handoff success rate with various 
target densities.  The target density is described by the maximum number of targets to be 
tracked simultaneously in the environment.   
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when experiencing dynamic occlusion and/or camera overload.  The advantage of the 
T1DO method over the T1H method becomes more conspicuous when we look into the 
handoff success rate with respect to various target densities, as shown in Figure 3.26(d).  
Note that in this plot the maximum number of targets is used to describe the target 
density instead of Ko for a more intuitive view of the target’s distribution in the 
environment.  For the T1H method, the HSR drops gradually from 100% to 64.7% as the 
maximum number of targets increases from one to six.  On the contrary, for the T1DO 
method, the HSR is maintained within 90% for camera placement with Ko=0.025 
(Ko=0.05) till the maximum number of targets reaches four (six).  As expected, the 
camera placement with a higher target density Ko=0.05 yields a more robust performance 
in more clustered environments.    



 59

4 Size preserving tracking 

To achieve size preserving tracking, in addition to controlling the camera’s pan and 
tilt motions to keep the object of interest in the camera’s FOV, the camera’s focal length 
is adjusted automatically to compensate for the changes in the target’s image size caused 
by the relative motion between the camera and the target.  The estimation accuracy of 
these changes determines the effectiveness of the resulting zoom control.  Considering 
accuracy, computational complexity, and robustness to image noise and based on the 
survey presented in section 2.2, the target depth based algorithm is selected.  The existing 
method of choice applies structure from motion (SFM) based on the weak perspective 
projection model.  We propose a target scale estimation algorithm with a linear solution 
based on the more advanced paraperspective projection model, which improves the 
accuracy of scale estimation by considering center offset.  Another key issue in the target 
depth based algorithms is the separation of foreground and background features, 
especially when composite camera (pan/tilt/zoom) and target motions are involved.  We 
also design a fast foreground/background segmentation algorithm, the affine shape 
method.  The resulting segmentation automatically adapts to the target’s 3D geometry 
and motion and is able to accommodate a large amount of off-plane rotation, which most 
existing segmentation algorithms find difficult to achieve.   

The remainder of this chapter is organized as follows.  Section 4.1 gives a brief 
overview of our size preserving tracking algorithm.  The proposed scale estimation and 
foreground segmentation algorithms along with experimental results are presented in 
sections 4.2 and 4.3, respectively.  

4.1 Algorithm description 

Figure 4.1 shows the algorithm’s flow chart including feature detection and matching, 
foreground and background segmentation, SFM, gaze point estimation, and target scale 
estimation.  In our implementation, features (image corners) are detected and tracked 
based on Shi’s method [Shi94] and the pyramidal Lucas-Kanade tracker [Bouguet00], 
respectively.  Conventional factorization approach is used for recovering structure and 
motion [Tomasi92].  In this chapter, we will focus on two decisive steps: target scale 
estimation and foreground/background segmentation.  
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Figure 4.1. Flow chart of the size preserving tracking algorithm. 
 
 
Size preserving tracking consists of two fundamental functionalities, target pursuing 

and target scale preservation.  The target pursuing unit controls the camera’s pan and tilt 
angles, so that the target remains in the camera’s FOV while the target scale preservation 
unit provides the guidelines to vary the camera’s focal length.  To maintain a constant 
target image size, we need to estimate and predict the changes in target scale based on 
preceding frames and issue the proper zoom commands to counteract these changes.  The 
scale estimation algorithm described in [Tordoff04] utilizes the weak perspective 
projection model, which is a highly abstracted simplification of the real imaging process.  
To improve the accuracy in target scale estimation, we examine the possibility of using 
more advanced projection models.   

Meanwhile, we are interested in fast and efficient foreground and background 
segmentation schemes for real-time applications.  In this chapter, we describe a 
segmentation algorithm based on affine shapes.  The prominent advantage of the 
proposed segmentation algorithm is its fast implementation.  In addition, at the cost of 
linear computations, the resulting algorithm is able to achieve satisfactory accuracy and 
robustness to image noise and off-plane rotation. 

4.2 Scale estimation 

In literature, the perspective and affine projection models are two major types of 
projections used to describe the imaging process. In the perspective projection model, an 

image point p is projected from a scene point P by: [ ] ⎥
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denotes the depth, MP, a 3×4 matrix, is the perspective projection matrix, and K, R, t are 
the camera intrinsic matrix, rotation matrix, and translation vector, respectively.  If the 
target’s relief is small enough compared to its distance from the observing camera, affine 
projection models can be used to approximate the imaging process.  Affine projection is 

characterized by the following equation: ⎥
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projection matrix.  The weak perspective and paraperspective projection models are two 
examples of the affine projection model.   

The weak perspective projection of a point P is constructed in two steps.  (1) The 
scene point P is first projected orthographically onto a point P’ on the reference plane rΠ , 
which is parallel to the image plane Π  and passes the target’s center of mass.  (2) A pin-
hole model, which corresponds to a scaling of the coordinates, projects P’ onto a point p 
in Π . If we denote the camera’s intrinsic parameters as follows, skew: s, aspect ratio: α , 
and focal length: f, and the target’s center of mass [ ]Trrr ZYX , the projection matrix is 
given by: 
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where R2 /t2 denotes the matrix/vector consisting of the first two rows of the matrix R 
/vector t.  In the weak perspective projection, the target’s image simply translates when 
the target translates parallel to the image plane.  However, under the perspective 
projection, the target’s image presents a different view, which may introduce changed 
image size.  This amount of change in the target’s image size is determined by the center 
offset, target relief, and target depth.   

The paraperspective projection evolves from the weak perspective projection.  It takes 
into account both the distortions associated with the center offset and possible variations 
in target depth.  It yields a closer approximation of the perspective projection by 
modeling the position effect.  In the meanwhile, it also maintains some of the linear 
properties of the weak perspective projection, which makes it attractive to our intended 
applications.  Similarly, the paraperspective projection involves two steps.  The scene 
point P is first projected onto a point P’ of rΠ along the direction of the line connecting 
the target’s center of mass and the camera’s optical center.  The second step follows that 
of the weak perspective projection model.  The projection matrix can be expressed as:   
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The image of the target’s center of mass, [xr yr]T, appears in the projection matrix.  
Letting xr=yr=0, we have the same expression as the weak perspective projection. 

4.2.1 Theoretical derivation 

For the purpose of size preserving tracking, our concern is the ratio between f and Zr, 
( )iri Zf=ρ , in the ith frame.  The camera’s focal length is adjusted for a constant ρi and 

thus a constant target image size.  The objective of scale estimation is to compute this 
ratio based on matched features in consecutive frames. 

Assume that the target’s feature points are tracked throughout the sequence.  Under 
the affine projection, the unregistered jth image point in the ith frame, pij, is projected from 
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the scene point Pj by ijiij PM mp += .  The registered points are formed by removing the 

estimated translation, iijij mpp −=' , where ∑ =
=

J

j iji J 1

1 pm and J is the total number of 

features.  From J registered point correspondences established over I frames, Tomasi and 
Kanade [Tomasi92] recovered the affine structure and motion in a batch mode from the 
SVD of the JI ×2  registered measurement matrix:  
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with I221 σσσ ≥≥≥ L  in descending order and used its rank-3 property to find the optimal 
affine projection matrices Mi, Mi-1, …, 1+−IiM  and structure Pi,j: 
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Let H be the non-singular matrix relating the recovered affine structure to the metric 

structure.  The following relation holds: HMM iiE '', = , 1,...,1,' +−−= Iiiii .  Assuming zero 
skew and unit aspect ratio and exploring the orthogonality of the rotation matrix R, we 
have: 
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The image of the target’s center of mass, xr,i’ and yr,i’, can be obtained from the estimated 
translation mi’ [Poelman97].  The vector h has six unknowns and for I frames there are (I-
1) 'iρ .  For each frame we can obtain three constrains and need 163 −+≥ II  or 
equivalently 3≥I  frames to solve the above equations.  The resulting algorithm requires 
similar computations as those based on the weak perspective projection model.  The 
paraperspective projection model takes the target’s position into consideration and can 
produce more accurate scale estimates when the target’s image is drifted away from the 
image center. 

We also designed scale estimation algorithms using the perspective projection model 
to relax the affine assumption that the target should be at a distance sufficiently large 
compared to its relief [Yao06C].  To achieve linear computations, the target’s motion is 
restricted to a planar motion, representative of the motion of traffic and pedestrian.  
However, the use of the perspective projection model usually requires a final bundle 
adjustment to refine the reconstructed motion and structure.  Even though the linear 
solution is mathematically valid, it is subject to image noise and the resulting estimation 
is unstable especially when composite camera and target motions are involved.  In this 
chapter, we use the scale estimation algorithm based on the perspective projection model 
to study the distance constraint imposed by the affine assumption in controlled 
environments.   

4.2.2 Experimental results 

Offline and real-time pedestrian sequences are captured.  The offline sequence is 
collected by a Sony camcorder DCR-TRV730 with a constant zoom and is used for 
evaluating the performance of the proposed scale estimation algorithms.  The real-time 
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sequence is collected by a Pelco Spectra III SE series dome system.  Real-time 
pan/tilt/zoom commands are issued to track the target and maintain a constant target 
image size.  The scale estimation algorithms based on the weak perspective [Torrod04] 
and perspective [Yao06C] projection models are also implemented and their performance 
serves as a comparison reference.   

Figure 4.2 shows sample frames and performance comparison from an offline 
pedestrian sequence.  The target walks at a normal speed toward the camera from a 
distance of 15m to a distance of 5m.  We manually measured the target’s image size and 
used it as a reference to evaluate the performance of the algorithms based on various 
projection models.   

When the target is at a reasonable distance, the algorithms based on both affine and 
perspective projection models can produce accurate estimation.  As the target approaches 
the camera, the affine projection model is unable to capture the characteristics of the 
imaging process.  The advantage of using the perspective projection model emerges.  It 
can produce accurate estimation regardless of the target’s position.  The performance of 
both affine projection models (weak perspective and paraperspective) begins to degrade 
when the target is at a distance of about 7m.  To quantitatively compare their 
performance, the root mean squared error (RMSE) for the perspective, paraperspective, 
and weak perspective projection models are computed from the 380th frame when the 
target is at a distance of approximately 7m and are listed as follows: 0.19, 0.36, and 0.54.  
As expected, the perspective projection model yields the best accuracy, followed by the 
paraperspective and weak perspective projection models.  However, the performance of 
the algorithm based on the perspective projection model deteriorates and fails to preserve 
the necessary robustness when more realistic sequences (deformations, disturbances from 
background, camera motion) are used.   

Since the target’s image is close to the image center in this pedestrian sequence, the 
performances are similar for both affine projection model based algorithms.  As the target 
approaches the camera resulting in increased influence from the center offset, an 
improved accuracy, quantified by a decreased RMSE from 0.54 to 0.36 and a decreased 
relative error from 28.6% to 20.0%, is observed from the weak perspective to the 
paraperspective projection model.   

The advantage of using the paraperspective projection model becomes evident when 
there exists a decent amount of center offset, such as the case in real-time tracking.  To 
manifest the advantage of using the paraperspective projection model, a sequence with 
center offset is deliberately collected and is shown in Figure 4.3.  From Figure 4.3(e), an 
obvious improvement in estimation accuracy is achieved, indicated by a decrease in the 
RMSE from 0.31 to 0.12.  Since the estimation error is cumulative, more enhanced 
accuracy is observed from the last frame, where the relative errors for the weak 
perspective and paraperspective projection models are 17.4% and 3.3%, respectively.     
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Figure 4.2. (a)-(d) Sample frames from the pedestrian sequence. Yellow and red dots 
present the detected corners in the background and foreground, respectively.  The affine 
shape separating the foreground and background corners is depicted by a black 
quadrilateral.  A light blue circle shows the gaze point, to which the camera is directed. 
(e) Comparison of measured and estimated target scale (normalized to the target’s image 
size in the first frame). 
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Figure 4.3. (a)-(d) Sample frames from the toy car sequence with center offset.  (e) 
Comparison of measured and estimated target scale (normalized to the target’s image size 
in the first frame). 
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4.3 Foreground / background segmentation 

4.3.1 Theoretical derivation  

Given aN  points on the boundaries of the target’s image [ ]Ti
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where +)(o denotes the matrix pseudo inverse.   

The above affine shape is not stable due to image noise.  Without additional 
constraints, the vertices on the affine shape in the recovered affine space 
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jXji VVVV ,,,, =  may assume different i

jZV ,  and the differences may be exaggerated 
by the numerical errors in SFM.  To avoid unnecessary distortions caused by i

jZV , , it is 
necessary to impose additional constraints on i

jZV , .  Keeping i
jZV ,  constant with an 

unknown value is one possible solution.  This is done by constructing: 
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Finally we have: 
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The estimated vertices are ijiiji VM mv += ,,  with [ ]Ti

Z
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jY
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jXji VVVV ,,, = . 
Compared with Mi’, '

~
iM  has a higher dimension.  To save on computations, we further 
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,

i
jZV  to a fixed and known value, for instance the Z coordinate of the gaze point, 
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'iM  includes the first two columns of Mi’ and '
'im  the third 

column, respectively. The vertices of the affine shape can be updated by: 
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Since the origin of the reconstructed affine basis corresponds to the center of mass of 

all tracked corners, we can also set 0'
, =i
jZV  and arrive at: 
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In so doing, no prior solution of 'i

ZG  is necessary. 
The Z axis of the recovered affine space corresponds to the direction with the third 

largest singular value of the measurement matrix Wi in (4.3), equivalently the smallest 
dimension in the target’s reconstructed geometry or the smallest variations in the target’s 
relative motion.  By choosing a fixed i

jZV , , we only consider the variations in the first two 
principal axes.  By forcing ''

,
i
Z

i
jZ GV =  or 0'

, =i
jZV , the affine shape is centered at the gaze 

point or the target’s center of mass.  This arrangement is representative of the target’s 3D 
geometry and motion.   

The aforementioned algorithm is efficient in handling general motions including off-
plane rotation.  However, as the target rotates, the affine shape keeps tracking and 
rotating with the originally visible sides but excludes the newly detected target corners in 
the previously hidden sides.  When the rotation angle is large, the hidden sides of the 
object become dominant while the originally visible sides diminish.  With fewer and 
fewer matched features, the system performance deteriorates. 

To be able to include the newly detected corners in the previously hidden sides and 
accommodate a large off-plane rotation angle, the variations along the Z axis must be 
taken into consideration as well.  Therefore, two affine shapes are used (Figure 4.4), each 
passing the extreme points of the Z axis and parallel to the plane determined by the other 
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two affine basis, forming a 3D affine shape.  In so doing, the relative position between 
these two affine shapes embodies the changes in the Z axis. 

In summary, the proposed foreground/background segmentation algorithm proceeds 
as follows. 

1. Initialize the affine shape. 
1.1 Obtain the reconstructed structure P0,j from the SVD factorization of the 

measurement matrix W0.   
1.2 Find the maximum { }j

j
ZZ ,0

0
max max=  and minimum coordinates 

{ }jj
ZZ ,0

0
min min=  along the third affine axis.   

1.3 Construct two affine shapes −
0V  and +

0V based on these extreme points: 
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1.4 Project the affine shapes onto the 2D image plane:  0,00,0 mv += ±±
jj VM . 

2. Update the affine shapes by: 
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3. Construct the region of foreground ROF with −
ji,v and +

ji,v as the vertices in the 

3D recovered space
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Figure 4.4. Illustration of the use of two affine shapes. 
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(i+1)th frame. 
4. Separate the foreground corners in the (i+1)th frame from background if 

ROFji ∈+ ,1p . 
The use of two affine shapes or equivalently one 3D affine shape helps to capture the 

target’s motion more precisely.  The changes caused by the target’s off-plane rotation can 
be incorporated as well. A quadrangle affine shape with 4=aN  is used in our experiments.  
More points can be added producing general shapes such as polygons and ellipses.  An 
extreme case is to use the points on the target’s detected contour, where the affine shape 
and an active contour algorithm can be applied to predict and refine the vertices, 
respectively.  The choice of the shapes is application dependent.   

The prominent advantage of the proposed segmentation method is its fast 
implementation and low computational cost.  Since the affine structure is readily 
computed for the purpose of scale estimation, the additional computation is only an 
update for aN  points.  Once the affine shape is determined, the separation reduces to 
identifying the corners inside the ROF.  To improve the segmentation accuracy, multiple 
cues can be explored to reject outliers.  Color information is a popular choice.  After the 
first round selection by the affine shape, the number of candidate points is much smaller.  
Thus, the successive process of rejecting outliers can be carried out without bringing in 
noticeably increased complexity. 

The ability to handle off-plane rotation is also nontrivial.  The target presents a 
different view to the camera during rotation, which impedes the use of appearance based 
methods [Collins03, Kim03] unless a timely update is conducted.  Although RANSAC 
based algorithms can be used at the cost of considerably increased computations 
[Tordoff04], it is equally difficult to separate foreground features while the target is 
rotating.  The ability of rotation handling, provided by the incorporation of the target’s 
3D geometry and motion, facilitates view independent target pursuing and provides a 
promising segmentation method when off-plane rotation is involved. 

The effectiveness of our foreground and background segmentation depends on the 
accuracy of the reconstructed structure, which in turn relies on the efficiency of SFM.  
The accuracy of the segmentation is dominated by the percentage, relative position, and 
relative motion of the erroneously classified foreground corners with respect to the 
correctly classified corners.  Our algorithm is able to produce accurate and robust 
segmentation if the majority of the matched corners are correctly recognized.  From our 
experiments, our algorithm has a tolerance of 20% for erroneously classified corners.  
The amount of the tolerance is obtained empirically by observing the accuracy of object 
tracking and scale estimation after purposefully including points close to the target but 
lying outside the estimated affine shape.  This tolerance is sufficient for most practical 
surveillance systems.   

4.3.2 Experimental results 

The affine shape with unconstrained i
jZV ,  is not stable and may undergo sudden 

distortions even under controlled scenarios such as the toy car sequence (Figure 4.5).  In 
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this sequence, the target moves toward the camera at a constant speed from a distance of 
10m to a distance of 5m and rotates approximately 20°.  Two consecutive frames are 
shown in Figures 4.5(b) and (c), where a sudden distortion in the estimated affine shape 
occurs. 

To fully understand the cause of the observed sudden changes and illustrate the effect 

of restricting i
jZV , , we look into the behavior of the updating matrix 

+

−

+−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

1

i

Ii

i

M

M
M M or 

+

−

+−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1

1

~

~
~

i

Ii

i

M

M
M M for cases with constant i

jZV , .  The largest singular value of 
+
iM , +

iM
S , is 

studied since it best describes the characteristics of +
iM .  From Figure 4.6(a), we observe 

frequent spikes in the plot of +MS .  These spikes are responsible for the sudden distortions 
in the affine shape. 

From unconstrained i
jZV ,  to constant but unknown i

jZV , as shown in Figure 4.6(b), 
although the spikes occur occasionally, the variations in +MS  are reduced, with the 

standard deviation decreasing from 11.74 to 5.87.  In Figure 4.6(c), i
jZV , is restricted to a 

fixed and known value.  The observed variations further decrease with the standard 
deviation dropping from 5.87 to 1.35.  More importantly, there are no visible spikes in 

+MS , eliminating undesired distortions in the affine shape.   

Under the similar experimental condition, the affine shape with 0, =i
jZV  presents 

considerably improved stability, as shown in Figure 4.7.  The resulting affine shape is 
able to trace the moving target closely and maintain its shape consistently throughout the 
sequence.  Considering stability and computational complexity, the affine shape with a  

 

Motion trace 

  

 

(a) (b) (c) 
Figure 4.5. Sample frames from the toy car sequence with unconstrained i

jZV , .  (a) 
Reference frame.  (b) and (c) Two consecutive frames with a sudden change in the
estimated affine shape. 
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(a) 

 
(b) 

 
(c) 

Figure 4.6. Comparison of +
iM

S based on the toy car sequence with various i
jZV , : (a) 

unconstrained i
jZV , , (b) constant but unknown i

jZV , , and (c) 0, =i
jZV .  The values of +

iM
S  

become increasingly stable from unconstrained i
jZV , to 0, =i

jZV , which eliminates 
distortions in the affine shapes. 
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constant and known i

jZV , produces the best performance.  From our experiments the actual 

value of i
jZV , , either i

Z
i

jZ GV =,  or 0, =i
jZV , does not affect the algorithm’s stability.  

The following experiment examines the performance of the proposed 3D affine shape 
in handling a large amount of rotation (>45°).  The subject remains at the same position 
and turns his head from 0° to 90° and then backwards.  Figure 4.8 demonstrates sample 
frames with a single affine shape implemented.  The resulting affine shape is able to 
locate and trace the originally visible side of the target (the frontal view of the target’s 
face) precisely.  However, apparently, with a single affine shape, the variations along the 
Z axis are absent and the resulting affine shape closely resembles the target’s frontal view.  
As a result, the newly emerged features from the target’s side view, to be more specific 
the features near the target’s ear, are excluded. 

Figure 4.9 shows sample frames with two affine shapes or equivalently one 3D affine 
shape implemented.  It is obvious that our algorithm is now capable of handling large 
degrees of deformation and accommodating rotation.  Compared with Figures 4.8(b) and 
(c), features from the target’s side view are included automatically. 

Figure 4.10 illustrates sample frames when the toy car moves toward the camera from 
a distance of 10m to a distance of 3m.  Figure 4.10(e) shows the estimated target scale 
with automatic zoom control and compares it with the scale change if the camera’s zoom 
is kept constant.  With automatic zoom control where the camera’s zoom is varied from 
9× to 3× approximately, the target’s image size is maintained with a variation of 10% of 
the original scale.  Figures 4.11 and 4.12 demonstrate sample frames and estimated target 
scale from real-time pedestrian sequences.  In Figure 4.11, the camera’s zoom is changed 
from 8× to 2× so that the target’s image size is maintained with only slight variations.  In 
parallel, in Figure 4.12, the camera’s zoom is changed from 4× to 1× automatically 
resulting in a relative variation less than 6% of the total variations if no size preserving 
zoom control is applied. 

 

Motion trace 

  

(a) (b) (c) 
Figure 4.7. Sample frames from the toy car sequence with 0, =i

jZV .  (a) Reference frame.  
(b) and (c) Frames before and after rotation.  The affine shape follows the target closely 
with no distortions as the target rotates. 
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(a) (b) 

  
(c) (d) 

Figure 4.8.  Sample frames from the men’s face sequence with a single affine shape 
( 0, =i

jZV ).  (a) 0°.  (b) 90°.  (c) 45°.  (d) 0°.  The estimated affine shape follows the 
frontal view of the target, which is initially visible.  The newly detected points on the 
initially invisible views (side view) are not considered as the foreground. 

 
 

  
(a) (b) 

  
(c) (d) 

Figure 4.9. Sample frames from the men’s face sequence with two affine shapes depicted 
in blue and green.  (a) 0°.  (b) 90°.  (c) 45°.  (d) 0°.  The use of two affine shapes ensures 
that the newly detected points on the initially invisible views (side view) are 
automatically considered as the foreground. 
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(e) 

Figure 4.10. (a)-(d) Sample frames from a real-time toy car sequence.  (e) Estimated 
target scale (normalized to the target’s image size in the first frame). 
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(e) 

Figure 4.11. (a)-(d) Sample frames from a real-time pedestrian sequence including busy 
background, illumination change, and pose variation.  Green bounding box illustrates the 
target’s initial image size, which is to be preserved throughout the sequence.  (e) 
Estimated target scale (normalized to the target’s image size in the first frame).  The face 
resolution is maintained throughout the sequence. 
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Figure 4.12. (a)-(d) Sample frames of a real-time pedestrian sequence including busy 
background and illumination change.  (e) Estimated target scale (normalized to the 
target’s image size in the first frame).  The target scale is maintained throughout the 
sequence.  Note that due to system latency, there exists a moderate amount of center 
offset in this sequence. 
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5 Camera handoff 

Camera handoff automatically governs the collaboration among adjacent cameras in 
real time to ensure persistent surveillance.  As the first step of camera handoff, the 
observation measures of the tracked targets are computed and used to determine when to 
trigger a handoff request.  Once a handoff request is issued, the adjacent cameras’ 
computational load is examined to select available candidate cameras.  These candidate 
cameras then exchange information and perform consistent labeling.  A hybrid consistent 
labeling algorithm is employed in our system, where both geometry relation and color 
information are used for data association among cameras.  Finally, the tracked target is 
transferred to the optimal candidate camera considering resolution, occlusion, camera 
load, frontal view, etc.   

The definition of the observation measure used in camera handoff is given in section 
5.1.  Section 5.2 presents our camera handoff algorithm.  Experimental results are 
demonstrated in section 5.3. 

 

5.1 Observation measure 

The observation measure discussed in section 3.1 is designed for sensor planning, 
where a full knowledge of the camera’s intrinsic and extrinsic parameters is assumed.  In 
practical surveillance systems, this assumption needs to be relaxed.  In this section we 
design the observation measure for camera handoff purely based on the 2D input 
sequences.  The definitions given herewith approximate the counterparts in section 3.1.  
The requirements on designing the observation measure for camera handoff are two 
folded. (1) The observation measure for camera handoff should represent the 
corresponding quantities defined for sensor planning, which establishes the connection 
between camera handoff and sensor planning.  This is important since it ensures that the 
optimal handoff success rate as predicted by sensor planning can be achieved in practical 
surveillance.  (2)  The computations of the observation measure for camera handoff only 
depend on quantities derivable from 2D images with no prior knowledge of the camera’s 
intrinsic and extrinsic parameters.  Linear and direct computations are preferred for real-
time applications.  In parallel to the layout of section 3.1, the observation measure for 
camera handoff is defined for static perspective, PTZ, and omnidirectional cameras.      



 79

5.1.1 Static perspective cameras 

From the size preserving tracking algorithm discussed in chapter 4, the target scale is 
readily estimated.  Therefore, the resolution component MR is: 

 
ραα RrRR ZfM == . (5.1)

 
The gaze point [ ]T

yx gg=g  is used to evaluate the distance to the edges of the camera’s 
FOV: 
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From the estimated gaze point, we can also compute its velocity ug.  It is sufficient to use 
the projected velocity along the camera’s optical axis xgu , to describe the frontal view 
component:  
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Since 3D reconstruction is also obtained based on the affine projection model in our size 
preserving tracking, the target’s 3D trace can be estimated.  We can also follow the 
definition in (3.10) for a more accurate estimation of MFV.  However, from our 
experiments, the above definition produces an acceptable accuracy with considerably 
decreased computational complexity.  The observation measure for camera handoff is a 
weighted sum of these three components: 
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5.1.2 PTZ cameras 

Under the assumption that the object of interest is maintained within the proximity of 
the image center due to proper pan and tilt controls, the MD component for PTZ cameras 
remains approximately constant independently from the target’s relative position and, 
therefore, can be omitted.  The resolution and frontal view components follow the 
definitions for static perspective cameras:  
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and 
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Note that different from static perspective cameras the focal length in (5.5) is indeed time 
varying for PTZ cameras.  Our size preserving tracking algorithm discussed in chapter 4 
considers the changes in target scale caused by a time varying focal length as well and 
outputs an estimate of rZf including the combined effect of camera zooming and target 
motion.     

5.1.3 Omnidirectional cameras 

From section 3.1, the resolution component for an omnidirectional camera is defined 
as: 
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From the centroid of the detected motion blob, [ ]T

yx gg=g , the angle between the 
incoming ray and the camera’s optical axis θ  can be solved by computing the roots of 
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The maximum of MR is achieved at 0ˆ =θ , which yields 
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The MD component is given by: 
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and the definition of the frontal view component remains the same: 
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5.2 Algorithm description 

Figure 5.1 illustrates the flow chart of our camera handoff algorithm, where 
operations are carried at the handoff request and handoff response ends.  Let the jth 
camera be the handoff request end and the ith target be the one that needs a transfer.  A 
handoff request is triggered and broadcasted if Tij QQ <  and ijQ is decreasing.  Afterwards, 
the jth camera keeps tracking the ith target and waits for confirmation responses from 
adjacent cameras while the target is still visible.   

At the handoff response end, the (j′)th camera examines its current computational load 
and rejects the handoff request if the maximum number of objects that can be tracked 
simultaneously ', jobjN has been achieved.  Otherwise, the response camera checks the 
probability of the ith target being occluded by other tracked targets in its FOV.  A positive 
response is granted if the probability of dynamic occlusion is low.  If the ith target falls in 
the dynamic occlusion of the (i′)th target, their observation measures are compared.  The 
handoff request is rejected if ''' jiij QQ ≤ .  Otherwise, a handoff request for the (i′)th target is 
triggered by the (j′)th camera.  Meanwhile, a positive handoff response for the ith target is 
issued.   

Back to the handoff request end, if no confirmation response is received before the jth 
camera loses track of the ith target, a handoff failure is issued.  Otherwise, among all 
available candidate cameras, the one with the highest observation measure is chosen 

{ }'maxarg* ijQj =  and the ith target is transferred from the jth camera to the (j*)th camera if 

*ijij QQ <  and *ijQ  is increasing. 
In practical surveillance, we need to address the influence of noise.  Because of non-

ideal tracking and consistent labeling, the resulting observation measures are noisy.  The 
rule of selecting the camera with the largest observation measure is not entirely valid.  
Instead, we want to choose the optimal camera by maximizing the probability of the 
corresponding observation measure being the maximum among competing cameras. 

To begin our discussion, the noise introduced by non-ideal tracking and consistent 
labeling is assumed to follow a Gaussian distribution.  An extended Kalman filter can be 
constructed based on a state vector [ ]Tygxgyx uugg ,,ρρ ∆ and a measurement 

vector [ ]Tyx Qggρ .  From the output of the extended Kalman filter, the a posteriori 

probability of the observation measure at the ith grid from the jth camera 
),,( ,, ijQijQijQp σµ follows a Gaussian distribution with mean ijQ,µ  and standard deviation 

ijQ,σ [Grewal01].  We then design the following cost function based on ijQ  to govern the 
transition between cameras:   
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Figure 5.1. Flow chart of the camera handoff algorithm.  The handoff response end has 
the ability to handle dynamic occlusion and camera overload.  'jN  is the number of 

tracked objects in the (j’)th camera and ', jobjN  is the maximum number of objects that can 
be tracked simultaneously by the (j’)th camera.  dii’ denotes the distance between the 
images of the ith and (i’)th targets and dth is a predefined threshold for dynamic occlusions. 
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where Ncam denotes the number of candidate cameras.  The optimal camera is selected 
according to { }ijj ψmaxarg* = . 

5.3 Experimental results 

In this section, we study the effectiveness of the newly defined observation measure 
in triggering and executing camera handoffs based on real-time pedestrian sequences.  
Due to the radial symmetric property of omnidirectional cameras, it is sufficient to 
examine the target’s motion across the camera’s FOV.  As for static perspective cameras, 
camera handoffs are triggered by the target’s motions along and orthogonal to the 
camera’s optical axis.  To obtain a statistically valid performance evaluation and 
comparison between ijQ  and ijψ , simulations based on 300 randomly generated traces are 
conducted for both static perspective and omnidirectional cameras.       

5.3.1 Camera handoff between omnidirectional cameras 

In the following experiments, two omnidirectional cameras, IQEye3 and IPIX are 
used to test our camera handoff algorithm.  As shown in Figure 5.2, two omnidirectional 
cameras are placed at the same height of 3m and at 10m apart.  They are calibrated before 
hand using the algorithm described in [Yao06E].  A polynomial of degree one is selected 
as the optimal model by the Akaike information criterion for the IQEye3 camera: 

θ342.1=r .  As for the IPIX camera, polynomials of degree one, θ4055.1=r , and degree 
three, 30175.04435.1 θθ +=r , present similar performances.  For a low computational cost 
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Figure 5.2.  Schematic illustration of the system setup for experiments using two 
omnidirectional cameras. 
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in camera handoff, the polynomial of degree one is used.  From the known relative 
positions of both cameras, we are able to derive their spatial correspondences under the 
assumption of planar motion.  The experiment in Figure 5.3 illustrates the process of 
triggering and executing camera handoffs and the experiment in Figure 5.4 investigates 
the robustness of our handoff algorithm in the presence of dynamic occlusion.   

From Figure 5.3, we can see that the target is first detected and tracked by camera 1.  
As the target moves across the FOV of camera 1, the corresponding observation measure 
first increases and then decreases.  A handoff request is triggered as the target further 
approaches the edges of the camera’s FOV.  In the meanwhile, the target also appears in 
the FOV of camera 0 so that consistent labeling can be established.  Afterwards, the 
target is taken over by camera 0 before it becomes untraceable in camera 1.  Similar 
process repeats as the target moves in the opposite direction and returns to the starting 
position.  The newly defined observation measure accurately describes the quality of 
object tracking and detects the moment when the tracked target requires a handoff.  As a 
result, camera handoffs are executed successfully and smoothly.  The target is tracked 
continuously and consistently.   

The proposed handoff algorithm is capable of handling partial occlusion, as show in 
Figure 5.4. Two targets are tracked simultaneously and transferred between two 
omnidirectional cameras smoothly regardless of partial occlusions.   

5.3.2 Camera handoff between static perspective cameras 

Two perspective cameras are placed at the same height of 2m.  Three scenarios are 
examined according to the angle between the optical axes of the cameras: 0°, 180°, and 
90°.  Figure 5.5 schematically illustrates the experimental setups.  We refer to these three 
setups as case A, B, and C.   

For case A, as the target first walks into the FOV of camera 0, the corresponding 
observation measure is below the trigger threshold Q<QT.  In Figure 5.6(b) the 
observation measure achieves Q≥QT.  As the target moves toward the edges of the 
camera’s FOV, the observation measure falls below the trigger threshold again.  Thus, at 
the position shown in Figure 5.6(c), a handoff request is issued.  From Figure 5.6(c) to (d), 
communications and consistent labeling between camera 0 and camera 1 are established.  
Figure 5.6(d) is the last frame where the target is tracked by camera 0 and Figure 5.6(e) is 
the first frame after the target is transferred to camera 1.  Afterwards, since there is no 
additional camera to take it over from camera 1, the target is tracked by camera 1 even 
after a handoff is triggered in Figure 5.6(f).  Camera 1 continues tracking the target until 
it falls out of the camera’s FOV as shown in Figure 5.6(g).  Sufficient overlapped FOVs 
are reserved for camera handoff and the pedestrian is successfully handed over from 
camera 0 to camera 1.   

Figure 5.6(h) depicts the resulting observation measure for both cameras.  The 
distance to the edges of the camera’s FOV component dominates the transition between 
the two cameras since the resolution and frontal view components are kept approximately 
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Figure 5.3. Camera handoff between omnidirectional cameras.  (a) First frame with the 
detected target in camera 1.  (b) Tracked target with Q≥QT in camera 1. (c) Triggered 
handoff in camera 1.  (d) Handoff is executed.  The tracked target is transferred from 
camera 1 to camera 0.  (e) Tracked target with  Q≥QT in camera 0.  (f) Triggered handoff 
in camera 0.  (g) Handoff is executed.  The tracked target is transferred from camera 0 to 
camera 1.  (h) Tracked target with Q≥QT in camera 1.  (i) Observation measure.  The 
observation measures of frames (a)-(h) are specified.   
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Figure 5.4. Camera handoff between omnidirectional cameras with dynamic occlusion: 
(a)-(d) target 0 and (e)-(h) target 1.  (a) and (e) First frames with the detected targets.  (b) 
and (f) Frames before camera handoff.  (c) and (g) Frames after camera handoff.  (d) and 
(h) Last frames before the targets become untraceable.  (a), (b), (g), and (h) Frames 
captured by camera 0.  (c), (d), (e), and (f) Frames captured by camera 1.  Observation 
measure of (i) target 0 and (j) target 1. 

 
 



 87

 
 

Ground plane

Cam0 Cam1

5m/17f

2m
/7

f

X
Y

Z

Ground plane

Cam0 Cam1

5m/17f

2m
/7

f

X
Y

Z

 
(a) 

Ground plane

Cam0

Cam1

5m/17f

2m
/7

f

X
Y

Z

Ground plane

Cam0

Cam1

5m/17f

2m
/7

f

X
Y

Z

 
(b) 

Ground plane

Cam0

Cam1

20m/67f

2m
/7

f

X
Y

Z

 
(c) 

Figure 5.5.  Schematic illustration of system setups for experiments using two static 
perspective cameras. Angles between the optical axes of the two cameras: (a) 0°, (b) 
180°, and (c) 90°. 

 



 88

   
(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Frame index

O
bs

er
va

tio
n 

m
ea

su
re

Cam0
Cam1

(a)

(b) (c)

(d)

(f)

(g)

QT

(e)

 

(h) 

Figure 5.6. Camera handoff between static perspective cameras for case A.  (a) First 
frame with the detected target in camera 0.  (b) Tracked target with Q≥QT in camera 0. (c) 
Triggered handoff in camera 0.  (d) and (e) Handoff is executed.  The tracked target is 
transferred from camera 0 to camera 1.  (f) Triggered handoff in camera 1.  (g) Last 
frame before the target disappears from the camera’s FOV.  (h) Observation measure.   
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constant throughout the sequence.  As expected, the observation measure increases as the 
target approaches the image center and decreases as the target moves away from the 
image center.  

Similar experimental results are obtained for case B as shown in Figure 5.7, where the 
two cameras facing each other with an angle of 180° between their optical axes.  The 
most significant factor in camera handoff is the MD component, which triggers a handoff 
when the target is too close to the edges of the camera’s FOV and chooses a camera with 
a target’s image closer to the image center.   

In case C, the resolution component MR enters into effect as the target approaches 
camera 0 along the camera’s optical axis.  From Figure 5.8(h), we can see that the 
observation measure increases gradually as the target moves toward the camera.  The 
target is transferred to camera 1 once it appears in the camera’s FOV since a higher 
observation measure is achieved mainly because of the higher resolution in camera 1.   

From our experiments, we could conclude that the proposed camera handoff 
algorithm is able to trigger a handoff request timely and select the suitable camera 
efficiently.  The observation measure designed for camera handoff closely approximates 
the observation measure used for sensor planning so that sufficient time margins are 
reserved for communication, consistent labeling, and handoff execution.  For all tested 
sequences, camera handoffs are carried out smoothly and successfully under scenarios 
with different system setups, varying resolution, color discrepancies, and partial 
occlusions.   

5.3.3 Camera handoff using synthetic data  

The aforementioned experiments are conducted using real-time pedestrian sequences, 
where the number of targets and the variety of sequences are limited due to the available 
experimental conditions.  To obtain a statistically valid estimation of the handoff success 
rate, simulations are carried out to enable a large amount of tests under various conditions.  
In the following experiments, floor plan A with the camera placement optimized by the 
T1H method using static perspective cameras and floor plan B with the camera placement 
optimized by the T1P method using omnidirectional cameras are used.  A pedestrian 
behavior simulator [Antonini06, Pettre02] is implemented with the arrival of the 
pedestrian following a Poisson distribution at an average arrival rate of 0.01 persons per 
second.  The average walking speed of these generated objects is 0.5m per second.  
Several points of interest are generated randomly to form a pedestrian trace.  The handoff 
success rate is obtained from simulation results of 300 randomly generated pedestrian 
traces. To verify the efficiency of the criterion ijψ  defined in (5.12) in choosing a suitable 
camera in noisy applications, we manually add image noise.  The noise standard 
deviation is varied from 5 to 25 pixels.  System performance is compared based on the 
handoff success rate using the noisy observation measure ijQ  and the modified quantity 

ijψ  as the criterion for camera handoff.  
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Figure 5.7. Camera handoff between static perspective cameras for case B.  (a) First 
frame with the detected target in camera 0.  (b) Tracked target with Q≥QT in camera 0. (c) 
Triggered handoff in camera 0.  (d) and (e) Handoff is executed.  The tracked target is 
transferred from camera 0 to camera 1.  (f) Tracked target with Q≥QT in camera 1.  (g) 
Triggered handoff in camera 1.  (h) Last frame before the target disappears from the 
camera’s FOV.   (i) Observation measure.   
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Figure 5.8. Camera handoff between static perspective cameras for case C.  (a) First 
frame with the detected target in camera 0.  (b) and (c) Handoff is executed.  The tracked 
target is transferred from camera 0 to camera 1.  (d) Tracked target with  Q≥QT in camera 
1.  (e) Triggered handoff in camera 1.  (f) and (g) Handoff is executed.  The tracked 
target is transferred from camera 1 to camera 0.  (h) Observation measure.   
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 Figure 5.9 shows the optimal camera placement and the handoff success rate with ijQ  

and ijψ  as the criterion for camera transition.  For static perspective cameras as shown in 
Figure 5.9(b), the handoff success rate is maintained disregarding the significantly 
increased noise level when ijψ  is used.  In comparison, the handoff success rate drops 

gradually from 84.6% to 51.3% when ijQ is used.  Similar observations apply to the 
experiments based on omnidirectional cameras as shown in Figure 5.9(d).  The handoff 
success rate is maintained for ijψ  while the handoff success rate degrades from 98.5% to 

86.4% for ijQ .  Therefore, in practical surveillance, the modified quantity ijψ  is a robust 
criterion for camera selection.  An approximately constant handoff success rate is 
achieved disregarding the system’s noise level.   
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Figure 5.9. (a) The optimal camera placement obtained based on the T1H method for 
floor plan A using static perspective cameras.  (b) Comparison of the handoff success rate 
based on the camera placement in (a) when the noisy observation measure ijQ  and the 

modified quantity ijψ  are used.  (c) The optimal camera placement obtained based on the 
T1P method for floor plan B using omnidirectional cameras.  (d) Comparison of the 
handoff success rate based on the camera placement in (c) when the noisy observation 
measure ijQ  and the modified quantity ijψ  are used. 
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6 High magnification face recognition 

Long observation distances and high optical magnifications introduce severe and 
nonuniform image blur.  To quantify the degree of magnification blur, we look into 
conventional sharpness measures, which are widely used to evaluate out-of-focus blur.  
Our study shows that conventional sharpness measures are sensitive to image noise and 
therefore are not suitable for our applications.  A class of adaptive sharpness measures is 
proposed to suppress artificially elevated sharpness values due to image noise by 
assigning nonlinear weights to the image gradients according to their local activities.  
After assessing magnification blur, we investigate the degradations in FRR introduced by 
magnification blur and verify that magnification blur is another major degrading factor in 
addition to pose and illumination.  Image enhancement is a common practice to improve 
image quality.  In this chapter, we implement several backbone enhancement algorithms 
and compare their performances based on the FRR of the processed face images.  A 
wavelet based algorithm is chosen for the restoration of high magnification face images 
because of its ability to balance noise reduction and detail enhancement.   

The remainder of this chapter is organized as follows.  Section 6.1 introduces our 
adaptive sharpness measures with experimental validation.  The long range high 
magnification face database (UT-LRHM) is described in section 6.2.  Section 6.3 
presents our face image quality assessment method.  The wavelet based enhancement 
algorithms are studied and a significantly improved FRR is demonstrated in section 6.4.  

6.1 Adaptive sharpness measure 

Sharpness measures have been traditionally proposed to evaluate out-of-focus blur.  
However, conventional sharpness measures are sensitive to image noise.  Since the image 
noise level increases as the system magnification increases, conventional sharpness 
measures are not directly applicable to high magnification images.  To avoid artificially 
elevated sharpness values due to image noise, adaptive measures are proposed [Yao06A].  
In order to differentiate between variations caused by actual image edges and those 
introduced by image noise and artifacts, adaptive sharpness measures assign different 
weights to pixel gradients according to their local activities.  For pixels in smooth areas, 
small weights are used.  For pixels adjacent to strong edges, large weights are allocated. 
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6.1.1 Definition 

The definition of local activities and the selection of weight functions are two major 
factors in constructing adaptive sharpness measures.  According to the description of 
local activities, sharpness measures can be divided into two groups: separable and non-
separable.  As the name suggests, separable methods consider horizontal and vertical 
edges independently while non-separable methods include the contributions from 
diagonal edges.  For separable measures, two weight signals are constructed, a vertical 
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For non-separable methods, the weight signals are: 
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Different forms of weight functions can be used, among which polynomial and 

rational functions are two popular choices.  Polynomial and rational functions are also 
exploited in adaptive unsharp masking [Ramponi98A, Ramponi98B].  The polynomial 
weights suppress small variations mostly introduced by image noise and have proved 
efficient in evaluating the sharpness of high magnification images [Yao06A].  The 
rational weights emphasize a particular range of image gradients.  Considering the non-
separable method ),( yxg for example, the polynomial weight function is given by: 
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where ωp  is the power index determining the degree of noise suppression.  The rational 
weight function can be written as: 
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where 0k  and 1k  are coefficients associated with the peak position 0L  and width L∆ of the 
response, respectively, and comply with the following relation 00 Lk =  and 
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weights. 
These weights are then applied to gradient based sharpness measures to construct 

adaptive sharpness measures.  Considering the Tenengrad sharpness measure [Krotkov89] 
for instance, the corresponding separable measure is given by: 
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where ),( yxxω / ),( yxyω denotes the weights obtained from ),( yxgx / ),( yxg y , Nrow/Ncol is the 
number of image rows/columns, and ),( yxfx / ),( yxf y represents the vertical / horizontal 
gradient at pixel ),( yx obtained via the Sobel filter.  For non-separable methods, the 
adaptive Tenengrad is formulated as: 
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The newly developed adaptive sharpness measures assign different weights to each 

pixel according to its local activity.  This modification avoids measuring noise, enhances 
the responses from image edges, and thus results in a robust performance in noisy 
applications.  Moreover, since no edge detection and parameterization are involved, the 
computational cost remains low. 

6.1.2 Experimental results 

We first validate the definition of the adaptive sharpness measures by examining their 
responses to out-of-focus blur.  Three sequences, referred to as resolution chart (RC), 
license plate (LP), and man’s face (MF), are collected using a Canon A80 camera at 
intervals of three focus motor steps covering a focus range of 0.2m to infinity (a total of 
53 images per sequence).  Other camera configurations, such as zoom, iris, shutter speed, 
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Figure 6.1. Illustration of weight functions.  Solid curves: rational functions and dashed 
curved: polynomial functions. 
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and exposure compensation, are kept unchanged.  Figure 6.2 shows sample images 
collected at the best focus.   

We implement two types of adaptive sharpness measures: non-separable polynomial 
Tenengrad with 2=ωp  (NSPT2) and non-separable rational Tenengrad with 100 =L  and 

10=∆L  (NSRT10).  The performances of these two measures are studied with respect to a 
varying camera focus in Figure 6.3.  For the RC and LP sequences shown in Figures 
6.3(a) and (b), the performances of the Tenengrad and the adaptive Tenengrad are similar.  
Performance differences are observed in the MF sequence.  From the NSPT2 measure, 
two local maxima are obtained corresponding to the optimal focus positions of the 
foreground (face) and the background (brick wall).  The conventional Tenengrad measure 
only captures the focus position of the background, since the brick wall contains stronger 
and denser edges.  The NSRT10 measure is unable to detect two focus planes either.  
However, this can be corrected by choosing a different set of 0L  and L∆ . 

To verify the improved robustness to image noise, Gaussian noise with a standard 
deviation varying from 1 to 20 grey levels is added to the original images. Figure 6.4 
summarizes the performances of the conventional Tenengrad and the adaptive Tenengrad 
measures.  The response of the conventional Tenengrad maintains the desired shape at all 
noise levels.  However, for a given focus, its value increases as the noise level increases, 
resulting in a set of shifted curves.  It is evident that the Tenengrad measure is unable to 
differentiate variations induced by noise from those introduced by the actual changes in 
focus.  Taking the MF sequence in Figure 6.4(g) as an example, the sharpness value with 
a focus index of 35 and a noise standard deviation of 10 is the same as the one with a 
focus index of 45 and a noise standard deviation of 5. These spurious variations are the 
result of noise and should be eliminated.  In comparison, as the camera’s focus 
approaches its optimal position, the adaptive Tenengrad measures begin to respond in a 
different manner and their values decrease with respect to increased noise level.  The 
adaptive Tenengrad measures can counteract the fluctuations caused by noise and 
respond in a manner agreeable with visual perception.    

Thresholding can be used in the conventional Tenengrad to reduce the influence of 
image noise.  However, since more and more pixels are regarded as noisy and are 
eliminated from successive processing as image noise increases, the accuracy of the 
resulting sharpness measure suffers considerably.  The thresholded Tenengrad sharpness  

   
(a) (b) (c) 

Figure 6.2. Sample frames from the tested sequences: (a) resolution chart, (b) license 
plate, and (c) men’s face. 
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(c) 

Figure 6.3. The performance of the Tenengrad (Ten) and adaptive Tenengrad sharpness 
measures (NSPT2 and NSRT10) with respect to a varying camera focus.  The focus index 
represents samples of the camera’s focus at intervals of three motor steps. (a) Resolution 
chart, (b) license plate, and (c) man’s face. 
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Figure 6.4. Sharpness measures of images corrupted by additive Gaussian noise.  (a)-(c): 
Resolution chart.  (d)-(f): License plate.  (g)-(i): Men’s face.  (a), (d), and (g): 
Conventional Tenengrad.  (b), (e), and (h): NSPT2.  (c), (f), and (i): NSRT10.  σ denotes 
the standard deviation of noise. 
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measure sacrifices accuracy to neutralize variations caused by noise.  This loss of 
information is frequently substantial to where the accuracy of the resulting sharpness 
measure deteriorates.  Therefore, even with proper thresholding, the Tenengrad measure 
is unable to achieve comparable robustness to noise as the newly designed adaptive 
Tenengrad measure.  Furthermore, the selection of the threshold depends on the image 
noise level and if the proper threshold is to be obtained, the image noise level should be 
estimated first.  A small threshold is unable to balance the noise, while a large threshold 
results in a considerable information loss.  In comparison, the adaptive Tenengrad is able 
to automatically adjust the weights for every pixel without prior knowledge of the image 
noise. 

6.2 Face database  

Our database collection, including indoor and outdoor sessions, began in February 
2006 and ended in October 2006.  The data set contains frontal view face images and 
videos collected with various system magnifications (10×~284×), observation distances 
(10m~300m), indoor (office ceiling light and side light) and outdoor (sunny and cloudy) 
illuminations, still/moving subjects, and constant/varying camera zooms.  Small 
expression and pose variations are also included in the video sequences of our database, 
as shown in Figure 6.5, closely resembling the variations encountered in uncontrolled 
surveillance applications. 

For the indoor sequence collection, the observation distance is varied from 10m to 
16m.  Given this distance range and an image resolution of 640×480, a 22× optical 
magnification is sufficient to yield a face image with an inter-ocular distance of 60 pixels.  
This resolution is recommended by FaceIt® for successful recognition.  Therefore, a 
commercially available PTZ camera (Panasonic WV-CS854) was used. 

Our indoor database includes both still images (eight images per subject) and video 
sequences (six sequences per subject).  Still images are collected at uniformly distributed 
distances in the range of 10m to 16m with an increment of 1m approximately.  The 
corresponding system magnification varies from 10× to 20× with an increment of 2×, 

    
(a) (b) 

Figure 6.5.  Illustration of (a) a small expression change and (b) a small pose variation. 
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achieving an approximately constant inter-ocular distance to eliminate the effect of 
resolution.  Still images with low magnification (1×) are also taken from a close distance 
(1m) as a reference image set.  The achievable face recognition rate using this image set 
provides an ideal performance reference for evaluating degradations caused by high 
magnification. 

The observation distance and system magnification are two major factors, to which 
this effort is devoted.   Meanwhile, the effect of composite target and camera motions is 
included to achieve a close resemblance to practical surveillance scenarios.  Therefore, 
the indoor video sequences are recorded under the following conditions: (1) constant 
distance & varying system magnification, (2) varying distance (the subject walks at a 
normal speed toward the observation camera) & constant system magnification, and (3) 
varying distance & varying system magnification.  Conditions 1 and 2 concentrate on the 
individual effect of camera zoom and subject motion, respectively, while the combined 
effect can be observed in condition 3.  In addition, the system magnification in condition 
3 is varied so that a constant inter-ocular distance is maintained.  These video sequences 
can be used for the studies regarding the effect of resolution, subject motion, and camera 
zoom.  Figure 6.6 shows example face images degraded by blurs from the subject’s 
motion, the camera’s zoom motion, and the camera’s focus motion.  

The aforementioned still images and video sequences are collected under fluorescent 
ceiling lights with full intensity (approximately 500Lux) and include a certain degree of 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.6. Illustration of various types of blurs captured in our database in addition to 
magnification blur.  (a)-(c) Reference images.  Blurred images due to: (d) subject’s 
motion, (e) camera’s zoom motion, and (f) camera’s focus motion. 
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illumination changes caused by a varied distribution of the ceiling lights.  Our indoor 
database also considers a large amount of illumination changes.  A halogen side light 
(approximately 2500Lux) is added and a sequence is recorded as the intensity of the 
ceiling lights is decreased from 100% to zero, which creates a visual effect of a rotating 
light source. 

The gallery images are collected by a Canon A80 camera under a controlled indoor 
environment from a distance of 0.5m.  The image resolution is 2272×1704 pixels and the 
camera’s focal length is 114mm (magnification: 2.28×).  Figures 6.7 and 6.8 illustrate 
sample images of one data record in the database.  A data record is a series of images of a 
given subject under all shooting conditions.  Table 6.1 summarizes the specifications of 
the indoor data sets. 

The indoor session has 55 participants (78% male and 22% female).  Their ethnic 
distribution consists of 73% Caucasian, 13% Asian, 9% Asian Indian, and 5% of African 
descent.  The image resolution is 640×480 pixels.  For the video sequences, our database 
provides uncompressed frames in the format of BMP files at a rate of 30 frames per 
second as well as AVI files compressed using Microsoft MPEG 2.0 codec.  Each video 
sequence lasts 9 seconds.  The total physical size for storage is 84 GB, with 1.53 GB per 
subject. 

For the outdoor sequence collection, a composite imaging system was built where a 
Meade ETX-90 telescope (focal length: 1250mm) was coupled with a JVC MG-37U 
camcorder (focal length: 2.3-73.6mm) via a Celestron 40mm eyepiece using an afocal 
connection.  The achievable system magnification is of 22×~659×. 

Our outdoor database includes both still images (two images per subject) and video 
sequences (twelve sequences per subject).  Two sequences per subject are collected at 
uniformly distributed distances from 50m to 300m with an increment of 50m.  The 
corresponding system magnification varies from 66× to 284× with an increment of about 
44×, achieving an approximately constant inter-ocular distance.  The two sequences are 
collected with different subject motions, one with the subject standing still and the other 
with the subject walking a short distance.  One still image per subject is also collected 
from a close distance (1m at 1×) for a reference image set.  The gallery images are 
collected by a Nikon camera under a controlled indoor environment from a distance of 
1m.  The image resolution is 2560x1920 pixels.  Figure 6.9 illustrates sample images of 
one data record in the outdoor database and Table 6.2 summarizes the specifications of 
the data sets. 

6.3 Face image quality assessment 

The following experiments are carried out using the UT-LRHM database described in 
section 6.2.  The noise characteristics of the face images at various magnifications are 
studied.  The standard deviation of a uniform background patch closely describes the 
noise behavior and is computed with respect to system magnification, as shown in Figure 
6.10.  The image noise increases as the system magnification changes from 1× to 20×.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 6.7. A set of still images in one data record from the indoor database: (a) gallery 
image, (b) 1× reference, 1m, 60p, (c) 10× , 9.5m, 57p, (d) 12×, 10.4m, 57p, (e) 14×, 
11.9m, 58p, (f) 16×, 13.4m, 60p, (g) 18×, 14.6m, 60p, and (h) 20×, 15.9m, 60p.  Face 
images in (b)-(h) have approximately the same resolution with an inter-ocular distance 
around 60 pixels.  The inter-ocular distance is obtained by averaging all the face images 
across different subjects in each data set.   
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(a) 

 

(b) 
 

 

  

(c) 

 

(d) 

Figure 6.8. A set of sample frames from the collected sequences in one data record from 
the indoor database.  (a) Condition 1: 20×Æ10×, 13.4m, constant observation distance. 
(b) Condition 2: 10×, 15.9mÆ9.5m, constant system magnification.  (c) Condition 3: 
20×Æ10×, 15.9mÆ9.5m, constant inter-ocular distance.  (d) Varying illumination, 20×, 
15.9m.   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 6.9.  A set of sample frames from the standing sequences in one data record from 
the outdoor database: (a) indoor gallery image, (b) 1× reference, (c) 66× , 50m, 79p, (d) 
109×, 100m, 76p, (e) 153×, 150m, 79p, (f) 197×, 200m, 76p, (g) 241×, 250m, 78p, and 
(h) 284×, 300m, 78p.  Face images in (c)-(h) have approximately the same resolution 
with an inter-ocular distance of 80 pixels. 
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Table 6.1. The specifications of the indoor data sets. 

Still images 

Magnification (×) 1 10 12 14 16 18 20 

Distance (m) 1 9.5 10.4 11.9 13.4 14.6 15.9 

Inter-ocular distance (pixel) 60 57 57 58 60 60 60 

Video sequences 
Conditions Mag. (×) Distance (m) 

1. Constant distance & varying system Mag. 20Æ10 13.4 and 15.9
2. Varying distance & constant system Mag. 10 and 15 15.9Æ9.5 
3. Varying distance & varying system Mag. 20Æ10 15.9Æ9.5 

Varying illumination, constant distance & system Mag. 20 15.9 
 
 
 
 

Table 6.2. The specifications of the outdoor data sets. 

Magnification (×) 66 109 153 197 241 284 
Distance (m) 50 100 150 200 250 300 
Inter-ocular distance (pixel) 79 76 79 76 78 78 
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Figure 6.10. Face image noise level vs. system magnification.  Image gray level: 0-255.  
Dots represent the standard deviation of the noise computed from face images of different 
subjects.  The mean noise level increases as the system magnification increases. 
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Therefore, to exclude an artificially elevated sharpness value from increased image noise, 
adaptive sharpness measures are used. 

In the following experiments, each data set consists of face images collected from the 
same observation distance and with the same system magnification.  The sharpness 
measures of these face images are computed and the mean sharpness values are obtained 
by averaging them across different subjects within one data set.  Figure 6.11 shows the 
computed sharpness values (NSPT2) and their means.  These mean sharpness values 
present a clearer view of how image quality responds to system magnification and 
observation distance.  As expected, image sharpness decreases gradually as the system 
magnification and observation distance increase for both indoor and outdoor image sets.   

Now we study the influence of magnification blur on face recognition rate.  The 
gallery image sets are compared against different sets of probe images with an 
approximately constant inter-ocular distance of 60 pixels, each set consisting of face 
images collected at the same observation distance and with the same system 
magnification.  The face recognition rate at various system magnifications is illustrated in 
Figure 6.12 and Table 6.3.  It is obvious that image deterioration from limited fine facial 
details causes the FRR to drop gradually as the system magnification increases.  For the 
indoor session, the CMCM declines from 69.7% to 58.8% as the system magnification 
increases from 10× to 20×.  There exists a significant performance gap between the 
probes with low (1×) and high (20×) magnifications.  Similar observations apply to the 
outdoor session, where the CMCM declines from 64.5% to 42.6% as the observation 
distance increases from 50m to 300m.  This reveals that magnification blur is a major 
degrading factor in face recognition and that the performance gap between image sets 
with low and high magnifications is to be compensated for by image enhancement.   
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Figure 6.11. Sharpness measures for face images collected with different system 
magnifications/observation distances: (a) indoor and (b) outdoor sessions.  Dots represent 
the sharpness measures computed from face images of different subjects.  The mean 
sharpness measure decreases as the system magnification/observation distance increases. 
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Figure 6.12. Sample images from the indoor session at different system magnifications: 
(a) 1×, (b) 10×, and (c) 20×.  Sample images from the outdoor session at different 
observation distances: (d) 1m, (e) 50m, and (f) 300m.  CMC comparison across probe sets 
with different system magnifications and observation distances: (g) indoor and (h) outdoor 
sessions.  FRR drops gradually as the system magnification / observation distance 
increases. 
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Table 6.3. Performance comparison based on CMCM and rank-one recognition rate 

across system magnifications and observation distances. 
 

Indoor session 
System magnification (×) 1 10 12 14 16 18 20 

CMCM (%) 74.3 69.7 67.3 67.5 64.9 59.4 58.8 
Rank-one (%) 65.5 61.8 60.0 58.2 56.4 49.1 47.3 

Outdoor session 
Observation distance (m) 1m 50m 100m 150m 200m 250m 300m 

CMCM (%) 90.7 64.5 57.5 50.2 47.3 46.6 42.6 
Rank-one (%) 89.4 51.1 46.8 38.3 35.6 34.0 29.8 

 
 
 
The decrease in FRR caused by magnification blur is consistent with the behavior of 

image sharpness measures shown in Figure 6.11.  Therefore, we could use the adaptive 
Tenengrad as an indicator not only for the degree of magnification blur but also for 
recognition rate.  From the distribution of these sharpness values, especially those of the 
1× and 10× image sets, a threshold (the intersection point in Figure 6.11) can be derived, 

16600=thS , which separates the tested face images into two groups: one with acceptable 
sharpness (S ≥ Sth) and the other degraded by magnification blur (S < Sth). Images in the 
first group contain sufficient facial features and thus will not deteriorate the overall FRR. 
On the contrary, images in the second group, deficient in necessary facial features, 
require image enhancement so that the overall FRR can be maintained.  The threshold 

16600=thS is obtained empirically and is application dependent.  In practice, the 
sharpness measures of low magnification images can be computed and their statistics, 
such as the mean S0 and the standard deviation σs, can be estimated. The threshold can 
then be defined as Sth = S0 − σs. The threshold can also be estimated and updated on-the-
fly by studying the distributions of image sharpness at various magnifications. 

6.4 Enhancement of high magnification face images 

As illustrated in section 6.3, high magnification images suffer from increased image 
noise and magnification blur. In general, deblurring algorithms increase image noise, 
while denoising algorithms smooth out image details. The resulting images are either 
short of details or overwhelmed by elevated image noise. Since FaceIt® is sensitive to 
both types of degradation, a good balance is to be found for an optimal FRR. Multi-scale 
processing based on wavelet transform is used and proves effective.  After wavelet 
decomposition, the vertical, horizontal, and diagonal detail coefficients are thresholded to 
remove noise while the approximation coefficients undergo image deblurring to enhance 
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facial details.  Afterwards, adaptive gray level stretching is applied to improve the 
contrast of facial features. 

6.4.1 Algorithm description 

The sharpness of each probe image is computed and its value is compared with a 
predefined threshold Sth. If the current sharpness value is smaller than Sth, image 
enhancement is performed.  In so doing, only images that may deteriorate the overall 
FRR are processed. Images with acceptable sharpness are fed to the face recognition 
engine directly to prevent a possible increase in image noise from unnecessary 
enhancement. The importance of choosing an efficient measure of face image quality 
becomes evident. Another advantage of using a face quality measure is attributed to the 
reduced computational complexity, which is also crucial to real-time applications. The 
block diagram of the proposed algorithm is depicted in Figure 6.13.  

1. Compute the sharpness measure of the input face image, S.  
2. If S < Sth, go to step 3. Otherwise, go to step 1 and wait for the next probe.  
3. Decompose the face image via the Haar wavelet transform of level one.  
4. Apply deblurring algorithms to the approximation image and denoising 

algorithms to the vertical/horizontal/diagonal detail images.  
5. Apply adaptive grey level contrast stretching.  
6. Reconstruct the image via the inverse Haar wavelet transform. 
A global thresholding is applied for denoising all detail images.  Two types of 

deblurring algorithms, unsharp masking (UM) and regularized deconvolution, are 
implemented to enhance the approximation image. The UM method uses the Laplacian 
filter while the regularized deconvolution utilizes the Lasso regularization. 

Since the blurred image can be modeled as the original image convolved with a 2D 
blurring filter, the goal of image deconvolution is to undo the process and in turn 
eliminate the blur.  Image deconvolution, as a typical inverse problem, is ill-posed.  

 
Figure 6.13. Block diagram of the enhancement algorithm for long range and high 
magnification face images. 
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Regularization is a popular approach to solve the problem where an additional term 
describing the smoothness of the solution is added.  Without regularization, image noise 
sometimes would be severely amplified to where the output image is overwhelmed by 
noise.  A typical regularized deconvolution solves the following minimization problem: 

 
{ }22

22
||||||||minarg LrLb LB ffff λλ +−= , (6.8)

 
where f and fb are the original and blurred images in vector format, B and L represent the 
blurring filter and a predefined mask in vector format, and λr denotes the regularization 
parameter. Various forms of L can be found in literature, among which the identity matrix 
and Laplacian filter are two popular choices [Tikhonov77].  The Tikhonov regularization 
uses a norm-2 definition, which does not allow discontinuities in the solution and leads to 
overall smoothed edges in the restored images. The total variation regularization is 
proposed to preserve edges in the reconstructed images [Chan99].  It adopts a norm-1 
definition [Agarwal07]: 
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where fx and fy denote the vertical and horizontal image gradients in vector format.  The 
total variation regularization is capable of preserving edges but suffers from significantly 
increased computational complexity. In our implementation, we utilize the Lasso 
regularization and design the regularization term as [Agarwal07]: 
 

{ }
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||||||||minarg 2
LrLbB ffff λλ +−= . (6.10)

 
The Lasso regularization achieves similar edge preservation as the total variation 
regularization with substantially reduced computational complexity. 

6.4.2 Experimental results 

Still images are used in the following experiments to exclude blurs from other sources 
such as subject motion, camera zooming, and improper focus.  Different probe sets are 
obtained by processing the same image set via various enhancement methods, including 
UM, regularized deconvolution, Liao and Lin’s Eigen-face [Liao05], and our wavelet 
based methods.  In addition, two probe sets, the unprocessed face images and the 1× 
reference face images, are also included and their performances serve as comparison 
references.  The same experiments are repeated for image sets at different magnifications 
and observation distances.   

Before continuing with our discussion, we define the following notations.  The probe 
set with face images taken at a magnification, Mag, a distance, Dist in meters, and with 
an inter-ocular distance of Count pixels, is denoted as Mag×DistmCountp.  Since similar 
observations are obtained, in the interest of space, only the comparisons based on the 
10×9m60p, 20×16m60p, 109×100m80p, and 284×300m80p image sets are illustrated.   
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For the 20×16m60p data set, as shown in Figure 6.14 and Table 6.4, wavelet based 
methods are able to achieve the most improvement with an increase of 14.8% and 15.2% 
in CMCM for the UM and Lasso regularized deconvolution approaches yielding a 
performance comparable to the 1× reference. With proper processing, the degradation in 
FRR caused by magnification blur can be successfully compensated for.  Compared with 
the UM based approach, the Lasso regularized deconvolution method presents a better 
performance. Considering the increased computations required by image deconvolution, 
the Lasso regularized deconvolution is well suited for applications placing more 
emphasis on accuracy, while the UM based algorithm achieves a better balance between 
accuracy and computation complexity.   

In this work, we want to use sharpness measures to predict FRR at different system 
magnifications and determine whether further enhancement is necessary. With sharpness 
measure selection (SMS) based on the threshold derived from Figure 6.11, 3.6% of the 
samples from the 20×16m60p image set meet the minimum criterion and hence require 
no further processing.  The resulting performance is identical to the case where all images 
are processed, which verifies the suitability of the derived threshold. 

For the outdoor data sets shown in Figure 6.15, our enhancement algorithm can 
improve the rank-one recognition rate from 46.8% to 61.1% for the 109×100m80p data 
set and from 29.8% to 36.9% for the 284×300m80p data set.  As the system 
magnification increases, the improvement in FRR decreases.  Different from the indoor 
session, where a similar FRR is achieved as the 1× reference after image quality 
assessment and enhancement, the performance gap between the 1× reference and the high 
magnification data sets remains for the outdoor session, especially for data sets with a 
system magnification beyond 100×.  The outdoor images experience nonuniform 
magnification blur due to air turbulence.  In our current algorithm, a uniform point spread 
function is estimated and used to deblur the whole image.  To overcome the degradations 
from nonuniform blur, the point spread function should be adaptively estimated 
according to different regions within one image.   
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(g) 

Figure 6.14. Sample images from the 20×16m60p set: (a) original image, (b) enhanced by 
UM, (c) enhanced by wavelet transform with the approximation image processed by UM, 
(d) enhanced by wavelet transform with the approximation image processed by Lasso 
regularized deconvolution.  (e) 1× reference image.  CMC comparison across probes 
processed by different enhancement algorithms for the indoor data sets (f) 10×9m60p and 
(g) 20×16m60p.  The performances of the wavelet Lasso/UM algorithm with and without 
SMS are identical for the 20×16m60p data set.  Only the CMC curves of wavelet 
Lasso/UM SMS are shown in (g).   
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Table 6.4. Performance comparison of CMCM and rank-one recognition rate across 
probes processed by different enhancement algorithms.   

 
Indoor 

 10×9m60p 20×16m60p 

Probe set CMCM (%) Rank-one (%) CMCM (%) Rank-one (%)

Original  69.7 61.8 58.8 47.3 

Eigen-face 59.7 48.2 59.7 48.2 

UM 65.8 54.5 64.3 50.9 

Deconv 66.1 54.5 65.3 56.4 

Wavelet + Deconv 65.6 52.7 66.0 56.4 

Wavelet + Lasso SMS 

(no contrast stretching) 
75.7 67.2 70.6 59.7 

Wavelet + UM 75.7 65.5 73.6 65.5 

Wavelet + UM SMS 73.6 63.6 73.6 65.5 

Wavelet + Lasso 75.7 63.6 74.0 63.6 

Wavelet + Lasso SMS 77.7 69.1 74.0 63.6 

1× reference  74.3 65.5 74.3 65.5 

Outdoor 

 109×100m80p 284×300m80p 

Probe set CMCM (%) Rank-one (%) CMCM (%) Rank-one (%)

Original  57.5 46.8 42.6 29.8 

UM 63.2 53.2 52.6 40.4 

Deconv 58.0 50.4 45.9 34.0 

Wavelet + UM SMS 66.4 59.0 48.9 36.9 

Wavelet + Lasso SMS 70.0 61.1 52.4 36.9 

1× reference  90.7 89.4 90.7 89.4 
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Figure 6.15. CMC comparison across probes processed by different enhancement 
algorithms for the outdoor data sets:  (a) 109×100m80p and (b) 284×300m80p.    
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7   Auto-focusing for high magnification 

imaging 

Auto-focusing is an indispensable function for imaging systems used in surveillance.  
For our high magnification imaging system to be useful in real-time tracking scenarios, it 
is critical to keep the moving target in focus.  In a composite imaging system, the focus 
of the scope plays the dominant role.  Although digital cameras are equipped with auto-
focusing, scopes are available only with manual focus control.  To facilitate remote and 
automatic control of such high magnification imaging systems, the auto-focusing 
capability is to be integrated.   

The remainder of this chapter is organized as follows.  The setup of our high 
magnification imaging system is described in section 7.1.  A brief review of existing 
auto-focusing algorithms along with a performance comparison is given in section 7.2.  
Our auto-focusing algorithm designed for high magnification imaging systems is 
presented in section 7.3. 

7.1 System setup 

Our high magnification imaging system, equipped with high speed and remote 
pan/tilt/focus control, is shown in Figure 7.1.  To fully explore the optical capabilities of 
the Celestron scope and the Sony camcorder, an afocal coupling is selected.  The 
Celestron scope is connected to the Sony camcorder via a Celestron Plössl eyepiece.  The 
focal lengths of the Celestron scope and eyepiece are 2800mm and 40mm, respectively.  
The Sony camcorder has a 47mm~846mm zoom capability.   

The scope magnification is defined as:  
 

epscopescope ffM = , (7.1)
 

where scopef  and epf denote the focal lengths of the scope and the eyepiece, respectively.  
For an afocal coupling, the system magnification sysM is the product of the scope 
magnification scopeM  and the camera’s normalized magnification camM  given by: 
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( ) 50mmfM camcam = , (7.2)
 
where camf  is the camera’s focal length expressed in the 35mm equivalent standard.  
Based on the focal length specification of each component, the achievable system 
magnification is approximately 70× to 1200×. 

The Celestron scope’s existing focus control features a manually operated knob 
requiring 40 full turns to cover the complete focus range.  To automate it, we coupled the 
control to an Animatics SmartMotor through a gear drive of our own design.  The main 
requirement is that the system be precise enough to give repeatable control positioning 
with increments as fine as the smallest resolution that starts to produce noticeable 
degradation in the resulting images.  The empirical minimum resolution is found to be 
less than 40 degrees of knob rotation.  When converted to motor steps and normalized to 
the minimum resolution, the dynamic focus range is -200 to 200 steps.  

7.2 Algorithm comparison 

7.2.1 Algorithm review 

In literature, there exist two main groups of auto-focusing methods: active and 
passive.  In active auto-focusing, range finding sensors are used to determine the distance 
between the camera and the target.  Passive auto-focusing can be further divided into two 
categories: device based and image based.  Device-based passive auto-focusing employs 
additional devices, such as a split prism.  The image-based approach requires no extra 

Camera

Celestron 
telescope

Pan/Tilt 
platform

Focus 
control

 

 Scope  
(fscope)  

Eyepiece (fep) 

Camera  
lens (fcam) 

Digital 
camera 

 

(a) (b) 
Figure 7.1. (a) System setup and (b) illustration of the afocal coupling for composite 
imaging systems.  Fully motorized pan/tilt/zoom and auto-focusing capabilities facilitate 
remote and automatic control.  The resulting system can perform object tracking and 
monitoring in the same fashion as commercial PTZ cameras.  
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equipment.  The optimal focus is found by evaluating a sequence of images collected at 
various focus positions.     

Estimating depth from defocused images is one major direction in image-based 
passive auto-focusing algorithms [Subbarao92].  The distance between the camera and 
the target is estimated from several defocused images.  The degree of blur in the images 
is characterized as the variance of a Gaussian kernel.  Target depth is expressed as a 
function of these variances and can be computed when these variances are available.   In 
our application, a considerable amount of blur comes from high magnification rather than 
improper focus.  The simple relation between blur and depth is not entirely valid.  For 
this reason, the use of this type of methods in high magnification systems remains 
questionable. 

In the second main branch of image-based passive auto-focusing algorithms, the 
optimal focus is found by searching for the focus location that yields an image with the 
highest sharpness value.  Various search strategies have been developed.  The Fibonacci 
search is the best-known algorithm [Krotkov89], which guarantees that the maximum of 
the criterion function is found within a known number of iterations depending only on the 
focus range.  The hill-climbing search divides the procedure into two stages: out-of-focus 
region (coarse) search and focused region (fine) search.  Given a heuristic choice of step 
magnitudes, the hill-climbing search is able to converge to the optimal focus.  A number 
of hill-climbing algorithms have been proposed with modifications regarding the 
selection of step sizes, termination criteria, the size of the search window, etc [Choi99, 
He03, Ooi90]. 

Variations are introduced to these basic algorithms for a better performance.  For 
instance, in the fine search stage, the image sharpness is evaluated at three focus locations 
and these samples are fitted to a quadratic or a Gaussian function, the maximum of which 
is the estimated focused position [Subbarao98].  Lee et al. employed different sharpness 
measures for the coarse and fine search stages [Lee95].  In the coarse search stage, 
measures with low computational cost and low sensitivity to sidelobes, such as variance 
based measures, are used.  Gradient based measures, for instance the Tenengrad measure, 
are used for the fine search.  To avoid the back-and-forth motor motion required by the 
Fibonacci search, Kehtarnavaz and Oh proposed a sequential search algorithm, referred 
to as the rule-based search, where the step size is varied according to the distance from 
the best focus location [Kehtarnavaz03]. 

Special patterns, such as a radial test pattern, are also employed to calibrate the best 
focus position for applications with a fixed distance between the target and the camera 
[Lin03].  Since the image with the best focus should have the smallest blurred region and 
hence the smallest equivalent radius, Lin et al. applied the circular Hough transform to 
determine the radius of the center blurred image, and from this obtained the best focus 
position. 

7.2.2 Experimental results 

To evaluate the performance of various search algorithms, each in conjunction with 
different sharpness measures, we carried out the following experiments.  Images are 
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collected at uniformly distributed focus positions and their sharpness measures are 
computed.  A search algorithm is then applied to locate the best focus position.  Ideally, 
the estimated focused position should correspond to the maximum sharpness value.  Any 
difference (expressed in motor steps) between them is the estimation error, the size of 
which is translated into the accuracy of the search algorithm.  Another performance 
criterion, the speed of convergence, is described by the number of iterations and the 
number of motor steps traveled before the optimal focus is obtained.  These two factors 
(iterations and motor steps) are often closely related, with a large number of iterations 
resulting in a large number of motor steps. An exception is the Fibonacci search, where a 
small number of iterations is guaranteed, but where a large number of motor steps often 
results from the algorithm’s back-and-forth search behavior. 

Four low magnification image sequences (2.28×), resolution chart (RC), Hello-Kitty 
doll (HD), license plate (LP), and man’s face (MFL), are collected by the Canon A80 
camera at an interval of three focus motor steps covering a focus range from 0.2m to 
infinity with a total of approximately 60 images per sequence.  The RC and LP sequences 
exemplify images with strong and clustered edges.  Ten high magnification sequences are 
collected by the Sony TVR730 camcorder and the Celestron scope.  Various system 
magnifications are used: 70×, 100×, 245×, 500×, and 1500×.  At each magnification, two 
sequences (400 frames per sequence) are collected, one of a scene with strong and 
clustered edges of a brick wall (BW) and the other with scattered and low contrast edges 
of a man’s face (MFH).  Figures 7.2 and 7.3 show sample images from the LP and MFH 
(70×) sequences collected at the best focus position and at the end points of the focus 

   
(a) (b) (c) 

Figure 7.2. Sample images from the LP sequence (system magnification: 2.28×, target 
distance: 1m): (a) far focus end, (b) near focus end, and (c) best focus. 

 
 

   
(a) (b) (c) 

Figure 7.3. Sample images from the MFH sequence (system magnification: 70×, target 
distance: 65m): (a) far focus end, (b) near focus end, and (c) best focus. 
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range. 
We limit our experiments to four types of sharpness measures excluding the statistics 

based measures due to their inferior performance.  Table 7.1 lists the sharpness measures 
used.  Various search algorithms are implemented, including the binary search (BS), 
Fibonacci search (FS), and rule-based search (RS).  In addition, quadratic function fitting 
is applied to the fine search stage, following the coarse search based on the binary search 
and the Fibonacci search.  The resulting algorithms are referred to as BF and FF, 
respectively.  Also implemented is one example of the hill-climbing search (HC) 
[Choi99].   

Figure 7.4 studies various search algorithms based on the errors in the detected focus 
position, the number of iterations, and the number of motor steps using the LP sequence.  
In terms of accuracy, the Fibonacci, hill-climbing, and rule-based searches produce the 
best performance.  However, the performance of the hill-climbing search is sensitive to 
the parameters used.   These parameters must be selected carefully, especially for noisy 
applications. 

With the Fibonacci search, the number of iterations is fixed for a given focus range.  
However, the Fibonacci search involves the most back-and-forth motions and therefore 
the most motor steps.  Although it needs a similar number of iterations as the binary 
search, the rule-based search involves only unidirectional movements and hence requires 
fewer motor steps.  The use of function approximation avoids unnecessary iterations 
during the fine search stage, thereby reducing the total number of iterations and motor 
steps. 

Figure 7.5 demonstrates the experimental results using high magnification sequences.  
Due to magnification blur, the computed sharpness measures are noisy, leading to 
obviously increased estimation errors.  The binary search and the hill-climbing search, 
inherently sensitive to image noise and magnification blur, present the most performance 
degradation.   

 
 
 
Table 7.1. Sharpness measures used in the comparison of auto-focusing algorithms. 

 
Category Sharpness measure Reference 

Sum-Modulus-Difference (SMD) [Santos97] 
Tenengrad (Ten) [Kroktov89] 
Laplacian (Lap) [Kroktov89] Gradient based 

Frequency selective weighted median (FSWM) [Choi99] 

Autocorrelation based Area of the central peak of the autocorrelation 
function (ACF) [Batten00] 

Fast Fourier transform (FFT) [Subbarao92]Transform based Frequency entropy (FE) [Kristan04] 
Edge width (EW) [Li02] 
Edge area (EA) [Dijk02] Edge based 
Local kurtosis (LK) [Caviedes02]
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Figure 7.4. Performance comparison of various search algorithms in conjunction with 
various sharpness measures using the LP sequence.  (a) Estimation error expressed in 
motor steps (the estimation errors for RS, HC, and FS are zero).  (b) The total number of 
iterations used before obtaining the optimal focus position (the smallest number of 
iterations: FF and HC).  (c) The total number of motor steps traveled before obtaining the 
optimal focus position (the smallest number of motor steps: RS, BF and HC).  
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Figure 7.5. Performance comparison of various search algorithms in conjunction with 
various sharpness measures using the MFH sequence (system magnification: 70×, target 
distance: 65m). (a) Estimation error expressed in motor steps (the largest performance 
degradation: BS, BF, and HC).  (b) The total number of iterations used before obtaining 
the optimal focus position (the smallest number of iterations: FF and HC).  (c) The total 
number of motor steps traveled before obtaining the optimal focus position (the smallest 
number of motor steps: RS, BF and HC). 
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Similar behaviors are observed for the remaining image sequences.  As a conclusion, 
we compare the tested search algorithms based on three criteria: accuracy, speed of 
convergence described by the number of iterations and motor steps, and stability 
(sensitivity to image noise, parameter selection, and magnification blur).  Overall, the 
rule-based search and the Fibonacci search with function fitting generate the best 
performance.  In our real-time auto-focusing system, extra attention is paid to the number 
of motor steps, since our system has a larger focus range compared with low 
magnification imaging systems.  Therefore, the rule-based search is the most promising 
method, which falls in the category of sequential search with variable step sizes. 

7.3 Auto-focusing for high magnification imaging systems 

To design the auto-focusing algorithm for high magnification imaging systems, we 
experience two major difficulties.  (1) For a large visible distance, our high magnification 
imaging system involves a large focus range varying from 20m up to 1000m (infinity).  
(2) The collected images suffer substantially from degradations such as increased image 
noise and severe image blur caused by high magnification and air turbulence, producing 
time varying and noisy sharpness measures.  These two difficulties impose additional 
requirements on the design of a proper auto-focusing algorithm, especially the speed of 
convergence and robustness to image degradations. 

In light of the system limitations – i.e. wide focus range and noisy sharpness 
measures – and the performance comparison of various search algorithms [Yao06F], 
sequential search algorithms with variable step sizes are selected.  The sequential search 
completes peak detection in one sweep, nearly eliminates changes in motion direction, 
and saves on motor steps.  Variable step size optimizes the motor step distribution and 
minimizes the number of iterations.  The remaining questions are: (1) when and how to 
change the step size and (2) how to evaluate image sharpness appropriately.   The 
derivation of transition criteria and the selection of sharpness measures answer the above 
questions, respectively. 

7.3.1 Transition criteria  

The step sizes are adjusted adaptively throughout the search process according to the 
current focus location.  The small, medium, and large step sizes are used in the peak, 
ramp, and saturation regions, respectively.  From the viewpoint of a state transition 
machine, three distinctive states can be defined.  The state transition representation 
associates the search process with an estimation process, where the optimal sequence of 
state transitions is retrieved given a sequence of noisy observations and a predefined 
structure (states and transition hypothesis).  Consequently, maximum a posteriori and 
maximum likelihood estimation can be applied.  Most of the sequential search algorithms 
use empirical thresholds to govern the step size transitions.  Based on the state transition 
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representation, these thresholds can be indeed derived from maximum likelihood 
estimation. 

To build probabilistic models for state transitions, the statistical behavior of sharpness 
measures is studied.  The search process is divided into two stages: the pre-peak stage 
where no peak is detected and the post-peak stage where a possible peak is detected.  In 
the pre-peak stage, the determinant variable is S∆ , the difference between consecutive 
sharpness measures, while in the post-peak stage, the focus is shifted to the absolute 
value of the image sharpness S.  In our implementation, Smax, the recorded maximum 
sharpness value, is used as a reference.  We examine the statistical behavior of 

max/ SS∆ and S/Smax and obtain the thresholds assuming that both variables obey a Gaussian 
distribution.  In practice, to avoid back-and-forth switches caused by noise, some state 
transitions are issued only when the corresponding transition criteria are satisfied three 
times.  The following counters, Cdown and Cflat, are defined for the ramp region in the 
post-peak stage and the saturation region, respectively.  Table 7.2 summarizes the 
transition criteria.  Assuming that the current state is peak and 0<∆S , Cdown increases by 
one.  The consecutive state is ramp if Cdown is larger than or equal to three and remains in 
peak otherwise.  

7.3.2 Sharpness measure selection 

The proper use of sharpness measures is also of great importance to the system 
performance.  Sharpness measures respond to the changes in camera focus in quite 
different ways.  Variance based sharpness measures produce gradual slopes while 
gradient based sharpness measures produce sharp peaks [Lee95].  However, the 
performance of variance based sharpness measures deteriorates for high magnification 
images.  In some cases, they could not even preserve the desired unimodal shape as an 
appropriate sharpness measure. 

From the analysis of their properties, we observe that autocorrelation based measures 
(ACF)  generate responses with varying slopes depending on the window size used, as 
shown in Figure 7.6.  Measures with a larger window size produce wide peaks and 

Table 7.2. Transition criteria.  Assuming that the current state is peak and 0<∆S , Cdown 
increases by one.  If Cdown is larger than or equal to three, the next state is ramp.  

Otherwise, remain in peak. 
 

End state  Peak Ramp Saturation 
++<∆ downCS ,0  

Peak 3<downC  3≥downC  S≤ 0.24Smax 

∆S > 0.09Smax, Cflat++ 
Ramp ∆S > 0.23Smax 3<flatC  S ≤ 0.24Smax or Cflat≥3 St

ar
t s

ta
te

 

Saturation ∆S > 0.23Smax ∆S > 0.09Smax Otherwise 
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gradual slopes.  Therefore, the ACF measure with a large window size can be used in the 
coarse search stage, and gradient based sharpness measures can be used in the fine search 
stage. 

In practice, the combination of two types of sharpness measures is used to improve 
the response shape and suppress noise.  The summation of the Tenengrad and ACF with 

10=n (ACF10) produces an improved slope in the ramp region, corrects local extrema in 
the responses of single measures, and reduces noise, as shown in Figure 7.7.  In our 
application, the summation of two sharpness measures is used for imaging systems with 
higher magnifications (250×~500×). 

7.3.3 Experimental results 

Experiments based on offline image sequences (indoor/outdoor, low/high 
magnifications) are conducted.  Three types of sharpness measures are used: gradient 
based, autocorrelation based, and frequency domain based.  In terms of accuracy, speed 
of convergence, and resistance to image noise and blur, the rule-based search and the 
Fibonacci search with function fitting outperform other search algorithms.  Therefore, 
these two methods are selected as comparison references.  In the interest of space, only 
the experimental results for the MFH sequence with a magnification of 70× are presented 
in Figure 7.8. 

From Figure 7.8, our algorithm achieves an accuracy comparable to the RS algorithm.  
Meanwhile, our algorithm requires a smaller number of iterations compared with the RS 
algorithm and the lowest number of motor steps.  Overall, our algorithm provides a better 
balance between accuracy and the speed of convergence.   
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Figure 7.6. ACF sharpness measure with various window sizes for the LP sequence. n 
denotes the widow size.   
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Figure 7.7. Comparison of the Tenengrad (Ten) measure, ACF measure, and a linear 
combination of these two measures for the MFH (100×) sequence.  
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Figure 7.8. Comparison across sharpness measures and search algorithms including RS, 
FF, and our auto-focusing algorithm at 70× magnification.  (a) Estimation error.  (b) The 
total number of iterations and motor steps. 
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Figures 7.9 and 7.10 show the sampled images in two real-time auto-focusing 
sequences collected at a system magnification of 70× and 500×, respectively.  Figures 
7.9(e) and 7.10(e) illustrate the sampled focus positions and their sharpness measures.  
Given a starting point within ±100 motor steps from the peak region, and with a frame 
rate of approximately 7.2 frames per second, our algorithm can precisely detect the 
optimal focus position in 2 seconds.   

Based on the raw input images, our auto-focusing algorithm works well for a system 
magnification up to 250×.  Further increases in magnification result in severely blurred 
images which undermine the ability of the sharpness measures to produce smooth and 
unimodal curves.  Image pre-processing and the use of a summation of two types of 
sharpness measures are possible solutions. 
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Figure 7.9. Auto-focusing for the MFH sequence (magnification: 70×, distance: 65m).
Sample frames collected at: (a) initial focus position, (b) intermediate focus position, (c) 
last evaluated focus position, and (d) best focus position. (e) Sampled focus positions. 
Starting position: -50.  Estimated optimal focus position: -102.  Motor steps: 106. Time: 
1.9s. 
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Figure 7.10. Auto-focusing for the BW sequence (magnification: 500×, distance: 300m). 
Sample images collected at:  (a) initial focus position, (b) intermediate focus position, (c) 
last evaluated focus position, and (d) best focus position.  (e) Sampled focus positions.  
Starting point: 0. Estimated optimal focus position: -28.  Motor steps: 96.  Time: 1.8s. 
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8 Conclusions 

In this dissertation, we have addressed two key issues in successfully establishing an 
automatic surveillance system: coverage and resolution.  Sensor planning algorithms 
were proposed to resolve the coverage issue.  High magnification imaging was 
introduced to achieve the required resolution and size preserving tracking was utilized to 
maintain the required resolution.  The collaboration between high magnification imaging 
and size preserving tracking makes long range surveillance from hundreds of meters 
feasible.  In previous chapters, we have presented a survey of multi-camera surveillance 
systems, derived our theoretical framework, and demonstrated the effectiveness of the 
proposed methods via extensive experiments and comparisons with existing leading 
algorithms.  We conclude this dissertation with a brief summary of the contributions and a 
short discussion of the directions for future research. 

8.1 Summary of contributions 

Algorithms regarding sensor planning and size preserving tracking are proposed for 
automated and persistent surveillance.  For long range applications, high magnification 
imaging systems with automated image quality assessment and enhancement are 
employed.  The key contributions of this research are the following. 
 

• Sensor planning: the proposed sensor planning method improves existing 
algorithms by adding handoff rate analysis for environments with multiple 
dynamic targets. The optimal balance between the overall coverage and handoff 
success rate is achieved.          

 
• Size preserving tracking: the size preserving tracking algorithm with linear 

computations is developed based on the more advanced paraperspective 
projection model producing improved estimation accuracy and robustness to 
disturbances from practical tracking, such as image noise and system latency.     

 
• Quality assessment and enhancement of high magnification images: adaptive 

sharpness measures capable of suppressing artificial responses from image noise 
are designed for the evaluation of image quality under high magnifications.  
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Wavelet based enhancement algorithms with automated frame selection capability 
are developed to strengthen facial features for an improved face recognition rate.   

 
For each of these contributions, we have presented both quantitative and quality 

comparisons to demonstrate their strength and analyze their limitations.  We have 
submitted the work regarding sensor planning to [Yao08A] for review.  A dual camera 
system as an implementation of multi-camera surveillance was established and generated 
publications in [Yao06E, Yao07E].  We have presented the size preserving tracking 
algorithms in [Yao06B, Yao06C].  A journal version of the work is under review 
[Yao07D].  Several publications have resulted from our work regarding high 
magnification imaging, including papers focusing on system design [Yao06A, Yao07A], 
a paper describing our high magnification face database [Yao06D], and a book chapter 
and a journal paper discussing our enhancement algorithm [Yao07B, Yao07C].   

8.2 Cost analysis 

Considering the volume of the development conducted in this dissertation, two fair 
questions arise: (1) how much did it cost to develop this technology and (2) how much 
would it cost in 2008 US dollars to implement a typical system.  A typical system, for 
instance, would consist of a room with dimensions of 15m×20m needing two or three 
PTZ cameras and two or three omnidirectional cameras to monitor the entire environment.   

The initial development for the generic sensor placement and size preserving tracking 
algorithms took the equivalent of three years of a full time Ph.D. work.  Student stipend, 
tuition, supervision cost of the lead and associated faculty, and overall equipment 
requirements average approximately $80,000 per year.  A more detailed cost analysis for 
one calendar year is listed in Table 8.1.  Therefore, in terms of sheer time, this activity 
necessitated over $250,000 worth of funding.  Added to this is the prior experience of the 
student and faculty in generating new ideas for solving these difficult problems.  
Therefore, the theoretical development and software implementation, testing, and 
validation constitute an initial total cost that is often times ill-estimated by many in the 
community. 

For an industrial company or business that desires to build a fully functioning 
prototype for an area that is comparable to the one cited above, the estimated cost is 
roughly $100,000 to $200,000 depending on the complexity of the environment to 
monitor and the specific requirements for access control, object tracking, threat 
awareness, and decision making.  This technology, if implemented at a large scale where 
100 to 1000 copies are put into service, becomes a viable solution where the initial 
development cost is distributed over the total number of systems sold.  It is estimated that 
the hardware costs approximately $30,000 and that the equivalent licensing of the 
software requires $20,000, hence making the total cost about $50,000 per unit.  This 
technology is highly evolving and requires frequent maintenance and upgrade to avoid 
obsoleteness, which in consequence adds an additional $10,000 per year for updating.   
For the next few years, if not decades, access control, object tracking, and threat 
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awareness will remain an active research area and a practical need that many will invest 
in to protect valuable assets for private industry as well as government applications.   

8.3 Directions for future research 

The ideas and concepts in this dissertation offer interesting avenues for future research. 
Although many directions are possible, we have identified the following areas as 
particularly important. 

8.3.1 Sensor planning considering illumination 

In a surveillance system, different illumination conditions cause shadows and changes 
in the object’s appearance, which imposes considerable challenges on object tracking and 
recognition.  Figure 8.1 shows two setups of a surveillance system with different 
positioning of the illumination sources.  With the proper lighting in Figure 8.1(a), all 
facial details are visible and can be used for face recognition.  In comparison, half of the 
facial features are poorly illuminated due to the effect of the side light in Figure 8.1(b).  
To illustrate the degradation in face recognition rate caused by improper illumination, 
image sets are collected with different lighting angles.  Figure 8.1(c) compares the face 
recognition rate with various illumination conditions.  The face recognition rate degrades 
significantly as the light source rotates away from the optimal position.  The rank-one 

 

Table 8.1. Itemized budget for one calendar year. 
 
A Personnel 

 Name Type appt. 
(months) 

Effort on 
project 

Base 
salary 

Salary 
requested 

Fringe 
benefits Total 

 Professors (2) 12 11% 80,000 17,600 4,928 22,528

 Graduate 
student 9 100% 22,000 16,500 1,206 17,706

B  Total Personnel 34,100 6,134 40,234
C Travel (domestic) 2,000
D Maintenance and repairs 1,000
E Supplies 1,000
F Equipment 4,500
G Graduate student tuition (school year rate: 2,787/semester) 11,148
H  Total direct costs (B through G) 59,882
I Indirect costs / F&A Rate 47% Base 44,234 
  Total indirect costs / F & A 20,790
J  Total budget 80,672
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Figure 8.1. The influence of the positioning of the illumination sources on the 
performance of face recognition.  Two system setups with different positioning of the 
light sources: (a) 90° and (b) 45°.  (c) Comparison of the face recognition rate of image 
sets collected under various illumination conditions.   
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recognition rate drops from 48.2% to 15.8% as the light source rotates from 90° to 45°.  
Although normalization algorithms, such as Self Quotient Image [Wang04] and multi-
scale Retinex [Jobson97], can be applied to compensate for nonuniform illumination, the 
achievable improvement is limited [Yao07B].  Therefore, for accurate and robust 
surveillance, the positioning of the illumination sources is of the same significance as the 
positioning of the cameras.     

The camera placement algorithm discussed in chapter 3 achieves the optimal balance 
between the overall coverage and handoff success rate excluding the effect of 
illumination by assuming a uniform lighting condition.  One prominent future research is 
to relax the above assumption and take illumination into consideration.  A forth term 
describing the illumination quality is to be added to the observation measure defined in 
(3.11), which depends on both the position and the characteristics of the light source.  In 
so doing, the optimal camera placement can be derived including the effect of 
illumination.  A further extension is to incorporate the optimization of the positions and 
types of the illumination sources into the search for the optimal camera placement.  The 
final output consists of not only the optimal camera placement but also the associated 
positioning of the illumination sources.       

8.3.2 Sensor planning considering objects with different priority ranks 

It is a common practice to assign different priority ranks to objects that need to be 
tracked simultaneously.  Given limited computational capacity, more resources are 
allocated to objects with higher priorities at the cost of dropping out objects with lower 
priorities.  In section 3.2, the proposed camera placement algorithm considers the 
problem of camera overload based on a probabilistic framework that models multi-object 
tracking as a Markov chain and derives the overload probability with all the objects 
having the same priority.  To incorporate objects with different priorities, we carry out 
the following derivations.   

Let Nth,j,pr denote the maximum number of objects with a priority rank less than or 
equal to pr that can be tracked simultaneously by the jth camera.  pr is in the range from 1 
to NPR with NPR as the maximum number of priority ranks.  We purposefully add Nth,j,0=0 
to simplify the formulation.  As the priority rank pr increases, Nth,j,pr increases as well to 
ensure that more resources are allocated to objects with higher priorities.  Note that 

jobjNjth NN
PR ,,, = , where Nobj,j is the maximum number of objects that can be tracked 

simultaneously by the jth camera.   
Assume that the arrival of an object with a rank pr in the FOV of the jth camera 

follows a Poisson distribution with a rate of prjc ,,λ .  Its camera-residence time follows an 
exponential distribution at a rate of prjc ,,/1 µ .  The probability Pn,j of the nth state of the 
Markov chain is given by: 
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The probability that the jth camera reaches the maximum number of objects with a 
priority rank of pr is expressed as: 
 

∑ =
= jobj

prjth

N

Nn jnprj PP ,

,,
,,max, . (8.3)

 
Denote the average arrival rate of an object with a rank pr at the ith grid as prig ,,λ  and the 
mean camera-residence time as prig ,,/1 µ .  The probability of camera overload at the ith 
grid Pco,i,pr is given by: 
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where a1,ij=1 if Fij QQ ≥ , a1,ij=0 otherwise, and xj=1 if the jth camera is chosen.  Finally the 
objective function used for the search of the optimal camera placement can be defined as: 
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where Pco,th,pr is a predefined threshold for priority rank pr.  In comparison with (3.30), 
objects with different priority ranks are allowed and incorporated into sensor planning.   

8.3.3 Sensor planning for 3D floor plans 

The sensor planning algorithms presented in section 3.2 are based on 2D floor plans.  
A 2D floor plan is representative of environments with an approximately flat ground, 
where the variations along the normal direction of the ground plane (Z axis) are marginal.  
To generalize the applicability of our algorithms to arbitrary environments, the 
environments’ 3D geometry that allows variations along the Z axis needs to be 
considered.  Accordingly, the 2D mesh grid presentation of the floor plane is upgraded to 
a 3D mesh grid of the floor surface.  Visibility analysis is carried out not only for 
obstacles and dynamic occlusions from moving targets but also for possible self-
occlusions from the varying elevation of the floor surface.   
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8.3.4 Constrained deblurring of high magnification images 

To improve the performance of the lasso regularized deconvolution, additional 
constraints can be incorporated.  The non-negativity constraint is a popular choice.  In 
deconvolution, although the intensities of the observed image are all positive, the 
deblurred image may contain negative values if the non-negativity constraint is not 
imposed.  Therefore, reinforcing non-negativity is nontrivial.  In addition, it has been 
demonstrated that the non-negativity constraint reserves high frequency information in 
the output image [Vogel02]. The total variation regularization with the non-negativity 
constraint is given by [Krishnan07]: 
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where f and fb are the original and blurred images in vector format, B represents the 
blurring filter in vector format, fx and fy denote the vertical and horizontal image 
gradients in vector format, and λr is the regularization parameter.  In the same fashion, the 
non-negativity constraint can be applied to the lasso regularized deconvolution: 

 
{ }

12
||||||||minarg 2

0
LrLbB ffff

f
λλ +−=

≥
. (8.7)

8.3.5 Deblurring of outdoor high magnification images 

A uniform point spread function (PSF) is used for the deblurring of high 
magnification images in chapter 6, which works properly for indoor images and outdoor 
images with an observation distance less than 100m.  The recognition rate of the 
enhanced face images is comparable with that of the image sets collected from a close 
distance of 1m, as shown in Figure 6.14.  However, as the observation distance and 
system magnification further increase, although the proposed enhancement algorithm is 
still capable of producing an improved face recognition rate, the performance gap 
between the high and low magnification data sets remains, as shown in Figure 6.15.  A 
close study of the outdoor high magnification images with an observation distance larger 
than 100m reveals that such images suffer from nonuniform blurs due to air turbulences.  
A uniform PSF is unable to accurately describe the actual imaging process.  Therefore, 
multiple PSFs should be used within one image according to the characteristics of the 
blur.  Figure 8.2 illustrates the idea of employing multiple PSFs in one image.   

Given an image f(x, y), we first divide it into sub-blocks fi,j(x, y) so that each sub-
block undergoes a uniform PSF hi,j(x, y).  Afterwards, hi,j(x, y) is estimated and used to 
deblur the corresponding sub-block.  Since there exist abundant PSF estimation and 
deconvolution algorithms, the key of a successful restoration lies in the proper selection 
of the block size.  A large block size leads to the risk of combining regions with different 
PSFs.  A small block size deteriorates the estimation accuracy of PSFs.  Due to the block-
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based processing, discontinuity may appear at the boundaries of the sub-blocks, which 
can be alleviated by image blending techniques.     
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Figure 8.2.  The use of multiple PSFs in sub-blocks within one image to compensate for 
nonuniform blur.  The face image is collected from a distance of 300m and with a system 
magnification of 284×. 
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