12 research outputs found

    Semantic Role Labeling for Knowledge Graph Extraction from Text

    Get PDF
    This paper introduces TakeFive, a new semantic role labeling method that transforms a text into a frame-oriented knowledge graph. It performs dependency parsing, identifies the words that evoke lexical frames, locates the roles and fillers for each frame, runs coercion techniques, and formalizes the results as a knowledge graph. This formal representation complies with the frame semantics used in Framester, a factual-linguistic linked data resource. We tested our method on the WSJ section of the Peen Treebank annotated with VerbNet and PropBank labels and on the Brown corpus. The evaluation has been performed according to the CoNLL Shared Task on Joint Parsing of Syntactic and Semantic Dependencies. The obtained precision, recall, and F1 values indicate that TakeFive is competitive with other existing methods such as SEMAFOR, Pikes, PathLSTM, and FRED. We finally discuss how to combine TakeFive and FRED, obtaining higher values of precision, recall, and F1 measure

    Amnestic Forgery: an Ontology of Conceptual Metaphors

    Full text link
    This paper presents Amnestic Forgery, an ontology for metaphor semantics, based on MetaNet, which is inspired by the theory of Conceptual Metaphor. Amnestic Forgery reuses and extends the Framester schema, as an ideal ontology design framework to deal with both semiotic and referential aspects of frames, roles, mappings, and eventually blending. The description of the resource is supplied by a discussion of its applications, with examples taken from metaphor generation, and the referential problems of metaphoric mappings. Both schema and data are available from the Framester SPARQL endpoint

    Selectional Restriction Extraction for Frame-Based Knowledge Graph Augmentation

    Get PDF
    The Semantic Web is an ambitious project aimed at creating a global, machine-readable web of data, to enable intelligent agents to access and reason over this data. Ontologies are a key component of the Semantic Web, as they provide a formal description of the concepts and relationships in a particular domain. Exploiting the expressiveness of knowledge graphs together with a more logically sound ontological schema can be crucial to represent consistent knowledge and inferring new relations over the data. In other words, constraining the entities and predicates of knowledge graphs leads to improved semantics. The same benefits can be found for restrictions over linguistic resources, which are knowledge graphs used to represent natural language. More specifically, it is possible to specify constraints on the arguments that can be associated with a given frame, based on their semantic roles (selectional restrictions). However, most of the linguistic resources define very general restrictions because they must be able to represent different domains. Hence, the main research question tackled by this thesis is whether the use of domain-specific selectional restrictions is useful for ontology augmentation, ontology definition and neuro-symbolic tasks on knowledge graphs. To this end, we have developed a tool to empirically extract selectional restrictions and their probabilities. The obtained constraints are represented in OWL-Star and subsequently mapped into OWL: we show that the mapping is information preserving and invertible if certain conditions hold. The OWL ontologies are inserted inside Framester, an open lexical-semantic resource for the English language, resulting in an improved and augmented language resource hub. The use of selectional restrictions is also tested for ontology documentation and neuro-symbolic tasks, showing how they can be exploited to provide meaningful results

    Knowledge Extraction from Textual Resources through Semantic Web Tools and Advanced Machine Learning Algorithms for Applications in Various Domains

    Get PDF
    Nowadays there is a tremendous amount of unstructured data, often represented by texts, which is created and stored in variety of forms in many domains such as patients' health records, social networks comments, scientific publications, and so on. This volume of data represents an invaluable source of knowledge, but unfortunately it is challenging its mining for machines. At the same time, novel tools as well as advanced methodologies have been introduced in several domains, improving the efficacy and the efficiency of data-based services. Following this trend, this thesis shows how to parse data from text with Semantic Web based tools, feed data into Machine Learning methodologies, and produce services or resources to facilitate the execution of some tasks. More precisely, the use of Semantic Web technologies powered by Machine Learning algorithms has been investigated in the Healthcare and E-Learning domains through not yet experimented methodologies. Furthermore, this thesis investigates the use of some state-of-the-art tools to move data from texts to graphs for representing the knowledge contained in scientific literature. Finally, the use of a Semantic Web ontology and novel heuristics to detect insights from biological data in form of graph are presented. The thesis contributes to the scientific literature in terms of results and resources. Most of the material presented in this thesis derives from research papers published in international journals or conference proceedings

    Predicate Matrix: an interoperable lexical knowledge base for predicates

    Get PDF
    183 p.La Matriz de Predicados (Predicate Matrix en inglés) es un nuevo recurso léxico-semántico resultado de la integración de múltiples fuentes de conocimiento, entre las cuales se encuentran FrameNet, VerbNet, PropBank y WordNet. La Matriz de Predicados proporciona un léxico extenso y robusto que permite mejorar la interoperabilidad entre los recursos semánticos mencionados anteriormente. La creación de la Matriz de Predicados se basa en la integración de Semlink y nuevos mappings obtenidos utilizando métodos automáticos que enlazan el conocimiento semántico a nivel léxico y de roles. Asimismo, hemos ampliado la Predicate Matrix para cubrir los predicados nominales (inglés, español) y predicados en otros idiomas (castellano, catalán y vasco). Como resultado, la Matriz de predicados proporciona un léxico multilingüe que permite el análisis semántico interoperable en múltiples idiomas

    Data sensitivity detection in chat interactions for privacy protection

    Get PDF
    In recent years, there has been exponential growth in using virtual spaces, including dialogue systems, that handle personal information. The concept of personal privacy in the literature is discussed and controversial, whereas, in the technological field, it directly influences the degree of reliability perceived in the information system (privacy ‘as trust’). This work aims to protect the right to privacy on personal data (GDPR, 2018) and avoid the loss of sensitive content by exploring sensitive information detection (SID) task. It is grounded on the following research questions: (RQ1) What does sensitive data mean? How to define a personal sensitive information domain? (RQ2) How to create a state-of-the-art model for SID?(RQ3) How to evaluate the model? RQ1 theoretically investigates the concepts of privacy and the ontological state-of-the-art representation of personal information. The Data Privacy Vocabulary (DPV) is the taxonomic resource taken as an authoritative reference for the definition of the knowledge domain. Concerning RQ2, we investigate two approaches to classify sensitive data: the first - bottom-up - explores automatic learning methods based on transformer networks, the second - top-down - proposes logical-symbolic methods with the construction of privaframe, a knowledge graph of compositional frames representing personal data categories. Both approaches are tested. For the evaluation - RQ3 – we create SPeDaC, a sentence-level labeled resource. This can be used as a benchmark or training in the SID task, filling the gap of a shared resource in this field. If the approach based on artificial neural networks confirms the validity of the direction adopted in the most recent studies on SID, the logical-symbolic approach emerges as the preferred way for the classification of fine-grained personal data categories, thanks to the semantic-grounded tailor modeling it allows. At the same time, the results highlight the strong potential of hybrid architectures in solving automatic tasks

    Engineering Background Knowledge for Social Robots

    Get PDF
    Social robots are embodied agents that continuously perform knowledge-intensive tasks involving several kinds of information coming from different heterogeneous sources. Providing a framework for engineering robots' knowledge raises several problems like identifying sources of information and modeling solutions suitable for robots' activities, integrating knowledge coming from different sources, evolving this knowledge with information learned during robots' activities, grounding perceptions on robots' knowledge, assessing robots' knowledge with respect humans' one and so on. In this thesis we investigated feasibility and benefits of engineering background knowledge of Social Robots with a framework based on Semantic Web technologies and Linked Data. This research has been supported and guided by a case study that provided a proof of concept through a prototype tested in a real socially assistive context
    corecore