9,581 research outputs found

    Towards realistic artificial benchmark for community detection algorithms evaluation

    Full text link
    Assessing the partitioning performance of community detection algorithms is one of the most important issues in complex network analysis. Artificially generated networks are often used as benchmarks for this purpose. However, previous studies showed their level of realism have a significant effect on the algorithms performance. In this study, we adopt a thorough experimental approach to tackle this problem and investigate this effect. To assess the level of realism, we use consensual network topological properties. Based on the LFR method, the most realistic generative method to date, we propose two alternative random models to replace the Configuration Model originally used in this algorithm, in order to increase its realism. Experimental results show both modifications allow generating collections of community-structured artificial networks whose topological properties are closer to those encountered in real-world networks. Moreover, the results obtained with eleven popular community identification algorithms on these benchmarks show their performance decrease on more realistic networks

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl

    Using simulations and artificial life algorithms to grow elements of construction

    Get PDF
    'In nature, shape is cheaper than material', that is a common truth for most of the plants and other living organisms, even though they may not recognize that. In all living forms, shape is more or less directly linked to the influence of force, that was acting upon the organism during its growth. Trees and bones concentrate their material where thy need strength and stiffness, locating the tissue in desired places through the process of self-organization. We can study nature to find solutions to design problems. That’s where inspiration comes from, so we pick a solution already spotted somewhere in the organic world, that closely resembles our design problem, and use it in constructive way. First, examining it, disassembling, sorting out conclusions and ideas discovered, then performing an act of 'reverse engineering' and putting it all together again, in a way that suits our design needs. Very simple ideas copied from nature, produce complexity and exhibit self-organization capabilities, when applied in bigger scale and number. Computer algorithms of simulated artificial life help us to capture them, understand well and use where needed. This investigation is going to follow the question : How can we use methods seen in nature to simulate growth of construction elements? Different ways of extracting ideas from world of biology will be presented, then several techniques of simulated emergence will be demonstrated. Specific focus will be put on topics of computational modelling of natural phenomena, and differences in developmental and non-developmental techniques. Resulting 3D models will be shown and explained

    Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    Full text link
    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection in networks through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e., groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer, and topic. The study of flows also allows us to generate an interest distance, which affords a personalised view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterised by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks.Comment: 32 pages, 14 figures. Supplementary Spreadsheet available from: http://www2.imperial.ac.uk/~mbegueri/Docs/riotsCommunities.zip or http://rsif.royalsocietypublishing.org/content/11/101/20140940/suppl/DC
    • …
    corecore