379 research outputs found

    Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    Get PDF
    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatolog

    Assessing the Success of Postfire Reseeding in Semiarid Rangelands Using Terra MODIS

    Get PDF
    Successful postfire reseeding efforts can aid rangeland ecosystem recovery by rapidly establishing a desired plant community and thereby reducing the likelihood of infestation by invasive plants. Although the success of postfire remediation is critical, few efforts have been made to leverage existing geospatial technologies to develop methodologies to assess reseeding success following a fire. In this study, Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used to improve the capacity to assess postfire reseeding rehabilitation efforts, with particular emphasis on the semiarid rangelands of Idaho. Analysis of MODIS data demonstrated a positive effect of reseeding on rangeland ecosystem recovery, as well as differences in vegetation between reseeded areas and burned areas where no reseeding had occurred (P,0.05). We conclude that MODIS provides useful data to assess the success of postfire reseeding

    Contrasting Development of Canopy Structure and Primary Production in Planted and Naturally Regenerated Red Pine Forests

    Get PDF
    Globally, planted forests are rapidly replacing naturally regenerated stands but the implications for canopy structure, carbon (C) storage, and the linkages between the two are unclear. We investigated the successional dynamics, interlinkages and mechanistic relationships between wood net primary production (NPPw) and canopy structure in planted and naturally regenerated red pine (Pinus resinosa Sol. ex Aiton) stands spanning ≥ 45 years of development. We focused our canopy structural analysis on leaf area index (LAI) and a spatially integrative, terrestrial LiDAR-based complexity measure, canopy rugosity, which is positively correlated with NPPw in several naturally regenerated forests, but which has not been investigated in planted stands. We estimated stand NPPw using a dendrochronological approach and examined whether canopy rugosity relates to light absorption and light–use efficiency. We found that canopy rugosity increased similarly with age in planted and naturally regenerated stands, despite differences in other structural features including LAI and stem density. However, the relationship between canopy rugosity and NPPw was negative in planted and not significant in naturally regenerated stands, indicating structural complexity is not a globally positive driver of NPPw. Underlying the negative NPPw-canopy rugosity relationship in planted stands was a corresponding decline in light-use efficiency, which peaked in the youngest, densely stocked stand with high LAI and low structural complexity. Even with significant differences in the developmental trajectories of canopy structure, NPPw, and light use, planted and naturally regenerated stands stored similar amounts of C in wood over a 45-year period. We conclude that widespread increases in planted forests are likely to affect age-related patterns in canopy structure and NPPw, but planted and naturally regenerated forests may function as comparable long-term C sinks via different structural and mechanistic pathways

    The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity

    Get PDF
    Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented

    Prototyping of LAI and FPAR retrievals from MODIS multi-angle implementation of atmospheric correction (MAIAC) data

    Get PDF
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation are key variables in many global models of climate, hydrology, biogeochemistry, and ecology. These parameters are being operationally produced from Terra and Aqua MODIS bidirectional reflectance factor (BRF) data. The MODIS science team has developed, and plans to release, a new version of the BRF product using the multi-angle implementation of atmospheric correction (MAIAC) algorithm from Terra and Aqua MODIS observations. This paper presents analyses of LAI and FPAR retrievals generated with the MODIS LAI/FPAR operational algorithm using Terra MAIAC BRF data. Direct application of the operational algorithm to MAIAC BRF resulted in an underestimation of the MODIS Collection 6 (C6) LAI standard product by up to 10%. The difference was attributed to the disagreement between MAIAC and MODIS BRFs over the vegetation by −2% to +8% in the red spectral band, suggesting different accuracies in the BRF products. The operational LAI/FPAR algorithm was adjusted for uncertainties in the MAIAC BRF data. Its performance evaluated on a limited set of MAIAC BRF data from North and South America suggests an increase in spatial coverage of the best quality, high-precision LAI retrievals of up to 10%. Overall MAIAC LAI and FPAR are consistent with the standard C6 MODIS LAI/FPAR. The increase in spatial coverage of the best quality LAI retrievals resulted in a better agreement of MAIAC LAI with field data compared to the C6 LAI product, with the RMSE decreasing from 0.80 LAI units (C6) down to 0.67 (MAIAC) and the R2 increasing from 0.69 to 0.80. The slope (intercept) of the satellite-derived vs. field-measured LAI regression line has changed from 0.89 (0.39) to 0.97 (0.25).This work was funded by NASA Earth Science Division to MODIS (NNX14AI71G) and VIIRS (NNX14AP80A) programs through grants to Boston University (Ranga B. Myneni, PI), and HBO contract # 21205-14-036 to Yuri Knyazikhin. (NNX14AI71G - NASA; NNX14AP80A - NASA; 21205-14-036 - HBO contract)http://www.mdpi.com/2072-4292/9/4/370Published versio

    Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Get PDF
    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics

    A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems

    Get PDF
    The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies

    How does the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR) product relate to regionally developed land cover and vegetation products in a semi-arid Australian savanna?

    Get PDF
    Spatio-temporally variable information on total vegetation cover is highly relevant to water quality and land management in river catchments adjacent to the Great Barrier Reef, Australia. A time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR; 2000-2006) and its underlying biome classification (MOD12Q1) were compared to national land cover and regional, remotely sensed products in the dry-tropical Burdekin River. The MOD12Q1 showed reasonable agreement with a classification of major vegetation groups for 94% of the study area. We then compared dry-seasonal, quality controlled MODIS FPAR observations to (i) Landsat-based woody foliage projective cover (wFPC) (2004) and (ii) MODIS bare ground index (BGI) observations (2001-2003). Statistical analysis of the MODIS FPAR revealed a significant sensitivity to Landsat wFPC-based Vegetation Structural Categories (VSC) and VSC-specific temporal variability over the 2004 dry season. The MODIS FPAR relation to 20 coinciding MODIS BGI dry-seasonal observations was significant (ρ < 0.001) for homogeneous areas of low wFPC. Our results show that the global MODIS FPAR can be used to identify VSC, represent VSC-specific variability of PAR absorption, and indicate that the amount, structure, and optical properties of green and non-green vegetation components contribute to the MODIS FPAR signal

    Determining fPAR and leaf area index of several land cover classes in the Pot River and Tsitsa River catchments of the Eastern Cape, South Africa

    Get PDF
    Determining the quantum (both annual maxima and minima) and the temporal variation in the leaf area index (LAI), and the fraction of photosynthetically active radiation (fPAR), are three fundamental biophysical characteristics of the plant canopy that should parameterise ecophysiological models of water use (evapotranspiration) and carbon sequestration. Although Earth observation provides values and time series for both these parameters, in-field validation of these values is necessary. Following a very wet summer season, we conducted field surveys of several land cover classes within two quaternary catchments in the Eastern Cape province, South Africa, to determine maximum values of LAI and fPAR that occur within each of these land cover classes. To assist in up-scaling these point measures to the landscape, we present a regression relationship between Landsat 8 NDVI and LAI measured using an Accupar Ceptometer (r2 = 0.92). Peak wet season LAI varied from extremely high (&gt;7.0) under the canopy of invasive black wattle (Acacia mearnsii) trees to ~2.0 under the canopy of a Eucalyptus plantation. Ungrazed native grassland displayed an intermediate LAI value of 3.84. The black wattle stand absorbed 97% of the available PAR, whereas the mature Eucalyptus plantation only absorbed 66% of PAR.Keywords: agroforestry, ecosystem ecology, remote sensin

    Inconsistencies of interannual variability and trends in long-term satellite leaf area index products

    Full text link
    Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products
    corecore