163 research outputs found

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    White Matter Integrity as a Biomarker for Stroke Recovery: Implications for TMS Treatment

    Get PDF
    White matter consists of myelinated axons which integrate information across remote brain regions. Following stroke white matter integrity is often compromised leading to functional impairment and disability. Despite its prevalence among stroke patients the role of white matter in development of post-stroke rehabilitation has been largely ignored. Rehabilitation interventions like repetitive transcranial magnetic stimulation (rTMS) are promising but reports on its efficacy have been conflicting. By understanding the role of white matter integrity in post-stroke motor recovery, brain reorganization and TMS efficacy we may be able to improve the development of future interventions. In this dissertation we set out answer these questions by investigating the relationship between white matter integrity and 1) bimanual motor performance following stroke, 2) cortical laterality following stroke and 3) TMS signal propagation (in a group of cocaine users without stroke). We identified white matter integrity of the corpus callosum as a key structure influencing bimanual performance using kinematic measures of hand symmetry (Chapter 2). Second, we found that reduced white matter integrity of corpus callosum was correlated with loss of functional laterality of the primary motor cortex during movement of the affected hand (Chapter 3). Lastly, we found that reduced white matter tract integrity from the site of stimulation to a downstream subcortical target, was correlated to the ability to modulate that target (Chapter 4). Taken together these studies support white matter integrity as a valuable biomarker for future rTMS trials in stroke. To emphasize the implications of these findings, we provide an example of how to incorporate white matter integrity at multiple levels of rTMS study design

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section ā€œEngineering Mathematicsā€. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    Non-invasive fitness assessment in horses:Integrating wearables and machine learning

    Get PDF
    The field of human sports has advanced significantly with the integration of machine learning and sensors for performance analysis. However, sport horses have not benefited equally from technological advancements due to their inability to provide feedback, such as verbal expressions of fatigue or difficulty.Veterinarians and researchers traditionally interpret equine well-being through methods like verbal encouragement, facial expressions, and blood sample analysis. These methods are either subjective or invasive, causing stress and disruption during training. Accurate and reliable fitness parameter values are essential to avoid overtraining and injuries, necessitating a more effective and less intrusive approach.This PhD thesis aims to revolutionize sport horse training by using wearable inertial sensors and state-of-the-art machine learning to enhance performance and prevent injuries. The study is divided into nine chapters, each contributing to the overall goal of improving equine fitness and well-being.Each chapter begins with a literature review to identify gaps and challenges in equine fitness and performance. Inertial sensors were chosen for their ability to capture a wide range of real-time motion data. The sensors were placed on various parts of the horseā€™s body, including the head, neck, shoulders, back, and legs. Data were collected during various training and competition scenarios to evaluate the system's effectiveness.The results demonstrated that the system could accurately capture and analyze a broad spectrum of motion data, providing valuable insights for trainers and riders. This technology can improve fitness and prevent injuries in sport horses by offering practical tools for assessing equine fitness outside of laboratory settings.This thesis makes significant contributions to equine research by leveraging wearable sensor technology and machine learning to enhance our understanding of equine fitness, performance, and well-being. The findings are valuable not only to the scientific community but also to the broader equestrian world, promoting the welfare of sport horses and the sustainability of the equestrian industry

    Entropy in Dynamic Systems

    Get PDF
    In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed

    Nonlocal Models in Biology and Life Sciences: Sources, Developments, and Applications

    Full text link
    Nonlocality is important in realistic mathematical models of physical and biological systems at small-length scales. It characterizes the properties of two individuals located in different locations. This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including models for brain dynamics that provide us with an important tool to better understand neurodegenerative diseases. In addition, we have discussed nonlocal modelling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales applied to nanotechnology to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.Comment: 71 page

    Enhanced information extraction from noisy vibration data for machinery fault detection and diagnosis

    Get PDF
    As key mechanical components, bearings and gearboxes are employed in most machines. To maintain efficient and safe operations in modern industries, their condition monitoring has received massive attention in recent years. This thesis focuses on the improvement of signal processing approaches to enhance the performance of vibration based monitoring techniques taking into account various data mechanisms and their associated periodic, impulsive, modulating, nonlinear coupling characteristics along with noise contamination. Through in-depth modelling, extensive simulations and experimental verifications upon different and combined faults that often occur in the bearings and gears of representative industrial gearbox systems, the thesis has made following main conclusions in acquiring accurate diagnostic information based on improved signal processing techniques: 1) Among a wide range of advanced approaches investigated, such as adaptive line enhancer (ALE), wavelet transforms, time synchronous averaging (TSA), Kurtogram analysis, and bispectrum representations, the modulation signal bispectrum based sideband estimator (MSB-SE) is regarded as the most powerful tool to enhance the periodic fault signatures as it has the unique property of simultaneous demodulation and noise reduction along with ease of implementation. 2) The proposed MSB-SE based robust detector can achieve optimal band selection and envelope spectrum analysis simultaneously and show more reliable results for bearing fault detection and diagnosis, compared with the popular Kurtogram analysis which highlights too much on localised impulses. 3) The proposed residual sideband analysis yields accurate and consistent diagnostic results of planetary gearboxes across wide operating conditions. This is because that the residual sidebands are much less influenced by inherent gear errors and can be enhanced by MSB analysis. 4) Combined faults in bearings and gears can be detected and separated by MSB analysis. To make the results more reliable, multiple slices of MSB-SE can be averaged to minimise redundant interferences and improve the diagnostic performance

    Condition Monitoring of Helical Gear Transmissions Based on Vibration Modelling and Signal Processing

    Get PDF
    Condition monitoring (CM) of gear transmission has attracted extensive research in recent years. In particular, the detection and diagnosis of its faults in their early stages to minimise cost by maximising time available for planned maintenance and giving greater opportunity for avoiding a system breakdown. However, the diagnostic results obtained from monitored signals are often unsatisfactory because mainstream technologies using vibration response do not sufficiently account for the effect of friction and lubrication. To develop a more advanced and accurate diagnosis, this research has focused on investigating the nonlinearities of vibration generation and transmission with the viscoelastic properties of lubrication, to provide an in-depth understanding of vibration generating mechanisms and hence develop more effective signal processing methods for early detection and accurate diagnosis of gear incipient faults. A comprehensive dynamic model has been developed to study the dynamic responses of a multistage helical gear transmission system. It includes not only time-varying stiffness but also tooth friction forces based on an elastohydrodynamic lubrication (EHL) model. In addition, the progression of a light wear process is modelled by reducing stiffness function profile, in which the 2nd and 3rd harmonics of the meshing frequency (and their sidebands) show significant alteration that support fault diagnostic at early stages. Numerical and experimental results show that the friction and progressive wear induced vibration excitations will change slightly the amplitudes of the spectral peaks at both the mesh frequency and its sideband components at different orders, which provides theoretical supports for extracting reliable diagnostic signatures. As such changes in vibrations are extremely small and submerged in noise, it is clear that effective techniques for enhancing the signal-to-noise ratio, such as time synchronous averaging (TSA) and modulation signal bispectrum (MSB) are required to reveal such changes. MSB is preferred as it allows small amplitude sidebands to be accurately characterised in a nonlinear way without information loss and does not impose any addition demands regarding angular displacement measurement as does TSA. With the successful diagnosis of slight wear in helical gears, the research progressed to validate the capability of MSB based methods to diagnose four common gear faults relating to gear tribological conditions; lubrication shortfall, changes in lubrication viscosity, water in oil, and increased bearing clearances. The results show that MSB signatures allows accurate differentiation between these small changes, confirming the model and signal processing proposed in this thesi
    • ā€¦
    corecore